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Abstract

This paper presents the idea of learning optimal filters

for color image reconstruction based on a novel concept

of nonlinear spectral image decompositions recently pro-

posed by Guy Gilboa. We use a multiscale image decom-

position approach based on total variation regularization

and Bregman iterations to represent the input data as the

sum of image layers containing features at different scales.

Filtered images can be obtained by weighted linear com-

binations of the different frequency layers. We introduce

the idea of learning optimal filters for the task of image

denoising, and propose the idea of mixing high frequency

components of different color channels. Our numerical ex-

periments demonstrate that learning the optimal weights

can significantly improve the results in comparison to the

standard variational approach, and achieves state-of-the-

art image denoising results.

1. Introduction

The great success of linear spectral decomposition meth-

ods such as the Fourier transform (FT) is based on their abil-

ity to represent the input data at different scales. The FT for

instance represents a signal as the superposition of sine and

cosine of different frequencies, such that one can enhance,

damp, or eliminate certain frequencies differently by the de-

sign of Fourier filters. While this theory and its applications

like high-pass, low-pass, band-pass, or band-stop filterings

is well understood for linear transformations, recent works

have extended such concepts to nonlinear variational tech-

niques.

In [16, 17] Guy Gilboa proposed to use the total varia-

tion (TV) gradient flow to define a notion of nonlinear spec-

tral representations of images. Burger et al. generalized this

concept to arbitrary one-homogeneous regularizations in [4]

and considered three different possible definitions of non-

linear spectral representations.

In all of the above works, the general idea of nonlinear

spectral representations is to define a function ψ(t) called
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a) Original b) Noisy (PSNR 9.51) c) BM3D (PSNR 16.84)
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d) Trained weights for green-channel e) Proposed (PSNR 20.30)

Figure 1. Learned spectral filtering. Enhancing low and filtering

high frequencies of a spectral total variation image decomposition

according to the learned filters shown in d), yields the denoised

image in e), which compares favorably to the BM3D algorithm c)

at high noise levels.

the frequency representation of the input data f , such that

f =

∫ ∞

0

ψ(t) dt.

Similar to the notion of the frequency in classical methods

such as the FT, the size of the features in ψ(t) decreases as t

increases. The latter motivates the definition of filters ω(t)
in the frequency domain to reconstruct a filtered version

uω =

∫ ∞

0

ω(t)ψ(t) dt (1)

of the input data. The above approach has the flexibility

to enhance (ω(t) > 1), damp (ω(t) < 1), or eliminate

(ω(t) = 0) different frequencies, where the meaning of the

frequency depends on the particular type of decomposition.

In this paper we consider the application of nonlinear

spectral image decompositions to color image denoising,

i.e. the task of separating the input data f into the sum of a

clean signal û and undesirable noise n. In particular, we

propose to learn optimal filters ω in (1) on training data

sets. To account for inter-channel correlations, we learn

the natural spectral relation between different color chan-
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nels by allowing the reconstruction of each channel to in-

corporate frequency information from other color channels.

Figure 2 illustrates the proposed processing, and Figure 1

demonstrates the effectiveness of the proposed approach in

comparison to the state-of-the-art technique of BM3D [12].

While the main focus of our experiments is image denois-

ing, we demonstrate that the general idea can be extended

to several image reconstruction problems including contrast

enhancement, deblurring and compressed sensing.

In summary, we make the following contributions:

• We study the nonlinear spectral TV decomposition of

color images.

• We learn spectral filters for color image denoising on

a training data set.

• We propose to mix high frequency components of dif-

ferent color channels to account for inter-channel cor-

relations.

• We demonstrate that the proposed formalism extends

to reconstruction problems beyond image denoising.

2. Related work

2.1. Image Denoising

Due to the large amount of relevant work in the field of

image denoising, we limit ourselves to a review of a small

selection of denoising strategies.

While the first denoising methods applied linear filters,

nonlinear variational techniques computing

u(t) = argmin
u

1

2
‖u− f‖2 + tJ(u) (2)

for a suitable regularization functional J such as the total

variation [25] have revolutionized the field. Today, many

patch-based methods such as nonlocal means [3], nonlo-

cal TV [18], dictionary learning (e.g. [13, 21]), the Zoran-

Weiss EPLL model [33], patch-based Wiener filtering [9],

or the BM3D algorithm [12] yield state-of-the-art denois-

ing results, particularly if the image to be denoised is self-

similar. Competitive non-patch based methods are for in-

stance based on learning analysis operators [10], or learn-

ing iterative denoising schemes motivated from optimiza-

tion methods [27].

2.2. Spectral Representations

Methods based on finding different representations

which are better suited to separate certain desirable features

from parts which ought to be suppressed are widely used

in the literature. In addition to classical Fourier analysis,

the design of more sophisticated orthogonal transformations

based on wavelets has attracted a lot of attention (cf. [22]).

While classical wavelets lead to linear transformations, non-

linear methods based on the variational formulation (2) are

a) Noisy 

input image

b) Nonlinear spectral 

decomposition

c) Filtering d) Restored 

image
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Figure 2. Spectral filtering. We determine the nonlinear spectral

decomposition of the noisy input image a) as illustrated in b). The

frequency layers are recombined with learned optimal filters c)

that allow a mixing of frequency components of the different color

channels and lead to the final reconstruction shown in d).

popular due to their versatility and ability to preserve sharp

edges. Although multiscale decompositions based on (2)

have been widely studied (e.g. [1, 30]), the works [4, 16, 17]

were – to the best knowledge of the authors – the first to es-

tablish a clear analogy between linear and nonlinear spectral

decompositions. In the next section we recall these works

in more detail, as they are the foundation of the proposed

filter learning.

3. Spectral Filtering

The work [4] proposed three different ways of defining

nonlinear spectral decompositions, namely via (2), via a

gradient flow (as originally studied in [16, 17]), or by con-

sidering the so-called inverse scale space flow (ISSF) [5, 6].

For the sake of brevity, we will limit our discussion to the

ISSF formulation, since this is the method we used in the

numerical implementation of our framework. Although the

details of the relation between the three different approaches

presented in [4] remains an open question, we expect them

to yield similar results. For the special case of the data being

a nonlinear eigenfunction, i.e. there exists a λ ∈ R such

that λf ∈ ∂J(f), the exact equivalence of all three spectral

decompositions was shown in [4].

Let us detail how to construct nonlinear spectral decom-

positions. As observed in [23] variational reconstructions

via (2) contain a systematic error, bias, or loss of contrast,

which can be avoided by considering the Bregman iteration

uk+1 = argmin
u

1

2
‖u− f‖2 + α(J(u)− 〈pk, u〉), (3)

with pk ∈ ∂J(uk). For large α and p0 = 0, Bregman iter-

ation starts at an approximation u1 of f such that J(u1) is

small. For J being the TV this means a strong oversmooth-

ing, possibly even a completely constant image. As the it-

eration proceeds, the iterates uk converge to f by including

finer and finer features. The latter makes Bregman iteration

an ideal candidate for spectral decompositions.
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The difference between two successive iterates corre-

sponds to features of f that have a particular frequency, such

that the k-th frequency component can be defined as

ψk = uk − uk−1.

As an example, Figure 3 shows three different image fre-

quency components ψk. As we can see, the structures are

rather large for small k, and rather fine for large k.

a) Input b) ψ11 c) ψ26 d) ψ36

Figure 3. Frequency representation. Low, medium, and high fre-

quencies of a spectral color TV image decomposition with ampli-

fied contrast.

By defining

u0 = argmin
u

1

2
‖u− f‖2 s.t. J(u) = 0,

i.e. the orthogonal projection of f onto the kernel of J , and

denoting ψ0 = u0, one obtains

f =
∞
∑

k=0

ψk.

The original continuous ISSF framework considered in [4]

can be recovered from (3) in the limit of α→ ∞.

The above representation of the input data as the sum

over contributions of different frequencies motivates filter-

ing approaches of the form

uω =
∞
∑

k=0

ωkψ
k, (4)

for weights or filter coefficients ωk ∈ R, which is a dis-

cretization of the time continuous filtering (1).

As an example, consider the ideal low pass filter

ωk =

{

1 k ≤ K,

0 else,

which restores theK-th Bregman iterate as the filtered solu-

tion. In the special case of the input data being a generalized

eigenfunction, one can show that the spectral representation

just consists of a single peak. In this case even the solu-

tion of the variational regularization (2) can be restored by

a particular choice of filter coefficients, namely those that

decrease linearly to zero.

Considering the popularity of variational methods as

well as of Bregman iterative methods, one might not only

ask the question if a linearly decaying or a rectangular

shaped spectral filter yield better reconstruction results, but

also what the optimal shape of a filter is. In this manuscript

we propose to learn such optimal filters for TV color image

denoising based on a training set of natural images.

4. Learning Spectral Filters for RGB-Images

4.1. Color TV Regularization

We consider color image denoising by TV regularization

as an effective and efficient regularization technique. More

specifically, we use the color TV definition considered in

[2] which originated from [26]. For this type of TV not

only the derivatives but also the color channels are coupled

in an ℓ2 fashion, i.e.

TV (u) =

∫

Ω

√

√

√

√

3
∑

i=1

((∂x1
ui(x))2 + (∂x2

ui(x))2) dx (5)

for ui : Ω → R representing the different color channels,

red, green, and blue.

Because TV based variational reconstruction methods

often obtain improved results if the color channel correla-

tion is avoided by considering transformations into lumi-

nance and chrominances (cf. [8, 11]), we additionally con-

sider

Au(x) :=





1 1 1
−1 2 −1
−1 0 1









u1(x)
u2(x)
u3(x)



 ,

normalize the columns of A and regularize the (uncoupled)

total variation of the transformed image, where the weight

of the luminance channel is reduced by a factor of 0.75. We

refer to this approach as color transformed TV (CTTV).

4.2. Exploring Channel Correlations

The color channels of natural images are often highly

correlated. While color differences occur at rather large

scales, the high frequency features and textures are often

shared by all three color channels. It can therefore be ben-

eficial to consider a mixture of the high frequency com-

ponents of all color channels for color image restoration.

While the mixing surely reduces the standard deviation of

the noise, the true texture does not change significantly due

to the positive correlation. Naturally, the stronger the corre-

lation between the color channels is, the stronger the mixing

may be.

We propose to not only learn the optimal filter on each

channel separately, but also learn the correlation between

the channels at different frequencies by considering a re-

construction model of the form

uc
ω
=

∑

l∈{red, green, blue}

K
∑

k=0

ωl

k
ψl

k
, (6)

for all colors c ∈ {red, green, blue}. This way the learn-

ing technique can automatically determine the correlation

between different color channels at different frequencies k.
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Figure 4. Image set. For our experiments we used a set of 24 natural images and split it by a ratio of 50/50 for training and testing. The

first and second row show the training and test set respectively.

4.3. Learning Optimal Filters

We use a set of clean training images to learn optimal

filters based on (6). Denoting the clean images by gi, we

generate noisy images fi = gi + nσ
i

by adding noise of

fixed standard deviation σ to each of the images and com-

pute the spectral decomposition of each of the fi according

to (3). Our goal is to find weights ωl

k
such that the uc

ω
in (6)

approximate the gc
i

as closely as possible.

If the total number of pixels in our entire training data set

is N and we used K − 1 Bregman iterations, we write the

weights ω into a R3K×3 matrix, arrange the clean images in

a matrix g ∈ R
N×3, and write the ψk

i
into a single matrix

ψ ∈ R
N×3K . Now we can either consider the simple least

squares problemminω‖ψω − g‖2, or – if we expect smooth

filtering curves – rather consider a regularized least-squares

problem of the form

ω = argmin
ω

‖ψω − g‖2 + γ‖∇ω‖2. (7)

Additionally, we considered a non-negativity constraint on

the weights which, however, did not lead to improved re-

sults.

5. Implementation

We use the primal-dual hybrid gradient (PDHG) method

[7, 14, 24, 32] with the adaptive time stepping scheme pro-

posed in [19] and a fixed number of 500 iterations to solve

the minimization problems in (3). Additionally, we found

initializing the minimization algorithm with the previous uk

to improve the convergence.

Since many more changes of the time continuous flow

discretized by (3) happen at small times, we use an adaptive

time resolution. Because the reciprocal of the regularization

parameter α in (3) acts like a time step we start with a large

value of α = 20 and decrease the value of α by a factor

of 0.92 in each iteration. We compute a total number of 50
iterations according to (3) and set u51 = f .

Learning the optimal filters via (7) leads to a simple and

small linear equation. In our experiments we used γ = 1000
as a regularization parameter for the 12 images gi being on

a scale from 0 to 1.

Interestingly, the decoupled CTTV regularization of lu-

minance and chrominances did not improve the results of

the learned optimal filters, such that we focused on (5).

The complexity of the spectral decomposition itself

amounts to 50 TV minimization problems. While our Mat-

lab implementation needs about 85 seconds per TV min-

imization on a 640 × 640 image, recent GPU implemen-

tations have demonstrated real time capabilities on similar

problems (e.g. [28]), which means the full decomposition

could be computed in a couple of seconds. Note that the

filter learning as well as the application of a filter are ex-

tremely cheap and run in real-time. Thus, once the spec-

tral decomposition is computed, even adapting the denois-

ing strength by changing (or interpolating between) learned

filters runs in real-time on a CPU.

6. Experimental Results

Our numerical experiments are conducted on a data set

of 24 natural color images, which we divided into equally

sized training and test sets. We add zero mean Gaussian

noise of different standard deviations σ to the images and

compute the spectral decomposition as well as the optimal

weights as described in Sections 4 and 5.

For a qualitative evaluation, we compare our method to

four different techniques. Firstly, we use the method and

code from [31] (abbreviated by DCT) as a recent, fast, and

effective denoising strategy. Secondly, we compare our ap-

proach to the results obtained by TV denoising because this

method is most closely related to our approach. Since the

CTTV yielded in better denoising results, we limit the pre-

sentation of the results to this definition. Finally, we include

the block matching 3D (BM3D) algorithm [12] with code

from [20] as a state-of-the-art technique into our compari-

son.

For each method, each image, and each noise level, we

compute the peak signal to noise ratio (PSNR) as well as the

structural similarity index (SSIM) [29] which better reflects

the visual quality of the images.

Let us first consider the optimal filters found by the learn-

ing procedure (7) shown in Figure 5 for two different noise

levels. The first column shows the learned filter coefficients

used for the reconstruction of the red channel. The red

292



R-channel G-channel B-channel
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a) Filter coefficients at σ = 40

R-channel G-channel B-channel
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c) Filter coefficients at σ = 120

Figure 5. Learned optimal filters. Filter coefficients wl

k, l ∈ {red, green, blue} (cf. Equation (6)) used for the reconstruction of the R, G

and B-channel at different standard deviations σ.

curve within the first column corresponds to the filter co-

efficients of the red frequencies used for red channel recon-

struction. Respectively, the green and blue curves illustrate

the weights with which the green and blue frequencies con-

tribute to the red channel reconstruction. The second and

third columns show the filter coefficients for the green and

blue channel in a similar fashion. Note that the x-axis sim-

ply corresponds to the Bregman iterates of our algorithm.

In a time continuous representation, the k-th iterate corre-

sponds to the time tk =
∑

k

i=1
1

20·0.92i .

We can see that, for a fixed noise level, the main filter

curves, i.e. the red filter coefficients used for the reconstruc-

tion of the red channel, the green filter coefficients used for

the reconstruction of the green channel, and the blue filter

coefficients used for the reconstruction of the blue chan-

nel, look very similar. Interestingly, the optimal filter co-

efficients underline our assumption that at medium to high

frequencies it makes sense to mix the different color chan-

nels. Note that the correlation between red and green as well

as the correlation between blue and green is higher than the

red-blue correlation, which is to be expected considering

their respective distances in the electromagnetic spectrum.

As the noise level increases, the iterate at which the fil-

ters reach a value of zero moves from about 30 at σ = 40
to 20 at σ = 120 because a stronger filtering is required.

It is interesting to see that some of the very high frequency

components get reincorporated for higher noise levels.

A third interesting observation is the fact that the low fre-

quencies are boosted with filter coefficients larger than one

as the noise level increases. Since the noisy images used

for our experiments were saved in the usual 8-bit format,

values below 0 or above 255 are clipped. The latter leads

to the noise in a saved image not exactly following a zero-

mean Gaussian distribution anymore. Particularly, the mean

value of the noise is negative in bright image areas and posi-

tive in dark image areas. Since many denoising methods are

(locally) mean value preserving, the denoised image will be

too dark in bright areas and too bright in dark areas, hence

leading to a reduced contrast. This effect can clearly be

seen in the result of the BM3D algorithm in Figure 1 c). By

boosting low and medium frequencies our method is able to

restore the loss of contrast caused by noise clipping. Thus,

spectral filtering possibly offers an alternative to incorporat-

ing additional transforms into denoising strategies to correct

for the aforementioned bias as investigated in [15].

Let us now look at the actual evaluation of the denois-

ing algorithms. The average PSNR and SSIM values over

the 12 test images that all methods achieved for different

standard deviations σ of the noise are shown in Figure 6 a)

and b) respectively. We can see that while the BM3D al-

gorithm yields the best results for low noise levels such as

σ = 40, its performance drops as the noise level increases.

TV denoising on the other hand starts with rather low PSNR

and SSIM values but does not show an equally fast decay of

the quality metric values, such that it yields better results for

noise levels above σ = 100. The DCT denoising pays for its

efficiency by showing the weakest denoising performance.

While the proposed approach yields slightly worse re-

sults than the BM3D algorithm at σ = 40, it can handle high

noise levels very well, leading to PSNR values about 3dB
higher than BM3D at the highest noise level. Moreover, the

SSIM metric indicates a significantly higher visual quality

of our approach as the noise level increases. The qualita-

tive results shown in Figure 8 underline this indication. The
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