
Robust Model-based 3D Head Pose Estimation

Gregory P. Meyer1,2 Shalini Gupta2 Iuri Frosio2 Dikpal Reddy2 Jan Kautz2

1University of Illinois Urbana-Champaign 2NVIDIA

Abstract

We introduce a method for accurate three dimensional

head pose estimation using a commodity depth camera. We

perform pose estimation by registering a morphable face

model to the measured depth data, using a combination of

particle swarm optimization (PSO) and the iterative closest

point (ICP) algorithm, which minimizes a cost function that

includes a 3D registration and a 2D overlap term. The pose

is estimated on the fly without requiring an explicit initial-

ization or training phase. Our method handles large pose

angles and partial occlusions by dynamically adapting to

the reliable visible parts of the face. It is robust and general-

izes to different depth sensors without modification. On the

Biwi Kinect dataset, we achieve best-in-class performance,

with average angular errors of 2.1, 2.1 and 2.4 degrees for

yaw, pitch, and roll, respectively, and an average transla-

tional error of 5.9 mm, while running at 6 fps on a graphics

processing unit.

1. Introduction

Estimating the three dimensional (3D) pose (rotation and

position) of the head is an important problem with applica-

tions in facial motion capture, human-computer interaction

and video conferencing. It is a pre-requisite to gaze tracking,

face recognition, and facial expression analysis. Head pose

estimation has traditionally been performed on RGB images

with rotation-specific classifiers or facial features [21], or

by registering images to 3D templates [30, 9]. However,

RGB-based head pose estimation is difficult when illumina-

tion variations, shadows, and occlusions are present. With

the emergence of inexpensive commodity depth cameras,

promising 3D techniques for body [29], hand [22], and head

[15] pose estimation have been proposed.

We present an algorithm for accurate 3D head pose es-

timation for data acquired with commodity depth cameras.

Our approach uses only 3D information, no manual interven-

tion or training, and generalizes well to different 3D sensors.

On the benchmark Biwi Kinect dataset [15], we achieve av-

erage angular errors of 2.1◦, 2.1◦ and 2.4◦ for yaw, pitch,

and roll, respectively, and an average translational error of

5.9 mm, while running at 6 fps on a graphics processing unit

(GPU). To our knowledge, this is the best accuracy reported

on this dataset up to now.

We achieve this high accuracy by combining a number of

concepts together in an effective manner. We first detect the

head using an adaptive 3D matched filter. Then, we register a

morphable face model [6] to the measured facial data through

a combination of particle swarm optimization (PSO) and the

iterative closest point (ICP) algorithm. We demonstrate that

together PSO and ICP simultaneously improve robustness,

accuracy, and computational efficiency. Instead of creating

a person-specific model during an initialization phase, we

continuously adapt a morphable model to fit the subject’s

face on the fly. Additionally, we dynamically weight the

vertices of the morphable model to give more importance to

the useful visible parts of the face, and thus handle extreme

poses and partial occlusions effectively.

2. Related Work

Notable techniques for 3D head pose estimation employ

features, pose-specific classifiers, or registration to reference

3D head models.

Sun and Yin locate facial features using curvature proper-

ties to infer the head pose to within 5◦ [31]. Breitenstein et

al. use the orientation of the nose as an initial estimate for

head pose and refine it by comparing against pre-rendered

depth images of an average face model in various poses 6◦

apart [7]. Papazov et al. introduce a triangular surface patch

(TSP) descriptor to match facial point clouds to a gallery of

synthetic faces and to infer their pose [24]. Feature-based

techniques fail when the features cannot be detected, e.g. in

the case of extreme rotations or partial occlusions.

Among the classifier-based techniques is the work of

Seemann et al. where they detect faces in RGB images and

estimate the head pose from the disparity map of a stereo

camera using a neural network for each rotation [28]. Fanelli

et al. train random classification and regression forests with

range image patches for head detection and pose estimation

[15]. Their technique achieves good accuracy on high and

low quality depth data [14, 15]. Tulyakov et al. [32] use

cascaded tree classifiers and achieve higher accuracies than

Fanelli et al. Classifier-based techniques require extensive
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training with large datasets. Moreover, classifiers trained on

one 3D sensor do not generalize well to others.

An alternate approach registers a 3D head model to the

measured data using the rigid/non-rigid ICP algorithm. Pre-

vious promising methods, e.g. [2, 26, 8, 10], employ 3D

deformable model fitting to create person-specific models for

head pose estimation. However, these existing methods re-

quire offline initialization with significant cooperation from

the user to construct the subject-specific reference models.

In contrast, we refine the morphable model’s shape continu-

ously to fit the subject while simultaneously estimating the

head pose.

To ensure robustness to facial expressions, a number of

the existing deformable model fitting based approaches, e.g.

[35, 26], include only the less deformable eyes and nose

regions of the face in the reference model. However, when

the parts of the face that are included in the reference model

are not visible, e.g. when the head is titled back the eyes and

nose regions are not visible, the reference model matches

poorly to the observed data, resulting in inaccurate pose

estimation. In order to address this, we instead employ the

entire morphable model and dynamically weight the regions

of the model based on which parts of the face are visible.

Techniques for facial animation capture with high [38,

34, 37] and low [35, 18] quality 3D scans, also employ very

precise morphable model fitting. These techniques require

significant manual interaction to create very detailed person-

specific models. Also, these studies do not directly report the

accuracy of head pose estimation, but presumably perform

sufficiently well to enable effective facial expression capture.

To avoid deformable model fitting, some methods directly

use facial data from the 3D video sequence as a reference.

For example, Padeleris et al. use the first frame [23], Bar et

al. use frontal, left, and right profile faces [3], and Martin

et al. employ 100 frames with faces in different poses [20].

When the absolute pose of the reference face is unknown,

these techniques merely provide the pose of the face relative

to the reference and not the absolute head pose. Furthermore,

the quality of these references is low, as they often contain

holes and noise. Generally, including more views of the face

in the reference model, tends to improve accuracy. Tulyakov

et al. achieve the best accuracy among these approaches by

registering multiple frames and volumetrically averaging

them to produce a higher quality reference model [32].

To register the reference model to the measured data, ICP

and its variants are often used. However, ICP fails to con-

verge to the correct solution when it is initialized poorly. To

overcome this, Padeleris et al. employ the stochastic PSO

algorithm [1] to register facial surfaces [23]. However, PSO

also suffers from slow and/or premature convergence to a

local optimum. Recently, Qian et al. proposed an optimiza-

tion algorithm that combines PSO and ICP to overcome their

individual limitations and successfully applied it to estimate

the 26-dimensional pose of 3D hands [25]. Their work has

inspired us to employ a combination of PSO and ICP to

accurately estimate the 3D head pose. As an extension of

their work, we provide a detailed analysis to understand the

underpinnings and conditions for success of combining PSO

and ICP for 3D surface registration.

Finally, 3D head detection is a pre-requisite to head pose

estimation. When color and depth information is available,

head detection is typically performed via face detection [33]

in RGB, e.g. in [8, 26, 20, 28, 2]. Fanelli et al. [15] and

Tulyakov et al. [32] trained classifiers to distinguish between

face and non-face range image patches. However, these

methods have limited reliability, and they do not generalize

well to other depth sensors.

3. Method

3.1. Head Localization

The 3D head localization procedure identifies an area in

a depth image which most likely contains a head. It employs

an adaptive detection filter, whose size changes to match the

expected size of an average human head at various depths.

The depth measured at pixel (i, j) is denoted by do (i, j).
We assume that the camera’s focal length f is known and

that only one subject is present in the scene. Furthermore,

we assume that the subject is at a depth between dm and

dM and that their silhouette can be reliably extracted, e.g.

through thresholding. We define a binary mask

ε (i, j) = dm < d0 (i, j)< dM, (1)

that identifies the pixels that are inside the boundary of the

subject’s silhouette, i.e. ε (i, j) > 0, which we refer to as

active pixels. The expected pixel width w(i, j) and height

h(i, j), of a head centered at (i, j), are obtained as:

w(i, j) = f w̄/do (i, j), h(i, j) = f h̄/do (i, j) (2)

where w̄ and h̄ are the width and height of an average human

head, respectively [12].

For each active pixel location (i, j), we first resize the

kernel in Fig. 1b relative to the approximated width, w(i, j),
and height, h(i, j), of the head, and convolve it with ε(·, ·)
to obtain a score s(i, j). The head detection kernel (Fig. 1b)

resembles the silhouette of a subject’s head and shoulders,

when their torso is roughly perpendicular to the optical axis

of the camera.

The identified head region is centered on the pixel with

the maximum score, (ih, jh), and has a size of w(ih, jh)×
h(ih, jh) (red rectangle in Fig. 1d). We provide to the head

pose estimation algorithm a slightly enlarged region around

the detected head (shown in yellow in Fig. 1d) to ensure that

the head is entirely contained in it. Since our head detection

filter requires only the sums of rectangular regions of the

image, we compute s(i, j) efficiently using integral images.
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Figure 1. (a) A color image from the Biwi Kinect dataset [15].

(b) The corresponding depth map and the kernel centered on the

identified head area; the yellow pixels have coefficients +1, and

the cyan ones have a value of -1. (c) The score map s(i, j); the red

cross indicates the location (ih, jh) of the maximum of the score

map. (d) The identified head area (red rectangle), enlarged head

area (yellow rectangle), and kernel area (in blue).

3.2. Head pose estimation

3.2.1 Reference model

As the reference head model, we use the 3D Basel Face

Model [6]. With this morphable model, a facial surface

comprised of a set of 3D vertices S = (v1,v2, ...,vN) can be

represented as a linear combination of an average 3D face

(µ) and a set of 3D bases face shapes (si):

S = µ +∑
i

αisi. (3)

Parts of the observed face may not match the morphable

model (e.g., due to facial hair, or eye-wear); therefore, we

use a weight vector, W = (w1,w2, ...,wN), to represent the

confidence of each vertex in the reference model. For the

initial frame, we set the morphable model’s shape vector S0

to the average face µ and its weight vector W0 to unity for

all vertices.

3.2.2 Cost function

The pose of the head is indicated by a 6-dimensional vector

x = (θx,θy,θz, tx, ty, tz), where θi and ti represent a rotation

about and a translation along the axis i. We evaluate a hy-

pothetical pose x for an observed depth image do by first

rendering a depth image dh and a weight image wh of the

morphable face model in the pose x:

(dh,wh) = Render(x,Sk,Wk,K) , (4)

where Sk and Wk are the current shape and weight of the

morphable model, and K is the camera’s intrinsic calibra-

tion matrix. Each depth pixel at location (i, j) in do and

dh has a corresponding 3D vertex, vo(i, j) and vh(i, j), re-

spectively. In addition, each vertex in vh(i, j) has a normal

vector nh(i, j) computed using the relative position of its

neighboring vertices.

To factor out the effect of outliers, which are commonly

observed with low-cost depth cameras, we generate a subset,

P , of reliable vertices to be compared:

P =
{

(i, j)
∣

∣‖vo(i, j)−vh(i, j)‖< τ,(i, j) ∈ O∩H
}

, (5)

where O and H are the sets of valid (non-zero) pixels in the

observed and hypothetical depth images, respectively. In our

experiments, we empirically set τ = 3 cm.

We then compute the following cost function to quantify

the discrepancy between the observed and the hypothetical

data:

E(x) = Ev(x)+λEc(x) (6)

where

Ev(x) =
∑(i, j)∈P wh(i, j)

[

(vo(i, j)−vh(i, j))T
nh(i, j)

]2

∑(i, j)∈P wh(i, j)
(7)

and

Ec(x) =

[

1− ∑
(i, j)∈P

wh(i, j)
/

∑
(i, j)∈H

wh(i, j)

]2

. (8)

The term Ev(x) measures the point-to-plane distance be-

tween corresponding vertices on the two surfaces, whereas

Ec(x) measures the extent to which the depth images coin-

cide with each other (i.e., it penalizes the hypothetical and

observed depth images for not overlapping). The parameter

λ designates the relative importance of the two terms, and it

was empirically set to 350.

3.2.3 Optimization

In order to compute the pose, we employ a combination of

particle swarm optimization (PSO) and the iterative closest

point (ICP) algorithms.

PSO [16] uses a set of particles, that evolve through social

interactions over a series of generations, to search for a

global optimum in a non-convex parameter space. For head

pose estimaton, each particle represents a head pose x and

has a corresponding cost, E(x), specified by Eq. (6). Each

particle keeps track of the position x∗ where it has observed

the lowest cost, E(x∗), across all generations. The best

position across all particles and generations is indicated by

x∗g. At generation t, every particle stochastically updates its

position x and velocity u based on its position relative to x∗

and x∗g [11]:

ut+1 = γ
(

ut +αξ1 (x
∗−xt)+βξ2

(

x∗g −xt

))

xt+1 = xt +ut+1,
(9)
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where the constants α , β , and γ are the cognitive, social, and

constriction factors, respectively, and ξ1 and ξ2 are uniform

random variables ∈ [0,1]. Based on [11], we set α = β =
2.05 and γ = 0.7298.

During the first generation (t = 0), the particles’ positions

are initialized randomly, and their velocities are set to zero.

For the initial frame, the particles’ positions are generated

by randomly sampling a normal distribution with the mean

set to the frontal pose. For subsequent frames, half of the

particles are initialized in this way, and the other half use a

normal distribution with a mean set to the previous frame’s

pose estimate.

To prevent unlikely head poses, we bound the parameter

space: θx ∈ [−60◦,60◦] for pitch, θy ∈ [−90◦,90◦] for yaw,

and θz ∈ [−45◦,45◦] for roll. For translation, we force the

centroid of the morphable model to remain within a certain

distance (∼ 10 cm) from the head center that we detect

during head localization.

For each particle and for each generation, we run 3 itera-

tions of ICP [4] before the PSO update, Eq. (9). To efficiently

identify point correspondences between the surfaces, we use

projective data association, which finds corresponding points

along camera rays [5]. Given the particle’s current estimate

of the head pose, we transform the vertices in the vertex map

vh and project them into the vertex map vo. Vertices in vo

and vh that share the same pixel coordinate (i, j) and that

are within a 3D Euclidean distance of 3 cm are considered

corresponding points. We update the particle’s position, x,

by minimizing the point-to-plane error metric, which has

been shown to have improved convergence rates compared

to the traditional point-to-point error metric [27], and it has

a closed-form solution using the small angle approximation

[19]. Note that the point-to-plane distance employed in ICP

is also the first term in our cost function for PSO, Eq. (6).

As a trade-off between accuracy and computation time for

our combined PSO and ICP optimization procedure, we used

a set of 10 particles and 5 generations. After the optimization

terminates, we provide the position of the best particle over

all the generations, x∗g, as the final pose estimate for the face

in the current frame.

3.2.4 Morphable model fitting

Once the head pose has been estimated, we update the shape

and weights of the morphable model to match the observed

face in the current frame. Utilizing the estimated pose x∗g, we

identify point correspondences between the morphable face

model and the observed data by transforming and projecting

the vertices of the morphable model into the observed vertex

map vo,

[

i j 1
]T

= K(Rvp + t) , vo
p = vo(i, j),

mp =

{

1 if
∥

∥vo
p − (Rvp + t)

∥

∥< δ

0 otherwise

(10)

where R and t are the rotation matrix and translation vector

parameterized by x, vp is the p-th element in the morphable

model’s shape vector Sk, vo
p is a vertex in vo which is the

point corresponding to vertex vp, and δ = 1 cm is a distance

threshold for rejecting corresponding points that are too far

apart.

We compute the new set of coefficients α∗ of the mor-

phable model by minimizing:

α∗ = argmin
α

∥

∥

∥

∥

∥

M

([

µ +∑
i

αisi

]

−V

)∥

∥

∥

∥

∥

2

, (11)

where V = (vo
1,v

o
2, ...,v

o
N), and M = diag(m1,m2, ...,mN).

Afterwards, we updated the shape of the morphable model,

Sk+1 = η

(

µ +∑
i

α∗
i si

)

+(1−η)Sk, (12)

where η = 0.1 is a damping parameter introduced to prevent

the shape from drastically changing between frames. In

addition, we update the weights of the morphable model as:

wp = exp
(

−
∥

∥vp −vo
p

∥

∥

2
/σw

)

, (13)

where wp and vp are the p-th elements in the weight vector

Wk+1 and the shape vector Sk+1, respectively, and σw =
0.01.

4. Results

We measured the performance of our method and com-

pared it with state-of-the-art algorithms on two datasets. The

Biwi Kinect Head Pose dataset, acquired with a Kinect sen-

sor, contains over 15K RGB and depth images of 20 subjects

recorded in 24 sessions [13]. It has large head rotations, long

hair, and occlusions. For each frame, a ground truth binary

mask of the face pixels, as well as, the 3D orientation of the

head and the location of its center, are provided. On this

dataset, we first coarsely locate the head using the method

described in Sec. 3.1 and then estimate its pose.

The ETH Face Pose Range Image dataset by Breitenstein

et al. contains 10K range images of 20 people [7]. These

data are of higher quality than the Biwi Kinect data, and

were acquired with a stereo enhanced structured light sensor

[36]. In the ETH dataset, depth data is only available for the

head region, thus we did not apply head localization on it.
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4.1. Head localization

We evaluated the performance of our head localization

method (Sec. 3.1) on the Biwi Kinect dataset [13]. Note that

it provides only a coarse estimate of the 2D position of the

head in depth images. We obtain a more precise estimate

for the head center location after applying the head pose

estimation procedure (Sec. 3.2).

The average distance of the centroid of the ground truth

mask and the center of the head area identified by our al-

gorithm was 26.1 pixels, with an approximate average face

size of 90× 120 pixels. The extended bounding box (in

yellow in Fig. 1d), contained, on an average, 98.2% of the

ground truth face pixels. For less than 1.0% of the the frames,

the extended bounding box contained less than 50% of the

ground truth head pixels. The score map s(i, j) (Fig. 1c) was

generally smooth and did not contain local maxima. Our

method worked well for faces occluded by hair or when the

subject’s arms were raised around their head. It failed for

only a few cases when the subject was looking down, and the

shape of the adaptive filter did not match their silhouette. An

optimized CUDA implementation of the head localization

algorithm took less than 3 ms for a 640×480 sized image

on a NVIDIA GeForce GTX 660 GPU.

These results suggest that although our head localization

is not precise, it is fast and very reliable. By comparison,

other approaches for 3D head detection, e.g. [15, 32] employ

more detailed models and thus have a higher precision, but

more missed detections. Note that for our algorithm, it is

more important to reliably detect a face, since the precise

3D head location is estimated by the subsequent head pose

estimation step.

4.2. Head pose estimation

Table 1 shows the average absolute errors for the yaw,

pitch, and roll angles achieved by our algorithm on the Biwi

Kinect dataset. It also contains the average positional errors

for the head center and the accuracy of pose estimation.

Accuracy is defined as the percentage of frames with an L2

norm of angular errors less than 10◦.

On the Biwi Kinect dataset, we achieved angular errors of

2.1◦, 2.1◦ and 2.4◦ for the yaw, pitch, and roll, a translational

error of 5.9 mm and an accuracy of 94.6% with our proposed

algorithm (row 1 in Table 1). In order to understand the

contribution of each of the individual concepts employed

in our algorithm, we additionally evaluated its performance

with different configurations (Table 1).

Observe that between the morphable model (first row in

Table 1) and the average face model (second row in Table 1),

the morphable model consistently performed slightly better

by allowing a better fit to each specific subject. Although,

we did not fit the morphable model very precisely to the

observed face. It seems that personalization of the face

model is important for head pose estimation, but further

investigation is required to establish this conclusively.

Next, we investigated the effect of combining PSO and

ICP for optimization. Keeping all other parameters constant,

we performed the optimization with 40 iterations of ICP

only. In addition, we used PSO only with 25 particles and

40 generations. This configuration was previously shown to

be effective [23]. Individually, PSO (fourth row in Table 1)

performed the worst, considerably worse than ICP (third row

in Table 1), plausibly because of PSO’s slow convergence

rate and susceptibility to premature convergence. ICP, by

itself, performed better than PSO, but tended to fail for large

angles of rotation. Lastly, analogous to what Qian et al. [25]

observed for 3D hand pose estimation, we found that the

combined PSO and ICP optimization method produced the

most accurate results for 3D head pose estimation, as well.

The fifth row of Table 1 lists the performance of our

algorithm for the case when we employed only the distance

term Ev (Eq. 6) to measure the similarity between two 3D

point clouds. On comparing these results with those in the

first row of Table 1, where we used both the error terms in

Eq. 6, it can be concluded that the 2D overlap term (Ec) helps

to improve accuracy of head pose estimation considerably.

Breintenstien et al. [7] made similar observations in their

work where they found the overlap term to positively impact

the accuracy of head pose estimation.

Lastly, the effect of dynamically re-weighting parts of the

morphable model to best match the instantaneous appearance

of the observed 3D face can be evaluated by comparing the

first and sixth rows of Table 1. To obtain the values listed

in the sixth row, we set all the weights of the morphable

model to unity and kept then constant over time instead of

dynamically varying them. Dynamically re-weighting the

morphable model improves accuracy and helps to robustly

handle partial occlusions of the face (e.g., the first and sixth

columns of Fig. 2). Recently, Tulyakov et al. [32] also

achieved good pose estimation result by adopting a slightly

different dynamic re-weighting scheme.

Our implementation of the proposed method runs in ∼
160 ms on a NVIDIA GeForce GTX 660 GPU for a 640×
480 sized frame, although it does not completely utilize the

optimizations available in CUDA.

4.3. Comparison with existing methods

A number of recent algorithms [7, 15, 2, 23, 26, 20, 32,

24] for 3D head pose estimation have also been evaluated on

the benchmark Biwi Kinect [15] and ETH [36] datasets. For

all these methods, except for Padeleris et al.’s [23], we list

the results reported by the authors in Tables 1 and 2, along

with a summary of their methods. Padeleris et al. report

average errors for only 91.4% of the frames on which their

algorithm succeeded. Furthermore, when their algorithm

failed, they re-initialized head pose tracking with the ground

truth pose (personal communications with the authors). For
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Method Model Weights Optim. Cost function

Errors

AccuracyYaw [◦] Pitch [◦] Roll [◦] Location [mm]

Proposed* Morph Dyn PSO+ICP All terms 2.1 2.1 2.4 5.9 94.6%

Proposed Average Dyn PSO+ICP All terms 2.2 2.2 2.6 6.2 92.3%

Proposed Morph Dyn ICP Distance 3.7 4.3 4.0 11.1 84.2%

Proposed Morph Dyn PSO All terms 7.7 8.4 6.0 23.3 73.7%

Proposed Morph Dyn PSO+ICP Distance 4.4 3.4 4.0 9.0 87.1%

Proposed Morph Fix PSO+ICP All terms 2.7 3.1 3.2 5.9 89.7%

Fanelli [15] N/A N/A RF N/A 8.9 8.5 7.9 14.0 79.0%

Tulyakov [32] N/A N/A CT N/A 4.7 7.6 5.3 9.1 -

Padeleris [23] Frame 0 N/A PSO Distance 11.1 6.6 6.7 13.8 76.0%

Martin [20] 100 Frames N/A ICP Distance 3.6 2.5 2.6 5.8 -

Rekik [26] Morph N/A PF Color + Distance 5.1 4.3 5.2 5.1 -

Baltrusaitis [2] CLM-Z N/A RLMS Color + Distance 6.3 5.1 11.3 7.56 -

Papazov [24] TSP N/A N/A TSP match 3.9 3.0 2.5 8.4 -

Table 1. The average absolute angular errors (in degrees) and the average translational error (in mm) on the Biwi Kinect dataset, for different

configurations of our proposed algorithm, and for other existing state-of-the-art head pose estimation algorithms [15, 32, 23, 20, 26, 2, 24].

a fair comparison, we re-implemented their PSO-based algo-

rithm and report its results for the entire Biwi Kinect dataset

in Table 1.

On the Biwi Kinect dataset (Table 1), our proposed al-

gorithm produced the lowest rotational errors, which were

lower than those of the existing classifier-based [15, 32],

rigid model-fitting-based [23, 20], non-rigid model-fitting-

based [2, 26] and surface patch descriptor-based [24] ap-

proaches for head pose estimation. Despite using only the

3D information, our algorithm performed even better than

the algorithms that employed both depth and color informa-

tion [26, 2, 24].

We observed similar results on the ETH dataset (Table 2),

where our algorithm outperformed the existing methods at

estimating the yaw and pitch rotations (this dataset does

not contain rotations about the roll axis). Since, we did not

apply the head localization step (Sec. 3.1) on this dataset,

these results demonstrate the superior performance of just

our head pose estimation algorithm relative to the existing

approaches, independently of head localization.

For all frames of the Biwi Kinect dataset, our algorithm

also resulted in the smallest translational error (5.9 mm) of

all the purely 3D-based head pose estimation algorithms

(Table 1). Martin et al. report a similar translational error to

ours (5.8 mm), but across only 97.6% of the frames on which

their algorithm succeeded. Only Rekik et al.’s algorithm

produced a lower translational error than ours (5.1 mm), but

they used both color and depth data.

We also applied our head pose estimation algorithm to

data acquired with a SoftKinetic DS325 time-of-flight cam-

era by appropriately changing the depth de-noising param-

eters, the threshold τ in Eq. 5, and the camera’s intrinsic

parameters K in Eq. 4. We observed similar accuracy for

head pose estimation with this sensor as well (Fig. 3a,b).

To further understand the effect of noise and resolution,

we re-projected faces in the Biwi Kinect dataset, which are

Method
Error

Accuracy
Yaw [◦] Pitch [◦]

Breitenstein [7] 6.1 4.2 80.8%

Fanelli [14] 5.7 5.1 90.4%

Proposed 2.9 2.3 98.9%

Table 2. The average absolute angular errors for yaw and pitch, for

the methods by Breitenstein et al. [7], Fanelli et al. [14], and for

our method, on the ETH database [14]. No head localization was

performed.

originally ∼ 1 m away from the sensor, to 1.5 m, 2 m and

2.5 m and added progressively increasing depth-dependent

noise using the model proposed by Khoshelham and Elberink

[17]. With increasing distance from the sensor our head pose

estimation technique resulted in a linear increase in the yaw,

pitch, and roll errors at a rate of 1.25◦/m and a linear decrease

in accuracy at a rate of 6.7%/m.

4.4. Combined PSO and ICP optimization

To better understand the peculiarities of the combined

PSO and ICP algorithm, with different cost functions E and

Ev, we considered the problem of registering (i.e. finding

the optimal translation tx) a 1D curve (in blue in Fig. 4a)

with a set of sampled noisy points (in red in Fig. 4a). The

first term of our cost function, Ev(tx), contains many local

minima (Fig. 4b). Consequently ICP, which only optimizes

Ev(tx), quickly converges toward one of these, depending

upon the initialization. The trajectories for two different

initializations are shown in red in Fig. 4b.

The overlap term Ec(tx) in our cost function, on the other

hand, is quasi-convex (Fig. 4c). Although Ev +Ec is still

non-convex, adding Ec makes the global optimum more

evident and local minima less pronounced (Fig. 4d); this

explains the worse results reported in Table 1 (fifth row) for

the use of Ev alone. Nonetheless, optimization with PSO
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Figure 2. A set of RGB images (first row) and the corresponding depth images (second row) from the Biwi Kinect dataset [13]. The last row

shows the head pose estimated by our method along with the dynamic weights assigned to different parts of the reference model. A failure

case is shown in the rightmost column, where the subject’s hair occludes a large part of her face.

(a) (b) (c) (d)

Figure 3. The left panels show images acquired by the SoftKinetic DS325 camera. The right panels show images from the ETH Face Pose

Range Image dataset [7]. The head poses estimated by our algorithm are depicted in the bottom row (colored according to the adaptive

weights).

remains problematic: particle 1 in Fig. 4d (on the right)

moves towards particle 0 and misses the global optimum,

leading to premature convergence into a local minimum of

Ev +Ec. Additionally, since PSO randomly samples the cost

function without using the gradient, convergence towards

the global optimum is generally slow. This explains the poor

accuracy for head pose estimation that we observed when

we employed PSO only (Table 1).

Fig. 4e shows the trajectories of the combined PSO and

ICP algorithm, where we apply ICP to each particle before

the PSO update. ICP moves each particle to a local minimum

of Ev (green triangle) thus making it less likely for PSO

to skip over the basin of attraction of the global optimum.

Note that, assuming that ICP converges, each particle is

then constrained to lie in a local minimum of Ev. Since

the local minima of Ev are generally only slightly offset

with respect to the corresponding local minima of Ev +Ec,

the combined optimization is generally more efficient and

effective than PSO alone, as measured for our head pose

estimation algorithm in Table 1. It is in fact sufficient for a

particle to lie in the basin of attraction of the global optimum

of Ev to quickly converge towards it (see the left particle in

Fig. 4e). We also noted that the basins of attraction for Ev

and Ec+Ev are slightly different; as a consequence, ICP may

contribute to move a particle out of a local basin of attraction

of Ec +Ev (see the right particle in Fig. 4f), thus potentially

preventing premature convergence, increasing the overall

mobility of the particles and favoring a wider exploration of

the parameter space. On the other hand, we also noted that,

because of ICP, the left particle in Fig. 4e oscillates around

the same local minimum for two consecutive generations.

This represents a potential drawback of any hybrid PSO

algorithm, that can be mitigated by modifying the α , β and

γ parameters in PSO.

3655



Figure 4. (a) A simple 1D registration problem: the reference model (shifted) and noisy sampled data. (b) ICP minimization of Ev = Ev(tx) (2

runs); tx is the model shift along the x axis. Local minima are indicated by circles, the boundaries of the basins of attraction by vertical lines.

(c) The overlap term Ec = Ec(tx). Optimization of Ev(tx)+Ec(tx) with (d) PSO only, and with (e) the combined PSO and ICP algorithm. (f)

ICP moves the left particle to the local minimum of Ev; the right one is moved away from the local basin of attraction of Ev +Ec.

5. Conclusion

We introduced a head pose estimation method for com-

modity depth cameras that results in best-in-class accuracy

on benchmark datasets. It requires no initialization, handles

extreme rotations and partial occlusions, and efficiently reg-

isters facial surfaces. Numerous factors contribute to the

success of our algorithm: the overlap term (Ec) in the cost

function, the combined PSO and ICP algorithm, dynamically

adapting the weights of the face model, and the adoption of a

morphable face model. While these concepts have each been

introduced individually in previous studies, the contribution

of our work lies in combining these disparate ideas in an

effective manner to significantly improve the accuracy of 3D

head pose estimation. Our work also presents for the first

time a systematic quantitative assessment of the contribution

of each of these various factors in improving the accuracy

of head pose estimation. Building upon the work of Qian et

al. [25] we also provide deeper insights into the workings

of the combined PSO and ICP optimization for 3D surface

registration.

To our knowledge, ours is also the first work to provide

a comprehensive review and in-depth comparison of the

existing state-of-the-art techniques for 3D head pose estima-

tion on a common benchmark dataset. Our hope is that this

work, besides advancing the-state-of-the-art in 3D head pose

estimation, would also serve as a summary of the current

understanding of the problem of 3D head pose estimation.

We see a number of directions along which we could

extend our current work. Previous studies, e.g., [2, 26] have

shown that combining depth and color data improves the

accuracy of head pose estimation. Relying on both the depth

and color data can also help to extend the operating range of

head pose estimation algorithms to illumination conditions,

including bright sunlight where commodity depth sensors

based on active infrared illumination fail. An obvious ques-

tion then would be how best to combine information from

the RGB images with 3D data with our current algorithm.

Several authors have also noted the value of introducing tem-

poral tracking mechanisms for head pose estimation in con-

junction with per-frame head pose estimation [2, 8, 32, 26].

This can provide smoother head motion trajectories and the

ability to predict the head pose in future frames. In our cur-

rent algorithm, we use minimal temporal tracking, and hence

this would be an interesting direction to explore in the future.

While our study provides some evidence for the value of

non-rigidly warping the reference model to the measured

face, the issue is still worth exploring in depth in the future.

Finally, a further analysis of the interaction between PSO,

ICP and their cost functions may help to combine them even

more effectively in the future.
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