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Abstract

We propose the product quantization table (PQTable), a

product quantization-based hash table that is fast and re-

quires neither parameter tuning nor training steps. The

PQTable produces exactly the same results as a linear PQ

search, and is 102 to 105 times faster when tested on the

SIFT1B data. In addition, although state-of-the-art perfor-

mance can be achieved by previous inverted-indexing-based

approaches, such methods do require manually designed

parameter setting and much training, whereas our method

is free from them. Therefore, PQTable offers a practical and

useful solution for real-world problems.

1. Introduction

With the explosive growth of multimedia data, com-

pressing high-dimensional vectors and performing approxi-

mate nearest neighbor (ANN) searches in the compressed

domain is becoming a fundamental problem in handling

large databases. Product quantization (PQ) [13], and its

extensions [17, 7, 2, 24, 21, 11, 5, 25], are popular and suc-

cessful methods for quantizing a vector into a short code.

PQ has three attractive properties: (1) PQ can compress

an input vector into an extremely short code (e.g., 32 bit)

that enables it to handle typically one billion data points

in memory at once; (2) the approximate distance between

a raw vector and a compressed PQ code can be computed

efficiently (the so-called asymmetric distance computation

(ADC) [13]), which is a good estimate of the original Eu-

clidean distance; and (3) the data structure and coding algo-

rithms are surprisingly simple. By quantizing database vec-

tors into short codes in advance, vectors similar to a given

query can be found from the database codes by a linear com-

parison of the query with each code using ADC (see the

linear ADC scan in Fig. 1a).

Although a linear ADC scan is simple and easy to use,

ANN search by linear ADC scanning is efficient only for

small datasets because the search is exhaustive, i.e., the

computational cost is at least O(N) for N PQ codes. To

handle large (e.g., N = 109) databases, short-code-based

inverted indexing systems [1, 23, 7, 15, 3, 4] have been pro-

posed, which are currently state-of-the-art ANN methods

(see Fig. 1b). Such systems operate in two stages: (1) coarse

quantization and (2) reranking via short codes. A database

vector is first assigned to a bucket using a coarse quantizer

(e.g., k-means [13], multiple k-means [23], or Cartesian

products [1, 12]), then compressed to a short code using

PQ [13] or its extensions [17, 7] and finally stored as a post-

ing list 1. In the retrieval phase, a query vector is assigned

to the nearest buckets by the coarse quantizer, then associ-

ated items in corresponding posting lists are traversed, with

the nearest one being reranked via ADC 2. These systems

have been reported as being fast, accurate, and memory ef-

ficient, by being capable of holding one billion data points

in memory and conducting a retrieval in milliseconds.

However, such inverted indexing systems are built by

a process of carefully designed manual parameter tuning.

The processing time and recall rates strongly depend on

the number of space partitions in the coarse quantizer, and

its optimal size needs to be decided manually, as shown

in Fig. 2. For example, this simple example shows that

k = 1024 is the fastest setting for N = 107, but the slowest

for N = 108. These relationships do not become clear un-

til several parameter combinations for the coarse quantizers

are examined. However, training and testing coarse quan-

tizers is computationally expensive. For example, we found

that, to plot a single dot of Fig. 2 for N = 109, the training

took around a day and building the inverted index structure

took around three days, using 16-core machines. This is

particularly critical for a recent per-cell training ANN sys-

tem [3, 15], which requires even more computation to build

the system. It should be pointed out that achieving state-

of-the-art performances by ANN systems depends largely

on special tuning for the testbed dataset, e.g., SIFT1B [14].

There is no guarantee that we can always achieve the best

performance by such systems. In real-world applications,

1In practice, the residual difference between the query vector and the

codeword is encoded.
2There are smarter versions of this computation [3].
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Figure 1: Data structures of ANN systems: linear ADC scan, short-code-based inverted indexing systems, and PQTable.
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Figure 2: Performance of a short-code-based inverted in-

dexing system (IVFADC [13]), showing the relationship be-

tween the database size, N , and Recall@1 or runtime per

query for various k, which is the number of space partitions

for the coarse quantizer. The search range w is set to one.

Note that the search range is also an important parameter,

which has been chosen manually.

it often happens that cumbersome trial-and-error-based pa-

rameter tuning is required, which might well turn ordinary

users away from these systems.

To achieve an ANN system that would be suitable for

practical applications, we propose the PQTable, an ex-

act, nonexhaustive, NN search method for PQ codes (see

Fig. 1c). We do not employ an inverted index data struc-

ture, but find similar PQ codes directly from the database.

This achieves exactly the same accuracy as a linear ADC

scan, but requires a significantly shorter time (10.3 ms, in-

stead of 18 s, for the SIFT1B data using 64-bit codes). In

other words, this paper proposes an efficient ANN search

scheme to replace a linear ADC scan when N is sufficiently

large. As discussed in Section 4, the parameter values re-

quired to build the PQTable can be calculated automatically.

Note that, as discussed in Section 5, PQTable requires larger

memory footprints than storing PQ codes linearly.

The main idea of the PQTable is the use of a hash table,

where the PQ code itself is used directly as an entry in the

hash table (see Fig. 1c). That is, identifiers of PQ codes in

the database are directly associated with the hash table by

using the PQ code itself as an entry. Given any new query

vector, it can be PQ coded and identifiers associated with

the entry are retrieved.

There are advantages and disadvantages in the use of in-

verted indexing systems as well as for our proposed method.

Inverted indexing systems are accurate and fast, but they do

require manual parameter tuning and time-consuming train-

ing. The PQTable can achieve the same recall rates as a lin-

ear ADC, but its performance (accuracy, runtime, and mem-

ory usage) may lag the latest inverted indexing systems with

the best parameters. The PQTable does not require any pa-

rameter tuning or training steps for the coarse quantizers,

which are important aspects of real-world applications.

Relationship with previous methods

Hamming-based ANN systems: As an alternative to

PQ-based methods, another major approach to ANN are the

Hamming-based methods [22, 8, 20], in which two vectors

are converted to bit strings whose Hamming distance ap-

proximates their Euclidean distance. Comparing bit strings

is faster than comparing PQ codes, but is usually less accu-

rate for a given code length [10].

In Hamming-based approaches, bit strings can be lin-

early scanned by computing their Hamming distance, which

is similar to linear ADC scanning in PQ. In addition, a mul-

titable algorithm has been proposed to facilitate fast ANN

search [18], which computes exactly the same result as a

linear Hamming scan but is much faster. However, a similar

querying algorithm and data structure for fast computing

have not been proposed for the PQ-based method to date.

Our work therefore extends the idea of such a multitable al-

gorithm [18, 9] to PQ codes, where a Hamming-based for-

mulation cannot be applied directly.

Extensions to PQ: Recent reports [24, 2, 5, 25] have

proposed a new encoding scheme that is regarded as a gen-

eralized version of PQ. Because the data structure used in

these approaches is similar to PQ, our proposed method can

also be applied to such approaches. In this paper, we discuss

only the core of the PQ process for simplicity.

2. Background: Product Quantization

In this section, we briefly review PQ [13].

Product quantizer: Let us denote any x ∈ R
D as a

concatenation of M subvectors: x = [x1, . . . ,xM ], where

we assume that the subvectors have an equal number of di-

mensions D/M , for simplicity. A product quantizer q(·) is
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defined as a concatenation of subquantizers:

x 7→ q (x) =
[

q
1
(

x
1
)

, . . . , qM
(

x
M
)]

, (1)

where each subquantizer qm(·) is defined as

x
m 7→ q

m (xm) = argmin
cm∈Cm

‖xm − c
m‖ . (2)

Each subcodebook Cm comprises K D/M -dim centroids

learned by k-means [16]. Therefore, q(x) maps an input x

to a codeword c = [c1, . . . , cM ] ∈ C = C1 × · · · × CM .

Because c is encoded as a tuple (i1, . . . , iM ) of M sub-

centroid indices, where each im ∈ {0, . . . ,K − 1}, it can

be represented by M log2 K bits. Typically, K is set as a

power of 2, making log2 K an integer. In this paper, we set

K as 256 (this is the typical setting used in many papers,

for which c
m is represented by 8 bits), and M is set as 1, 2,

4, or 8, which yields a length for the code of 8, 16, 32, or 64

bits, respectively.

ADC: Distances between encoded vectors and a raw

vector can be computed efficiently. Suppose that there

are N data points Y =
{

yj ∈ R
D
∣

∣j = 1, . . . , N
}

that

have been encoded and stored. Given a new query vector

x ∈ R
D, the squared Euclidean distance from x to a point

y is approximated by asymmetric distance (AD):

dAD(x,y)2 =
M
∑

m=1

d (xm, qm (ym))
2
. (3)

This can be computed as follows. First, xm is encoded by

its corresponding subcodebook, Cm, thereby generating a

distance table whose size is M × K, where each (m, k)
entry denotes the squared Euclidean distance between x

m

and the k-th subcentroid in Cm, namely c
m
k . Suppose that a

subvector ym of each y is encoded in advance as c
m
k , i.e.,

q
m(ym) = c

m
k . It follows that an (m, k) in the distance ta-

ble means d (xm, cmk )
2
= d (xm, qm (ym))

2
. We can then

compute Eq. (3) by simply looking up the distance table M
times and summing the distances. The computational cost

of the whole process is O(KD + NM), which is fast for

small N but still linear in N .

3. PQTable

As shown in Fig. 1c, the proposed system involves a hash

table within which the PQ code itself is used as an entry. In

the retrieval phase, a query vector is PQ coded and iden-

tifiers associated with the entry are retrieved. This is very

straightforward, but there are two problems to be solved.

The empty-entries problem: Suppose that a new query

is PQ coded and hashed. If the identifiers associated with

the entry of the query are not present in the table, the hash-

ing fails. To continue the retrieval, we would need to find

candidates for the query by some other means.
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Figure 3: The probability of finding the first nonempty en-

try (the first identifier). Plots are computed over 50 queries

from the SIFT1B data for various code lengths b.

The long-code problem: Even if we can find the candi-

dates and continue querying, the retrieval is not efficient if

the length of the codes is very long compared to the size of

the database, e.g., 64-bit codes for 109 vectors. Fig. 3 shows

the relationship between the number of database vectors and

the probability of finding the first nonempty entry. If the

length of the codes b is 16 or 32 bits, there is a high proba-

bility that the first identifiers can be found by the first hash-

ing. However, for the case where b = 64, candidate entries

need to be generated 105 times to find the first nonempty

entry. This is caused by the wide gap between the num-

ber of possible candidates, 2b, which measures the number

of entries in the table, and the number of database vectors.

This imbalance causes almost all entries to be empty3.

To handle these two issues, we first present a candidate

generation scheme, which is mathematically equivalent to

a multisequence algorithm [1], to solve the empty-entries

problem. Then we propose table division and merging to

handle the long-code problem.

We first show the data structure and a querying algo-

rithm for a single table. To be able to use a single ta-

ble, we need to handle the empty-entries problem, so we

present a candidate-generation scheme to solve it. Then,

because a single table cannot handle large codes (the long-

code problem), we propose table division and merging to

handle codes of any length.

3.1. Single Hash Table

The basic idea of the proposed method is to use a hash

table, as shown in Fig. 4a. We prepare a hash table com-

prising the PQ codes themselves, i.e., a table entry is a tuple

of 8-bit integers. During offline processing in advance, the

j-th database vector yj is compressed by PQ. The resultant

PQ code (i1j , . . . , i
M
j ) is used directly as an entry in the hash

table and its identifier j is associated with the entry. If sev-

eral vectors are associated with the same entry, as shown for

“413” and “352” in Fig. 4a, both of them are stored. Note

that the distances from the query to these vectors are the

same because they are quantized as the same code. In on-

line processing, an input query vector x is compressed to

3This is a similar problem to that of designing a coarse quantizer for

an inverted indexing-based ANN system, but we found an optimal solution

empirically, as discussed later.
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Figure 4: Overview of the proposed method.

(i1, . . . , iM ) by PQ, and identifiers associated with the PQ

code of the query are searched.

If an identifier is found (∃j, im = imj for all m), it is ob-

viously the nearest entry in terms of AD because the code-

word that is the nearest to the query is (i1, . . . , iM ), by defi-

nition. A problem arises if there are no identifiers associated

with the PQ code of the query, e.g., (13, 192, 3, 43) is the

PQ code of a query for which there is no associated iden-

tifier in the hash table in Fig. 4a. This is the empty-entries

problem described above. In such cases, we need to find a

candidate entry for the PQ code, which will be the second

nearest to the query in terms of AD. To find the top K near-

est identifiers, the search continues for candidates until K
identifiers are found, giving a set of results that are sorted

automatically in terms of AD.

Given a query vector, how can candidate entries be gen-

erated? We present a candidate-generation scheme (the

“Generate candidate entries” box in Fig. 4a). Given a query

vector, it produces candidate codes that are sorted in ascend-

ing order of AD. This scheme is mathematically equivalent

to the higher-order multisequence algorithm proposed by

Babenko and Lempitsky [1]. They used this algorithm orig-

inally to divide the space into Cartesian products for coarse

quantization. We found that it can be used to enumerate all

possible PQ code combinations in ascending order of AD.

We give the pseudocode for the multisequence algorithm

used in our implementation in the supplementary materials.

Pseudocode for an algorithm that queries a single table

is shown in Alg. 1, where x denotes the input vector, table
is the PQTable filled with database PQ codes, and K is the

user-specified number of output identifiers. The output u[ ]
is a sequence of identifiers ordered in terms of AD between

the query and the database vectors. cand is a priority queue

composed of PQ code, and used for the multisequence al-

gorithm. The norm | · | of a sequence means the number

of elements of the sequence. Hash(·) fetches items using

the input code as an entry and returns a set of associated

identifiers. Insert(·) simply adds items to the end of the ar-

Algorithm 1: Querying for a single table.

Input: x, table, K
Output: u[ ] : ranked identifiers

1 u[ ]← ∅ // array

2 cand← Init(x) // priority queue

3 while |u| < K do

4 code← NextCode(cand)
5 {u′} ← table.Hash(code)
6 u.Insert({u′})

ray. We omit d table and returned cand from NextCode,

for simplicity. Please refer to the implementation details for

the multisequence algorithm (Init and NextCode) [1] in the

supplementary materials.

3.2. Multiple Hash Table

The single-table version of PQTable may not work when

there are long PQ codes, such as 8 ≤ M (64 bits). This

is the long-code problem described above, where the num-

ber of possible entries is too large for efficient processing.

The number of entries is (28)M for an 8M bit code, and

the number of database vectors can be at most one billion.

Therefore, most of the entries will be empty if M is 8 or

greater ((28)8 = 264 ∼ 1.8× 1019 ≫ 109).

To solve this problem, we propose a table division and

merging method. The table is divided as shown in Fig. 4b.

If an 8M -bit code table is divided into two 4M -bit code

tables, the number of the entry decreases, from (28)M =
256M for one table to (28)M/2 = 16M for two tables. By

properly merging the results from each of the small tables,

we can obtain the correct result.

If we have b-bit PQ codes for the database vectors, we

prepare T b/T -bit tables. During offline processing in ad-

vance, the j-th PQ code is divided by T and inserted in the

corresponding table. In online processing, we first compute

ranked identifiers from each table in the same way as for the

single table case (see Fig. 4b (i, ii)).
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Denote the ranked identifiers from the t-th table as {ut
n},

where t = 1, . . . , T , and n = 1, 2, . . . . We can then check

the identifiers from the head (n = 1) until the same iden-

tifier u∗ is found from all of the tables, i.e., u1
n∗

1

= u2
n∗

2

=

· · · = uT
n∗

T

≡ u∗, where n∗
t means u∗ is found in the n∗

t -th

element of the t-th ranked identifiers (see Fig. 4b (iii)). If

the same identifier is found, we pick up all of the checked

identifiers, i.e., ut
1, · · · , u

t
n∗

t
−1 for all t, referred to as the

marked identifiers (shaded gray in Fig. 4b) and compute

their AD to the query. It is guaranteed that all identifiers

whose AD is less than dAD(x,yu∗) will be included among

the marked identifiers (see the supplementary material for

proof). Therefore, by simply sorting the marked identifiers

in terms of AD, we can find all of the nearest identifiers in

the database with AD less than dAD(x,yu∗) (see Fig. 4b

(iv)). This process is repeated until the desired number of

output identifiers is obtained.

Pseudocode for querying multiple PQTables is shown in

Alg. 2. Unlike the single-table case, tables[ ] is an array of

tables. u dist[ ] and marked[ ] are each an array of tuples,

comprising an identifier and its AD to the query. u dist[ ] is

the final result and marked[ ] is used as a buffer. Split(·, T )
divides the priority queues into T smaller priority queues.

Check(·) and UnCheck(·) are used to record how many

times identifiers have appeared in the process. They are im-

plemented by an associative array in our method. Because

each identifier is included once in each table, and therefore

can be checked at most T times. An identifier that has ap-

peared in all tables can be detected by seeing if it has been

checked T times or not. PartialSortByDist(·,K) sorts an

array of tuples in terms of distance, obtaining the top K re-

sults at a computational cost of O(N logK), where N is

the length of the array. The function array.Less(d) returns

those elements whose distances are less than d. Note that

dAD(i) is an abbreviation of dAD(x,yi).

4. Empirical Analysis for Parameter Selection

In this section, we discuss how to determine the value of

the parameter required to construct the PQTable. Suppose

that we have N PQ-coded database vectors of code length

b. To construct the proposed PQTable, we need to decide

one parameter value T , which is the number of dividing ta-

bles. If b = 32, for example, we need to select the data

structure as being either a single 32-bit table, two 16-bit ta-

bles, or four 8-bit tables, corresponding to T = 1, 2, and 4,

respectively. We first show that the statistics of the assigned

vectors are strongly influenced by the distribution of the

database vectors, and present an indicative value, b/ log2 N ,

as proposed by previous work on multitable hashing [9, 18],

that estimates the optimal T .

Because the proposed data structure is based on a hash

table, there is a strong relationship between N , the num-

ber of entry 2b, and the computational time. If N is small,

Algorithm 2: Querying for multitables.

Input: x, tables[ ], K
Output: u dist[ ] : ranked identifiers with distances

1 u dist[ ]← ∅ // array

2 T ← |tables|
3 cands[ ]← Split(Init(x), T ) // priority queues

4 marked[ ]← ∅ // array

5 while |u dist| < K do

6 for t← 1 to T do

7 code← NextCode(cands[t])
8 {ut} ← tables[t].Hash(code)
9 for u ∈ {ut} do

10 Check(u)
11 if u has been checked T times then

12 {i′} ← Pick up checked identifiers

13 for i ∈ {i′} ∪ u do

14 marked.Insert(tuple(i, dAD(i)))
15 UnCheck(i)

16 PartialSortByDist(marked,K)
17 u dist.Insert(marked.Less(dAD(u)))

almost all of the entries in the table will not be associated

with identifiers, and generating candidates will take time. If

N is appropriate and the entries are well filled, the search is

fast. If N is too large compared with the size of the entry,

all entries are filled and the number of identifiers associated

with each entry is large, which can again cause slow fetch-

ing. We show the relationship between N and the computa-

tional time for 32-bit codes and T = 1, 2, and 4 in Fig. 5a,

and for 64-bit codes and T = 2, 4, and 8 in Fig. 5b. Note

that these graphs are log–log plots. For example, the table

with T = 1 computes 105 times faster than a linear ADC

scan when N = 109 in Fig. 5a. From these figures, each

table has a “hot spot.” In Fig. 5a, for N = 102 to 103, 104

to 105, and 106 to 109, T = 4, 2, and 1 are the fastest, re-

spectively. Given N and b, we need to decide the optimal T
without actually constructing tables.

We can show that the statistics in the table are strongly

influenced by the distribution of the input vectors. Consider

the average number of candidates generated s in finding the

nearest neighbor. For the case of a single table, this repre-

sents the number of iterations of the while loop in Alg. 1. If

all vectors are equally distributed among the entries, we can

estimate the average number s̄ by a fill factor p ≡ N/2b,

which shows how well the entries are filled. Because the

probability of finding the identifiers for the first time in the

s-th step is (1− p)s−1p when p < 1, the expected value of

s for finding the item for the first time is

s̄ =

{ ∑∞

s=1(1− p)s−1ps = 1
p (if p < 1)

1 (if p ≥ 1).
(4)
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(b) 64-bit PQ codes from the SIFT1B data.

Figure 5: Runtime per query of each table.

This estimated number and the actual number required to

find the identifiers, evaluated for the SIFT1B data, are

shown in Table 1. There is a very large gap between the

estimated and actual number (roughly 10 times) for all N .

In addition, the table gives the number of assigned items

for the entry when the nearest items are found, which corre-

sponds to |{u′}| in Alg. 1 when hashing returns identifiers

for the first time. This number is surprisingly large when N
is very large. For example, for the case of N = 109, the first

candidate usually has associated identifiers (s is actually

1.1), with 1.1× 104 identifiers being assigned to that entry.

This is surprising because, if the identifiers were distributed

equally, the estimated step s would be 4.3, and the number

of associated identifiers would be less than 1 for each entry.

This heavily biased behavior, caused by the distribution of

the input vectors, prevented us from theoretically analyzing

the relationship between the various parameters. Therefore,

we chose to employ an empirical estimation procedure from

the previous literature, which was both simple and practical.

The literature on multitable hashing [18, 9] suggests that

an indicative number, b/ log2 N , can be used to divide the

table. Our method is different from those in previous stud-

ies because we are using PQ codes. However, this indicative

number can provide a good empirical estimate of the opti-

mal T in our case. Because T is a power of two in the pro-

Table 1: Estimated and actual number of steps to find an

item for the first time, and actual number of retrieved items

for the first entry, for 32-bit codes from the SIFT1B data.

N 104 105 106 107 108 109

Actual 2.8× 104 2.5× 103 1.7× 102 25 6.0 1.1
# steps

Estimate(s̄) 4.3× 105 4.3× 104 4.3× 103 4.3× 102 43 4.3
# items Actual 1.1 2.1 12 1.2× 102 1.2× 103 1.1× 104

Table 2: Estimated and actual T for the SIFT1B data.

N 102 103 104 105 106 107 108 109

Actual 4 4 2 2 1 1 1 1
b = 32

T ∗ 4 4 2 2 2 1 1 1

Actual 8 8 8 4 4 4 2 2
b = 64

T ∗ 8 8 4 4 4 2 2 2

posed table, we quantize the indicative number into a power

of two, and the final optimal T ∗ is given as

T ∗ = 2Q(log
2
(b/ log

2
N)), (5)

where Q(·) is the rounding operation. A comparison with

the actual number is shown in Table 2. In many cases, the

estimated T ∗ is a good estimation of the actual number, and

the error was small even if the estimation failed, such as in

the case of b = 32 and N = 106 (see Fig. 5a). Selected T ∗

values are plotted as gray dots in Fig. 5a and Fig. 5b.

5. Experimental Results

We present our experimental results using the proposed

method. The evaluation was performed using the SIFT1B

data from the BIGANN dataset [14], which contain one bil-

lion 128-D SIFT features and provide learning and query-

ing vectors, from which we used 10 million for learning

and 1,000 for querying. The centers of the PQ codes were

trained using the learning data (this learning process is re-

quired for all PQ-based methods), and all database vectors

were converted to 32- or 64-bit PQ codes. Note that we se-

lected T using Eq. (5). All experiments were performed on

a notebook PC with a 2.8 GHz Intel Core i7 CPU and 32 GB

RAM. Results using another data, GIST1M, are presented

in the supplementary materials, which shows the same ten-

dency as for SIFT1B.

Speed: Figure 6 shows the runtimes per query for the

proposed PQTable and a linear ADC scan. The results for

32-bit codes are presented in Fig. 6a and Fig. 6b. The ADC

runtime depends linearly on N and required 16.4 s to scan

N = 109 vectors, but the runtime for the PQTable was less

than 1 ms for all cases. When the database size N was

small, the ADC was faster. Note that the time to encode the

query vector was more significant than the retrieval itself

for N ≤ 102. The proposed method was faster for the case

where N > 105, and was approximately 105 times faster

than the ADC for N = 109, even for the 1-, 10-, and 100-

NN cases. Fig. 6c and Fig. 6d show the results for 64-bit

PQ codes. The speedup was less dramatic than for the 32-

bit cases, but was still 102 to 103 times faster than the ADC,

1945



N #10
8

0 2 4 6 8 10

ti
m

e
 p

e
r 

q
u
e
ry

 [
m

s
]

#10
4

0

0.5

1

1.5

2
ADC
100-NN
10-NN
1-NN

(a) Plot of 32-bit PQ codes.
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(b) Log–log plot of 32-bit PQ codes.
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(c) Plot of 64-bit PQ codes.
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(d) Log–log plot of 64-bit PQ codes.

Figure 6: Runtimes per query for the proposed PQTable with 1-, 10-, and 100-NN, and a linear ADC scan (SIFT1B data).

Table 3: Speed-up factors for N = 109.

Speed-up factors for k-NN vs. ADC

b 1-NN 10-NN 100-NN ADC

32 1.0× 105 9.7× 104 9.5× 104 16.4 s

64 1.7× 103 8.4× 102 3.1× 102 18.0 s

particularly for N = 108 to N = 109, where the runtime

was 10.3 ms for N = 109 in the 1-NN case. We report the

speedup factors with respect to the linear ADC in Table 3.

Accuracy: Accuracy results for the proposed method

are: Recall@1=0.001, @10=0.019, and @100=0.071,

for 32-bit codes, with Recall@1=0.067, @10=0.249, and

@100=0.569, for 64-bit codes, for N = 109. Note that all

values are the same as for the linear ADC scan case.

Memory usage: We show the estimated and actual

memory usage of the PQTable in Fig. 7. For the case of

a single table, the theoretical memory usage involves the

identifiers (4 bytes for each) in the table and the centroids

of the PQ codes, a total of 4N + 4KD bytes. For multi-

table cases, each table needs to hold the identifiers, and the

PQ codes are also required for computing dAD. Here, the

final memory usage is (4T + b/8)N + 4KD bytes. These

are theoretical lower-bound estimates. As a reference, we

also show the cases when PQ codes are lineary stored for

the linear ADC scan (bN/8 + 4KD bytes) in Fig. 7.

For the N = 109 with b = 64 case, the theoretial mem-

ory usage is 16 GB, and the actual cost is 19.8 GB. This

difference comes from an overhead for the data structure of

hash tables. For example, for 32-bit codes in a single ta-

ble, directly holding 232 entries in an array requires 32 GB

of memory, even if all of the elements are empty. This is

because a NULL pointer requires 8 bytes with a 64-bit ma-

chine. To achieve more efficient data representation, we em-

ployed a sparse direct-address table [18] as the data struc-

ture, which enabled the storage of 109 data points with a

small overhead and provided a worst-case runtime of O(1).

When PQ codes are linearly stored, it requires only 8 GB

for N = 109 with b = 64. Therefore, we can say there is a

trade-off among the proposed PQTable and the linear ADC

scan in terms of runtime and memory footprint (18.0 s with

8GB v.s. 10.3 ms with 19.8 GB).
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Figure 7: Memory usage for the tables using the SIFT1B

data. The dashed lines represent the theoretically estimated

lower bounds. The circles and boxes represent the actual

memory consumption for 32- and 64-bit tables. We also

show the linearly stored case for the ADC scan.

Distribution of each component of the vectors: We

investigated how the distribution of vector components af-

fects the search performance, particularly for the multi-

table case. We prepared the SIFT1M data, using principal-

component analysis (PCA), to have the same dimensional-

ity (128). Then both the original SIFT data and the PCA-

aligned SIFT data were zero-centered and normalized to en-

able a fair comparison. Finally, the average and standard

deviation for all data were plotted, as shown in Fig. 8. In

both cases, a PQTable with T = 4 was constructed and di-

mensions associated with each table were plotted using the

same color. Note that the sum of the standard deviation for

each table is shown in the legends.

As shown in Fig. 8a, the values for each dimension are

distributed almost equally, which is the best case for our

PQTable. On the other hand, Fig. 8b shows a heavily bi-

ased distribution, which is not desirable because elements

in Tables 2, 3, and 4 have almost no meaning. In such a

situation, however, the search is only two times slower than

for the original SIFT. From this, we can say the PQTable re-

mains robust for heavily biased element distributions. Note

that the recall value is lower for the PCA-aligned case be-

cause PQ is less effective for biased data [13].

Comparative study: A comparison with existing sys-

tems for the SIFT1B data with 64-bit codes is shown in Ta-

ble 4. We compared the proposed PQTable with two short-
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Table 4: A performance comparison for different methods using the SIFT1B data with 64-bit codes. The bracketed values

are from [4]. We show recall values involving similar computational times to those for PQTable.

System #Cell List len (L) R@1 R@10 R@100 Time [ms] Memory [Gb] Required params Required training step

PQTable - - 0.067 0.249 0.569 10.3 19.8 None None

IVFADC [13] 213 8 million 0.104 (0.112) 0.379 (0.343) 0.758 (0.728) 111.6 (155) (12) #Cell, L Coarse quantizer

OMulti-D-

OADC-Local [4]
214 × 214 10000 (0.268) (0.644) (0.776) (6) (15) table-order, k, L

Coarse quantizer, local

codebook
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Table1: 2.2733
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(a) Original SIFT data. Runtime per query: 6.45 ms. Recall@1=0.25
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(b) PCA-aligned SIFT data. Runtime per query: 12.94 ms. Recall@1=0.17

Figure 8: The average and standard deviation for the origi-

nal SIFT vectors and the PCA-aligned vectors.

code-based inverted indexing systems, IVFADC [13] and

OMulti-D-OADC-Local [4, 3, 15]. IVFADC is the sim-

plest system, and can be regarded as the baseline, where

the coarse quantizer uses a k-means method. OMulti-D-

OADC-Local is a current state-of-the-art system, where the

coarse quantizer involves PQ [1], the space for both the

coarse quantizer and the short code is optimized [7], and

the quantizers are per-cell learned [3, 15]. Note that the T
for the PQTable is automatically set to two by using Eq. (5).

From the table, IVFADC has slightly better accuracy, but

is usually slower than PQTable. IVFADC requires two pa-

rameters to be tuned, namely the number of space parti-

tions #Cell and the length of the returned list L. The best-

performing system, OMulti-D-OADC-Local, can produce

superior results. It can achieve better accuracy and memory

usage than PQTable. Regarding memory, as discussed in

the previous sebsection, the memory overhead of PQTabe

is not so small. As for computational cost, both are similar,

but OMulti-D-OADC-Local is better with the best parame-

ters. However, it has three parameters to be tuned, namely

table-order, k, and L. All have to be tuned manually. In ad-

dition, several training steps are required, namely learning

the coarse quantizer and constructing local codebooks, both

of which are usually time-consuming.

From the comparative study, we can say there are ad-

vantages and disadvantages for both the inverted indexing

systems and our proposed PQTable. Static vs. dynamic

database: For a large static database where users have

enough time and computational resources for tuning param-

eters and training quantizers, the previous inverted indexing

systems should be used. On the other hand, if the database

changes dynamically, the distribution of vectors might vary

over time and parameters might need to be updated often. In

such cases, the proposed PQTable would be the best choice.

Ease of use: The inverted indexing systems produce good

results but are difficult to handle by novices because they

require several tuning and training steps. The proposed

PQTable is conceptually simple and much easier to use, be-

cause users do not need to decide on any parameters. This

would be useful if users were using an ANN method simply

as a tool for solving problems in some other domain, such

as fast SIFT matching using ANN for 3D reconstruction [6].

Limitations: The PQTable is no longer efficient for ≥
128-bit codes with the SIFT1B data (T = 4, N = 109),

taking 3.4 s per query, which is still ten times faster than for

the ADC, but slower than for the state-of-the-art system [4].

This is caused by the inefficiency of the “checking” process

for longer bit codes. Handling these longer codes is pro-

posed for future work. Note that ≤ 128-bit codes are prac-

tical for many applications, such as the use of 80-bit codes

for state-of-the-art image-retrieval systems [19].

Another limitation is the heavy memory usage of

PQTable. Constructing a memory efficient data structure

for Hash tables remains a future work.

6. Conclusion

We propose the PQTable, a nonexhaustive search method

for finding the nearest PQ codes without need of param-

eter tuning. The PQTable is based on a multiindex hash

table, and includes candidate code generation and merging

of multiple tables. From an empirical analysis, we showed

that the required parameter value T can be estimated in ad-

vance. An experimental evaluation using the SIFT1B data

showed that, the PQTable could compute results 102 to 105

times faster than the ADC-scan method. The disadvantage

of the PQTable is its heavier memory overhead compared to

the state-of-the-art systems.
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