
3D Time-Lapse Reconstruction from Internet Photos

Ricardo Martin-Brualla1 David Gallup2 Steven M. Seitz1,2

University of Washington1 Google Inc.2

{rmartin,seitz}@cs.washington.edu dgallup@google.com

Abstract

Given an Internet photo collection of a landmark, we

compute a 3D time-lapse video sequence where a virtual

camera moves continuously in time and space. While previ-

ous work assumed a static camera, the addition of camera

motion during the time-lapse creates a very compelling im-

pression of parallax. Achieving this goal, however, requires

addressing multiple technical challenges, including solving

for time-varying depth maps, regularizing 3D point color

profiles over time, and reconstructing high quality, hole-free

images at every frame from the projected profiles. Our re-

sults show photorealistic time-lapses of skylines and natural

scenes over many years, with dramatic parallax effects.

1. Introduction

Time-lapses make it possible to see events that are oth-

erwise impossible to observe, like the motion of stars in

the night sky or the rolling of clouds. By placing fixed

cameras, events over even longer time spans can be im-

aged, like the construction of skyscrapers or the retreat of

glaciers [4]. Recent work [12, 13] has shown the excit-

ing possibility of computing time-lapses from large Inter-

net photo collections. In this work, we seek to compute 3D

time-lapse video sequences from Internet photos where a

virtual camera moves continuously in both time and space.

Professional photographers exploit small camera mo-

tions to capture more engaging time-lapse sequences [10].

By placing the camera on a controlled slider platform the

captured sequences show compelling parallax effects. Our

technique allows us to recreate such cinematographic ef-

fects by simulating virtual camera paths, but with Internet

photo collections.

We build on our previous work [12] and introduce key

new generalizations that account for time-varying geometry

and enable virtual camera motions. Given a user-defined

camera path through space and over time, we first com-

pute time-varying depthmaps for the frames of the out-

put sequence. Using the depthmaps, we compute corre-

spondences across the image sequence (aka. “3D tracks”).

Internet Photos 3D Scene

Virtual

Camera Path

Synthesized 3D Time-lapse

Figure 1. In this paper we introduce a technique to produce high

quality 3D time-lapse movies from Internet photos, where a virtual

camera moves continuously in space during a time span of several

years. Top-left: Sample input photos of the gardens in Lombard

Street, San Francisco. Top-right: Schematic of the 3D scene and

the virtual camera path. Bottom: Example frames of the synthe-

sized 3D time-lapse video. Please see the supplementary video

available at the project website [15]. Credits: Creative Commons

photos from Flickr users Eric Astrauskas, Francisco Antunes, Flo-

rian Plag and Dan Dickinson.

We then regularize the appearance of each track over time

(its “color profile”). Finally, we reconstruct the time-lapse

video frames from the projected color profiles.

Our technique works for any landmark that is widely

photographed, where, over time, thousands of people have

taken photographs of roughly the same view. Previous

work [12] identified more than 10,000 such landmarks

around the world.

The key contributions of this paper are the following: 1)

recovering time-varying, temporally consistent depthmaps

from Internet photos via a more robust adaption of [23], 2)

a 3D time-lapse reconstruction method that solves for the

temporal color profiles of 3D tracks, and 3) an image re-

construction method that computes hole-free output frames

from projected 3D color profiles. Together, these contribu-

tions allow our system to correctly handle changes in geom-

11332

etry and camera position, yielding time-lapse results supe-

rior to those of [12].

2. Related Work

Our recent work [12] introduced a method to synthe-

size time-lapse videos from Internet Photos spanning sev-

eral years. The approach assumes a static scene and recov-

ers one depthmap that is used to warp the input images into

a static virtual camera. A temporal regularization over in-

dividual pixels of the output volume recovers a smooth ap-

pearance for the whole sequence. The static scene assump-

tion proved to be a failure mode of that approach resulting

in blurring artifacts when scene geometry changes. We ad-

dress this problem by solving for time-varying geometry,

and extend the appearance regularization to 3D tracks and

moving camera paths.

Very related to our work, Matzen and Snavely [13]

model the appearance of a scene over time from Internet

photos by discovering space-time cuboids, corresponding

to rectangular surfaces in the scene visible for a limited

amount of time, like billboards or graffiti art. Similarly, the

4D Cities project [17, 18] models the changes in a city over

several decades using historical imagery. By tracking the

visibility of 3D features over time, they are able to reason

about missing and inaccurate timestamps. In contrast, we

synthesize photorealistic time-lapses of the scene, instead

of sparse 4D representations composed of textured rectan-

gular patches or 3D points.

Photobios [7] are visualizations computed from personal

photo collections that show how people age through time.

The photos are displayed one by one, while fixing the loca-

tion of the subject’s face over the whole sequence. These

visualizations are limited to faces and do not create the il-

lusion of time flowing continuously, like our time-lapse se-

quences do.

Parallax Photography, by Zheng et al. [25], creates

content-aware camera paths that optimize for parallax ef-

fects in carefully collected datasets. Additionally, Snavely

et al. [22] discover orbit paths that are used to navigate In-

ternet photo collections more efficiently. In our work, the

user specifies the camera path as input.

Modeling the appearance of a scene from Internet photos

is challenging, as the images are taken with different illumi-

nation, at different times of day and present many occluders.

Laffont et al. [9] regularize the appearance of a photo col-

lection by computing coherent intrinsic images across the

collection. Shan et al. [20] detect cloudy images in a photo

collection, to initialize a factored lighting model for a 3D

model recovered from Internet photos.

Generating time-lapse videos from static webcams has

also been studied in prior work. Bennett and McMillan [3]

propose several objective functions to synthesize time-lapse

videos, that showcase different aspects of the changes in the

scene. Rubinstein et al. [16] reduce flicker caused by small

motions in time-lapse sequences.

Kopf et al. [8] generate smooth hyper-lapse videos from

first-person footage. Their technique recovers scene geome-

try to stabilize the video sequence, synthesizing views along

a smoothed virtual camera path that allows for faster play-

back.

Although multi-view stereo has been an active topic

of research for many years [19], few works have looked

into time-varying reconstruction outside of carefully cali-

brated datasets. Zhang et al. [24] reconstruct time-varying

depthmaps of moving objects with a spacetime matching

term. Larsen et al. [11] compute temporally consistent

depthmaps given calibrated cameras using optical flow to

enforce depth consistency across frames. Zhang et al. [23]

introduce a method to recover depthmaps of a static scene

from handheld captured video sequences. Their method

first computes a 3D pose for every frame, and then jointly

optimizes the depthmaps for every frame, using a temporal

consistency term. We extend their approach to handle dy-

namic scenes, and adapting it to Internet photo collections.

3. Overview

Given an Internet photo collection of a landmark, we

seek to compute time-lapse video sequences where a vir-

tual camera moves continuously in time and space. As a

preprocessing step, we compute the 3D pose of the input

photo collection using Structure-from-Motion (SfM) tech-

niques [1].

First, a user specifies a desired virtual camera path

through the reconstructed scene. This can be defined by

specifying a reference camera and a parameterized motion

path, such as an orbit around a 3D point or a “push” or

“pull” motion path [10]. Good reference cameras are ob-

tained using the scene summarization approach of [21].

Our system starts by computing time-varying, tempo-

rally consistent depthmaps for all output frames in the se-

quence, as described in Section 4. Section 5 introduces

our novel 3D time-lapse reconstruction, that computes time-

varying, regularized color profiles for 3D tracks in the

scene. We then present a method to reconstruct output video

frames from the projected color profiles. Finally, imple-

mentation details are described in Section 6 and results are

shown in Section 7.

For the rest of the paper, we only consider images whose

cameras in the 3D reconstruction are close to the refer-

ence camera. We use the same criteria for image selection

as [12], that selects cameras by comparing their optical axis

and camera center to those of the reference camera.

Throughout this paper, we will use the following termi-

nology: each photo in the input collection consists of an

image Ii, a registered camera Ci and a timestamp ti. We

also define the sequence I = (I1, . . . , IN) as the chrono-

1333

(a) Sample input photos (b) Initialized depthmap (c) After joint optimization

Figure 2. Results of our time-varying depthmap reconstruction. a) Sample input photos at different times from the Las Vegas skyline

scene (not aligned to virtual camera). b) Initialized depthmap for the corresponding time of the photos on the left. c) Jointly optimized

depthmaps. Note that artifacts near the top in the second depthmap are fixed after the joint optimization. The improvements to temporal

consistency are dramatic and better seen in the supplementary video [15].

logically sorted input image sequence. The output 3D time-

lapse sequence is composed of M output frames whose

views Vj are equally spaced along the virtual camera path

and span the temporal extent of the input sequence, from

earliest to the latest photo.

4. Time-Varying Depthmap Computation

In this section we describe how to compute a temporally

consistent depthmap for every view in the output sequence.

The world changes in different ways over time spans of

years compared to time spans of seconds. In multi-year

time scales, geometry changes by adding or substracting

surfaces, like buildings being constructed or plants grow-

ing taller, and we design our algorithm to account for such

changes.

Recovering geometry from Internet photos is challeng-

ing, as these photos are captured with different cameras,

different lighting conditions, and with many occluders. A

further complication is that included timestamps are often

wrong, as noted in previous work [5, 13]. Finally, most

interesting scenes undergo changes in both texture and ge-

ometry, further complicating depthmap reconstruction.

4.1. Problem Formulation

Our depth estimation formulation is similar to that

of [23], except that we 1) use a Huber norm for the tem-

poral consistency term to make it robust to abrupt changes

in geometry, and 2) replace the photo-consistency term with

that of [12] which is also robust to temporally varying ge-

ometry and appearance changes which abound in Internet

photo collections.

We pose the problem as solving for a depthmap Dj for

each synthesized view Vj , by minimizing the following en-

ergy function:

∑

j

[

Ed(Dj) + αEs(Dj)
]

+
∑

j,j′

βj,j′E
t(Dj , Dj′) (1)

where Ed is a data term based on a matching cost volume,

Es is a spatial regularization term between neighboring pix-

els, and Et is a binary temporal consistency term that en-

forces the projection of a neighboring depthmap Dj′ into

the view Vj to be consistent with Dj . The binary weight

βj,j′ is non-zero only for close values of j and j′.

Given the projected depthmap Dj′→j of the depthmap

Dj′ into view Vj , we define the temporal regularization

term for a pixel p in Vj as:

Et(Dj , Dj′)(p) = δ (Dj(p)−Dj′→j(p)) (2)

if there is a valid projection of Dj′ in view Vj at p and

0 otherwise, and where δ is a regularization loss. We use

z-buffering to project the depthmap so that the constraint is

enforced only on the visible pixels of view Vj . Zhang et

al. [23] assume a Gaussian prior on the depth of the ren-

dered depthmap, equivalent to δ being the L2 norm. In con-

trast, our scenes are not static and present abrupt changes in

1334

depth, that we account for by using a robust loss, the Huber

norm.

The data term Ed(Dj) is defined as the matching cost

computed from a subset of input photos Sj ⊂ I for each

view Vj . We choose the subset as the subsequence of length

l = 15% ·N centered at the corresponding view timestamp.

Using the images in subset Sj , we compute aggregate

matching costs following [12]. First, we generate a set of

fronto-parallel planes to the view Vj using the computed

3D SfM reconstruction. We set the range to cover all but the

0.5% nearest and farthest SfM 3D points from the camera.

In scenes with little parallax this approach might still fail,

so we further discard SfM points that have a triangulation

angle of less than 2 degrees.

For each pixel p in view Vj and depth d, we compute the

pairwise matching cost Cj
a,b(p, d) for images Ia, Ib ∈ Sj ,

by projecting both images onto the fronto-parallel plane at

depth d and computing normalized cross correlation with

filter size 3×3. We adapt the best-k strategy described in [6]

to the pairwise matchings costs and define the aggregated

cost as:

Cj(p, d) = mediana∈Sj

(

medianb∈Sj
Cj

a,b(p, d)
)

(3)

Finally, the spatial regularization Es consists of the dif-

ferences of depth between 4 pixel neighborhoods, using the

Huber norm, with a small scale parameter to avoid the stair-

casing effects observed by [14].

4.2. Optimization

The problem formulation of Equation 1 is hard to solve

directly, as the binary temporal regularization term ties the

depth of pixels across epipolar lines. We optimize this for-

mulation similarly to Zhang et al. [23], by first comput-

ing each depthmap Dj independently, i.e., without the con-

sistency term Et, and then performing coordinate descent,

where the depthmap Dj is optimized while the others are

held constant. We iterate the coordinate descent through

all depthmaps for two iterations, as the solution converges

quickly.

We solve the problem in the continuous domain with

non-linear optimization [2], adapting the data term to the

continuous case by interpolating the cost values for a pixel

at different depths using cubic splines. We initialize each

individual depthmap Dj by solving the MRF formulation

of [12] for its corresponding support image set Sj .

The joint optimization produces more stable depthmaps

that exhibit fewer artifacts than the initialized ones without

the temporal consistency term. Figure 2 shows examples of

recovered time-varying depthmaps. The improvements in

temporal consistency for the jointly optimized sequence are

best seen in the supplementary video [15].

V
V ′ V ′′

D
q

p′

(a)

V
V ′ V ′′

D′
q

q′

p′
p′′

(b)

V
V ′ V ′′

D′′
q

q′ q′′

p′′

(c)

Figure 3. Diagram of how a 3D track is generated in three consec-

utive views. a) A 3D point q visible in view V is projected to view

V ′ at pixel p′. b) Pixel p′ is backprojected onto the depthmap D′,

creating the 3D point q′. Then, the 3D point q′ is projected into

view V ′′ at pixel p′′. c) Finally, pixel p′′ is backprojected onto the

depthmap D′′, creating the last point in the track q′′. The com-

puted track is t = (q, q′, q′′). Note that because the geometry

remains unchanged between V ′ and V ′′, the points q′ and q′′ are

the same.

5. 3D Time-Lapse Reconstruction

Our goal is to produce photorealistic time-lapse videos

that visualize the changes in the scene while moving along

a virtual camera path. We pose the 3D time-lapse recon-

struction problem as recovering time-varying, regularized

color profiles for 3D tracks in the scene. A 3D track is

a generalization of an image-to-image feature correspon-

dence, which accounts for changes in 3D scene structure,

and occlusions between views (See Fig. 3). First, we gen-

erate 3D tracks by following correspondences induced by

the depthmap and the camera motion. We then solve for the

temporal appearance of each 3D track, by projecting them

onto the corresponding input images and solving for time-

varying, regularized color profiles. Finally, we reconstruct

the output time-lapse video from the projected color profiles

of the 3D tracks.

5.1. Generating 3D Tracks

We generate 3D tracks that follow the flow induced in

the output sequence by the time-varying depthmap and the

camera motion. Ideally, a track represents a single 3D point

in the scene, whose appearance we want to estimate. How-

ever, occlusions and geometry changes may cause a track

to cover multiple 3D points. Since the appearance regular-

ization described in the next subsection is robust to abrupt

changes in appearance, our approach works well even with

occlusions.

A 3D track is defined by a sequence of 3D points t =
(qj1 , . . . , qjn) for corresponding output views j1, . . . , jn.

To generate a 3D track, we define first a 3D point q for a

view V that lies on the corresponding depthmap D. Let p′

be the projection of the 3D point q onto the next view V ′.

We then define the track’s next 3D point q′ as the backpro-

1335

Vj+1VjVj−1

Figure 4. Projected temporal color profiles of a 3D track t into

three views. The views are represented by a pixel grid, with the

pixel centers marked as black dots. The projected temporal color

profiles are defined by a real-valued projected position ptj into

view j and a time-varying, regularized color yt
j . The projected

profile is shown as a sequence of colored circles, projected on each

view, linked by a dashed line.

jection of pixel p′ onto the corresponding depthmap D′. We

compute the next 3D point q′′ by repeating this process from

q′. We define a whole track by iterating forwards and back-

wards in the sequence, and we stop the track if the projec-

tion falls outside the current view. 3D tracks are generated

so that the output views are covered with sufficient density

as described in Section 5.3.

Figure 3 shows the 3D track generation process. Note

that when the geometry is static, points in a 3D track re-

main constant thanks to the robust norm used in the tempo-

ral consistency term, that promotes depthmap projections to

match between frames. While drift can occur through this

chaining process, in practice this does not affect the quality

of the final visualizations.

5.2. Regularizing Color Profiles

We want to recover a time-varying, regularized color

profile for each 3D track t. This is challenging as Inter-

net photos display a lot of variation in appearance and often

contain outliers, as noted in Section 4. We make the obser-

vation that the albedo of most surfaces in the real world does

not change rapidly, and its variability in appearance stems

mostly from illumination effects. Intuitively, we would like

our time-lapse sequences to reveal the infrequent texture

changes (the signal) while hiding the variability and outliers

of the input photo collection (the noise).

To solve for time-varying color profiles, [12] used a tem-

poral regularization term with a robust norm, that recovers

piecewise continuous appearances of pixels in an output im-

age sequence. The approach is restricted to a static virtual

camera, as it works on the 2D domain by regularizing each

pixel in the output sequence independently. Our approach

uses the same temporal term to regularize the color profile

of each 3D track.

Given a 3D track t = (qj1 , . . . , qjn), we define its ap-

pearance in view Vj as the RGB value ytj ∈ [0, 1]3. To com-

(a) Projected color profiles (b) Reconstructed image

Figure 5. Visualization of the output frame reconstruction algo-

rithm from projected color profiles. Left: Projected color profiles

at a given view shown as colored dots in the output frame with

their bilinear interpolation weights shown as arrows from the pro-

jected sample to pixel centers. Right: We reconstruct an image

that minimizes the bilinear interpolation residuals of the projected

color profiles.

pute ytj , we first assign input images to their closest view

in time and denote these images assigned to view Vj by the

support set S ′
j ⊂ I. Note that the sets S ′

j are not overlap-

ping, whereas the support sets Sj used for depthmap com-

putation are. We then project the 3D point qj to camera

Ci using a z-buffer with the depthmap Dj to check for oc-

clusions and define xt
i as the RGB value of image i at the

projection of qj .

We obtain a time-varying, regularized color profile for

each 3D track t by minimizing the following energy func-

tion:

∑

j

∑

i∈S′

j

δd
(∥

∥xt
i − ytj

∥

∥

)

+ λ
∑

j

δt
(∥

∥ytj+1 − ytj
∥

∥

)

(4)

where the weight λ controls the amount of regularization,

and both δd and δt are the Huber norm, to reduce the effects

of outliers in xt
j and promote sparse temporal changes in the

color profile.

In contrast to [12], the color profiles of the 3D tracks do

not correspond to pixels in the output frames. We thus save

the color profile yt, together with the 2D projections ptj of

the track 3D points qtj into the view j, as projected pro-

files that are used to reconstruct the output frames. Figure 4

shows a diagram of a projected color profile.

5.3. Reconstructing Video from Projected Profiles

Given regularized projected color profiles computed for

a set of 3D tracks T , we seek to reconstruct output frames of

the time-lapse video that best fit the recovered color profiles.

We cast the problem of reconstructing each individual

frame as solving for the image that best matches the color

values of the projected color profiles when applying bilinear

interpolation at the profiles’ 2D projections. Figure 5 visu-

alizes the reconstruction process, where the output pixels’

color values are related to the projected profiles’ samples

by bilinear interpolation weights.

1336

Figure 6. Comparison of different values of the 3D track sam-

pling threshold ǫ for the Wall Street Bull scene. Left: Artifacts are

visible when ǫ = 1 pixel, with alternating black and white pixels,

as the reconstruction problem is badly conditioned. Right: Using

ǫ = 0.4 pixel, the artifacts are not present.

For a given output view Vj , let Yu,v ∈ [0, 1]3 be the RGB

value of the pixel (u, v) ∈ N
2 in the synthesized output

frame Y . Let the regularized projected profile for a track

t at view Vj have an RGB value yt and a 2D projection

pt ∈ R
2. We solve for the image Y that minimizes

∑

t∈T

∥

∥

∥
yt −

∑4

s=1
wt

sYut
s,v

t
s

∥

∥

∥

2

(5)

where ut
s, v

t
s are the integer coordinates of the 4 neighbor-

ing pixels to pt and wt
s their corresponding bilinear interpo-

lation weights.

The reconstruction problem requires the set of 3D tracks

T to be dense enough that every pixel Yu,v has a non-zero

weight in the optimization, i.e., each pixel center is within

1 pixel distance of a projected profile sample. To ensure

this, we generate 3D tracks using the following heuristic:

we compute 3D tracks for all pixels p in the middle view j
of the sequence, so that the 3D track point qtj projects to the

center of pixel p in Vj . Then, we do the same for all pixels

in the first and last frame. Finally, we iterate through all

pixels in the output frames Y and generate new 3D tracks if

there is no sample within ǫ ≤ 1 pixels from the pixel center

coordinates.

The reconstruction problem can be badly conditioned,

producing artifacts in the reconstructions, such as contigu-

ous pixels with alternating black and white colors. This hap-

pens in the border regions of the image that have lower sam-

ple density. We avoid such artifacts by using a low threshold

value ǫ = 0.4 pixels, so that for each pixel there is a pro-

jected profile whose bilinear interpolation weight is > 0.5.

Figure 6 shows an example frame reconstruction using two

different threshold values for ǫ.

6. Implementation

The photo collections used in our system consist of pub-

licly available Picasa and Panoramio images. For a single

landmark, the 3D reconstructions contain up to 25K photos,

and the input sequences filtered with the camera selection

criteria of [12] contain between 500 and 2200 photos. We

Figure 7. Comparison of two methods for output frame recon-

struction from projected profiles for the Musée D’Orsay scene.

Left: baseline method based on Gaussian kernel splatting, with

kernel radius σ = 1. Right: our reconstruction approach. The

baseline method produces a blurred reconstruction, whereas the

proposed approach recovers high frequency details in the output

frame.

generate virtual camera paths containing between 100 and

200 frames.

The weights for the depthmap computation are α =
0.4 and the temporal binary weight is defined as βj,j′ =
k1 max (1− |j′ − j|/k2, 0) with k1 = 30 and k2 = 8. The

scale parameter of the Huber loss used for Es and Et is 0.1
disparity values. For appearance regularization, we use the

Huber loss for δd and δt with scale parameter of 1−4, i.e.,

about 1/4 of a pixel value. Finally, the temporal regulariza-

tion weight is λ = 25. We use Ceres Solver [2] to solve for

the optimized color profiles, that we solve per color channel

independently.

Our multi-threaded CPU implementation runs on a sin-

gle workstation with 12 cores and 48Gb memory in 4 hours

and 10 minutes for a 100 frame sequence. The breakdown

is the following: 151 minutes for depthmap initialization,

30 minutes for joint depthmap optimization, 55 minutes for

3D track generation and regularization, and 25 minutes for

video reconstruction. We compute the output sequences at

an image resolution of 800 × 600, with a depthmap reso-

lution of 400 × 300. Our execution time is dominated by

the cost volume computation for all the views, and we sub-

sample the support sets Sj to contain at most 100 images

without noticeable detrimental effects.

7. Results

We generated high-quality 3D time-lapse videos for 14

scenes, spanning time periods between 4 and 10 years. Fig-

ure 10 shows sample frames from four different scenes. We

refer the reader to the supplementary video [15] to better

appreciate the changes in the scenes and the parallax effects

in our 3D time-lapses.

Figure 8 shows a comparison of our 3D time-lapse

for the Las Vegas sequence with the result of previous

work [12], that was noted as a failure case due to chang-

ing scene geometry. Our 3D time-lapse result eliminates

the blurry artifacts, as the time-varying depthmap recovers

the building construction process accurately.

1337

(a) Static depthmap (b) Time-varying depthmap

Figure 8. Comparison of output time-lapse frames for two different timestamps for the Las Vegas sequence. a) Using a static depthmap

solved with a discrete MRF as in [12]. b) Using our time-varying, temporally consistent depthmaps. The static depthmap is not able

to stabilize the input images for the whole time-lapse, creating blurry artifacts where the geometry changes significantly. Thanks to the

time-varying depthmap, our 3D time-lapses are sharp over the whole sequence.

(a) Missing thin structures (b) Extrapolation artifacts

Figure 9. Examples of failure cases in our system. a) The street

sign is not fully reconstructed in the Lombard Street sequence. b)

An extended camera orbit contains a virtual camera far from the set

of input cameras causing blurry artifacts in the Flatiron Building

dataset.

We also compare our output frame reconstruction ap-

proach with a baseline method that uses splatting of the pro-

jected color profiles with Gaussian weights. Each projected

profile sample contributes its color to nearby pixels with a

weight based on the distance to the pixel center. Figure 7

shows that the baseline produces blurred results whereas

our approach recovers high frequency details in the output

frame.

7.1. Limitations

We observed a few failure cases in our system. Inaccu-

rate depthmaps create blurring or shearing artifacts, espe-

cially if close objects are present. For example, in the Lom-

bard Street sequence shown in Figure 9(a), the system fails

to reconstruct thin structures, blurring them away. Recov-

ering more accurate, time-varying geometry from Internet

photo collections is an area of future work.

Our system also generates artifacts when extrapolating

the input photo collection. This happens when a camera

looks at a surface not visible in any input photo. For exam-

ple, in Figure 9(b) a view is synthesized for a camera outside

the convex hull of reconstructed cameras, showing a face of

a building that is not visible from any photo. Future work

could consider using visibility information to constrain the

virtual camera paths like in [25].

Our technique is limited to reconstructing 3D time-

lapses given pre-specified camera paths. Future work in-

cludes enabling interactive visualizations of these photore-

alistic 3D time-lapses.

8. Conclusion

In this paper we introduce a method to reconstruct 3D

time-lapse videos from Internet photos where a virtual cam-

era moves continuously in time and space. Our method

involves solving for time-varying depthmaps, regularizing

3D point color profiles over time, and reconstructing high

quality, hole-free output frames. By using cinematographic

camera paths, we generate time-lapse videos with com-

pelling parallax effects.

1338

(a) Flatiron Building, New York

(b) Lombard Street, San Francisco

(c) Ta Prohm, Cambodia

(d) Palette Springs, Yellowstone

Figure 10. Frames from example 3D time-lapses, with time spans of several years and subtle camera motions. Sequences a), c) and

d) contain an orbit camera path, while b) contains a camera “push”. Parallax effects are best seen in the video available at the project

website [15]. Limitations of our system include blurry artifacts in the foreground, like in c) and d).

Acknowledgements

The research was supported in part by the National Sci-

ence Foundation (IIS-1250793), the Animation Research

Labs, and Google.

1339

References

[1] S. Agarwal, Y. Furukawa, N. Snavely, I. Simon, B. Curless,

S. M. Seitz, and R. Szeliski. Building rome in a day. Com-

munications of the ACM, 54(10):105–112, 2011. 2

[2] S. Agarwal, K. Mierle, and Others. Ceres Solver. http:

//ceres-solver.org. 4, 6

[3] E. P. Bennett and L. McMillan. Computational time-lapse

video. In ACM SIGGRAPH 2007 Papers, SIGGRAPH ’07,

New York, NY, USA, 2007. ACM. 2

[4] Earth Vision Institute. Extreme Ice Survey. http://

extremeicesurvey.org/, 2007. 1

[5] D. Hauagge, S. Wehrwein, P. Upchurch, K. Bala, and

N. Snavely. Reasoning about photo collections using models

of outdoor illumination. In Proceedings of BMVC, 2014. 3

[6] S. B. Kang and R. Szeliski. Extracting view-dependent depth

maps from a collection of images. International Journal of

Computer Vision, 58:139–163, 2004. 4

[7] I. Kemelmacher-Shlizerman, E. Shechtman, R. Garg, and

S. M. Seitz. Exploring photobios. In ACM SIGGRAPH 2011

Papers, SIGGRAPH ’11, pages 61:1–61:10, New York, NY,

USA, 2011. ACM. 2

[8] J. Kopf, M. F. Cohen, and R. Szeliski. First-person hyper-

lapse videos. ACM Trans. Graph., 33(4):78:1–78:10, July

2014. 2

[9] P.-Y. Laffont, A. Bousseau, S. Paris, F. Durand, and G. Dret-

takis. Coherent intrinsic images from photo collections.

ACM Transactions on Graphics (SIGGRAPH Asia Confer-

ence Proceedings), 31, 2012. 2

[10] V. Laforet. Time Lapse Intro: Part I. http:

//blog.vincentlaforet.com/2013/04/27/

time-lapse-intro-part-i/. 1, 2

[11] E. Larsen, P. Mordohai, M. Pollefeys, and H. Fuchs. Tempo-

rally consistent reconstruction from multiple video streams

using enhanced belief propagation. In Computer Vision,

2007. ICCV 2007. IEEE 11th International Conference on,

pages 1–8, Oct 2007. 2

[12] R. Martin-Brualla, D. Gallup, and S. M. Seitz. Time-

lapse mining from internet photos. ACM Trans. Graph.,

34(4):62:1–62:8, July 2015. 1, 2, 3, 4, 5, 6, 7

[13] K. Matzen and N. Snavely. Scene chronology. In Proc. Eu-

ropean Conf. on Computer Vision, 2014. 1, 2, 3

[14] R. A. Newcombe, S. Lovegrove, and A. Davison. Dtam:

Dense tracking and mapping in real-time. In Computer Vi-

sion (ICCV), 2011 IEEE International Conference on, pages

2320–2327, Nov 2011. 4

[15] Project Website. http://grail.cs.washington.

edu/projects/timelapse3d. 1, 3, 4, 6, 8

[16] M. Rubinstein, C. Liu, P. Sand, F. Durand, and W. T. Free-

man. Motion denoising with application to time-lapse pho-

tography. In Proceedings of the 2011 IEEE Conference on

Computer Vision and Pattern Recognition, CVPR ’11, pages

313–320, Washington, DC, USA, 2011. IEEE Computer So-

ciety. 2

[17] G. Schindler and F. Dellaert. Probabilistic temporal in-

ference on reconstructed 3d scenes. In Computer Vision

and Pattern Recognition (CVPR), 2010 IEEE Conference on,

pages 1410–1417. IEEE, 2010. 2

[18] G. Schindler, F. Dellaert, and S. B. Kang. Inferring temporal

order of images from 3d structure. In Computer Vision and

Pattern Recognition, 2007. CVPR ’07. IEEE Conference on,

pages 1–7, June 2007. 2

[19] S. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski.

A comparison and evaluation of multi-view stereo recon-

struction algorithms. In Computer Vision and Pattern Recog-

nition, 2006 IEEE Computer Society Conference on, vol-

ume 1, pages 519–528, June 2006. 2

[20] Q. Shan, R. Adams, B. Curless, Y. Furukawa, and S. Seitz.

The visual turing test for scene reconstruction. In 3D Vision -

3DV 2013, 2013 International Conference on, pages 25–32,

June 2013. 2

[21] I. Simon, N. Snavely, and S. Seitz. Scene summarization for

online image collections. In Computer Vision, 2007. ICCV

2007. IEEE 11th International Conference on, pages 1–8,

Oct 2007. 2

[22] N. Snavely, R. Garg, S. M. Seitz, and R. Szeliski. Find-

ing paths through the world’s photos. ACM Transactions on

Graphics (Proceedings of SIGGRAPH 2008), 27(3):11–21,

2008. 2

[23] G. Zhang, J. Jia, T.-T. Wong, and H. Bao. Consistent depth

maps recovery from a video sequence. Pattern Analysis

and Machine Intelligence, IEEE Transactions on, 31(6):974–

988, June 2009. 1, 2, 3, 4

[24] L. Zhang, B. Curless, and S. Seitz. Spacetime stereo: shape

recovery for dynamic scenes. In Computer Vision and Pat-

tern Recognition, 2003. Proceedings. 2003 IEEE Computer

Society Conference on, volume 2, pages II–367–74 vol.2,

June 2003. 2

[25] K. C. Zheng, A. Colburn, A. Agarwala, M. Agrawala,

D. Salesin, B. Curless, and M. F. Cohen. Parallax photog-

raphy: Creating 3d cinematic effects from stills. In Pro-

ceedings of Graphics Interface 2009, GI ’09, pages 111–118,

Toronto, Ont., Canada, Canada, 2009. Canadian Information

Processing Society. 2, 7

1340

http://ceres-solver.org
http://ceres-solver.org
http://extremeicesurvey.org/
http://extremeicesurvey.org/
http://blog.vincentlaforet.com/2013/04/27/time-lapse-intro-part-i/
http://blog.vincentlaforet.com/2013/04/27/time-lapse-intro-part-i/
http://blog.vincentlaforet.com/2013/04/27/time-lapse-intro-part-i/
http://grail.cs.washington.edu/projects/timelapse3d
http://grail.cs.washington.edu/projects/timelapse3d

