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Abstract

In this paper, we introduce new edge-based features for

the task of recovering the 3D layout of an indoor scene

from a single image. Indoor scenes have certain edges that

are very informative about the spatial layout of the room,

namely, the edges formed by the pairwise intersections of

room faces (two walls, wall and ceiling, wall and floor). In

contrast with previous approaches that rely on area-based

features like geometric context and orientation maps, our

method attempts to directly detect these informative edges.

We learn to predict ‘informative edge’ probability maps us-

ing two recent methods that exploit local and global context,

respectively: structured edge detection forests, and a fully

convolutional network for pixelwise labeling. We show that

the fully convolutional network is quite successful at pre-

dicting the informative edges even when they lack contrast

or are occluded, and that the accuracy can be further im-

proved by training the network to jointly predict the edges

and the geometric context. Using features derived from

the ‘informative edge’ maps, we learn a maximum mar-

gin structured classifier that achieves state-of-the-art per-

formance on layout prediction.

1. Introduction

Consider the task of finding the spatial layout of the in-

door scene depicted in Fig. 1. In the widely accepted frame-

work of Hedau et al. [10], this task is formulated as finding a

3D box, such as the one outlined with green lines, that best

fits the room. Existing approaches to this problem focus

on complex mid-level image features [10, 16, 20] or pow-

erful inference procedures [21, 22, 26, 28]. The problem

of layout estimation would be greatly simplified – indeed,

made almost trivial – if we could directly find edges that are

very informative about the 3D structure of the room, namely

those between two walls, the walls and the ceiling, and the

walls and the floor. Unfortunately, these edges are neither

very prominent nor always visible. We can see these issues

in Fig. 1: high-contrast “clutter” edges exist between the

arm chair and the wall, and the TV and the shelf, while the

Image with groundtruth!
box !

Inferred edge map with best 
box estimate !

Figure 1. An indoor scene (left) and a map of the edges that deter-

mine its 3D layout (right). We present novel techniques to obtain

this informative edge map from an image and demonstrate its ef-

fectiveness for determining the spatial layout of a room.

wall and the ceiling are nearly of the same color. Moreover,

the arm chair and the cupboard heavily occlude the edges

between the walls and the floor. Thus, inferring 3D box

edges directly from low-level pixel information seems very

challenging. For this reason, most existing approaches rely

on mid-level area-based features, such as Geometric Con-

text [10] and Orientation Maps [16], as an intermediate step

for layout estimation. At the same time, in the literature

on image segmentation and perceptual organization, there

has been successful work on learning to predict object con-

tours from low-level pixel information [2, 6, 17, 31] and this

work motivates us to directly predict informative edges for

room layout estimation. Given an image, we determine its

informative edge map and subsequently use it to predict the

best-fit 3D box for the image, as depicted in the right half

of Fig. 1. Our contributions are as follows:

1. We adapt two recently developed pixel labeling meth-

ods for learning to predict informative edge maps

for room layout: Structured Forests for Edge Detec-

tion [7] and Fully Convolutional Networks (FCNs)

[18]. We find that FCNs show an impressive level of

performance on this task, especially when trained to

jointly predict informative edges and geometric con-

text (Sec. 3).

2. We propose a structured layout inference method that
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ranks adaptively generated room layout candidates

based on features computed from the informative edge

map (Sec. 4). Our adaptive layout generation is sim-

pler than the exact inference approach of Schwing and

Urtasun [22] but works very well, while our edge-

based features are simpler than standard Geometric

Context [10] and Orientation Map [16] features.

3. We perform extensive quantitative assessments and

demonstrate that our methods achieve state-of-the-art

performance on the standard Hedau dataset [10] as

well as the newly released and larger LSUN dataset [1]

(Sec. 5).

2. Related Work

The idea of using a cuboidal box to approximate the

3D layout of indoor scenes was first introduced in 2009 by

Hedau et al. [10]. By adapting the techniques of Hoiem

et al. [13], the authors derived geometric context labels for

indoor scenes, which assigned to each pixel a class from

{middle wall, right wall, left wall, ceiling, floor, object}.

Then they used features extracted from these labels to train

a structured regressor to rank multiple box candidates and

determine the best fitting box. In the same year, Lee et

al. [16] introduced orientation map features which tried to

reason about the geometric layout of the room based on line

segments detected in the room. Their area-based features,

along with structured regressors, have become a standard

framework for determining the spatial layout [22, 21, 20].

More recently, Ramalingam et al. [20], have obtained im-

proved results using cues from line junctions in the image.

To the best of our knowledge, no one has so far attempted to

specifically identify edges such as those between different

faces (wall, ceiling, floor) of a room which directly deter-

mine the spatial layout of a room.

Several works have focused on developing better infer-

ence procedures to search the space of possible room lay-

outs more effectively. Schwing et al. [22, 21] proposed a

framework for exact inference of the best-fit 3D box based

on integral geometry. Wang et al. [26] proposed a discrim-

inative learning method that used latent variables to jointly

infer the 3D scene and the clutter. In our work, we show that

given better edge-based features, a simpler inference proce-

dure is sufficient to obtain state-of-the-art performance.

Moving past 2D area-based features, some works

have incorporated 3D information obtained from external

sources. By using information from online furniture and

appliance catalogs, Del Pero et al. [4] proposed a model

that used Bayesian inference with 3D reasoning to simulta-

neously predict the geometry and objects present in a room.

The authors emphasized in their work the importance of de-

tecting cues such as faint wall edges to improve the layout

estimation of a room, but did not have a method for explic-

itly targeting informative edges. Zhao et al. [29] also used

3D models obtained from the Google 3D Warehouse along

with a stochastic scene grammar to recover the 3D geome-

try of indoor scenes. Unlike these works, we do not use any

explicit 3D information in our inference.

3. Learning to Predict Informative Edges

As stated in the Introduction, we define ‘informative’

edges as the edges of the projected 3D box that fits the

room. There are three types of such edges: those between

two wall faces, between walls and the ceiling, and between

walls and the floor. Fig. 2 illustrates three images with their

groundtruth edge maps according to this definition. These

maps are generated from the original groundtruth format

of [10], which consists of polygons corresponding to the

different room faces. We take the pixel masks of these

polygons, dilate them by 4 pixels, and find their intersec-

tion, which ends up being about 4 pixels thick on average.

All of the pixels in the resulting mask are considered to be

positive examples of informative edges (even where the ac-

tual edges are occluded by clutter such as furniture), and

all other pixels are considered as part of the background or

negative class.

We explore two state-of-the-art dense pixel labeling

methods for learning to predict informative edge maps. The

first method, discussed in Section 3.1, is a Structured For-

est [7], which operates on small input patches, and therefore

utilizes only local context. The second method, discussed in

3.2, is a Fully Convolutional Network [18], which operates

on the image as a whole and therefore has a good way of

incorporating global context.

3.1. Structured Forest Edge Maps

Structured Forests were introduced by Dollár et al. [7]

as an efficient means for generating contour maps and

achieved remarkable performance on the BSDS500 seg-

mentation dataset [2]. Exploiting the fact that edge labels

within a small image patch are highly interdependent, this

method trains an ensemble of trees, each of which operates

on an input image patch and produces as output a patch cor-

responding to the edge labels in the input patch. An image

is divided into multiple overlapping patches, and for each

patch, the outputs are obtained from multiple trees. These

outputs are then overlaid and averaged to produce an edge

probability map for the entire image. One advantage of the

structured forests is that they can be taught to detect specific

types of edges and we exploit this ability in our work. In our

experiments, we use the standard settings for the forest as

specified in [7] and learn an ensemble of 8 trees, each to a

maximum depth of 64, with an input patch size of 32×32

pixels. In addition to the color and gradient features of [7],

we have also found it useful to include location features for

our problem. In order to encode global location information

of an edge, we divide the height and width of the image into
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Figure 2. Examples of training images with their respective groundtruth informative edge maps. Orange, purple, and yellow lines indicate

wall/wall, wall/ceiling, and wall/floor edges respectively. Blue indicates background containing uninformative edges. Note that these edges

are marked by ignoring the occluding clutter, as if the room were empty.

10 bins, and use the bin index as the location feature for a

pixel. Image patches which contain at least one groundtruth

edge pixel are treated as positives examples and those that

do not contain any groundtruth edge pixels are treated as

negatives.

3.2. Fully Convolutional Network Edge Maps

Fully Convolutional Networks (FCNs) [18] have been

shown to achieve state-of-the-art performance on pixel la-

beling tasks over multiple datasets including PASCAL VOC

2011/2012 and NYUDv2 [19]. These networks are obtained

from image-level classification networks trained on the Im-

ageNet dataset [5], such as the AlexNet [15] or VGG-16

[24], by converting each fully connected layer into a con-

volutional layer with a kernel covering the entire input re-

gion, and then fine-tuning for the pixel-level labeling task.

The receptive field size of the last convolutional layer of the

FCN is very large, typically around 400 pixels, resulting

in low-resolution, coarse output maps. To obtain higher-

quality label maps, a deconvolutional layer is used to up-

sample the coarse outputs to dense pixelwise outputs. FCN

models are naturally suited for tasks that require contextual

information from the entire image.

One innovation in our paper is the joint training of FCNs

for two tasks: prediction of the informative edge map and

prediction of geometric context labels [13, 10]. As stated

in Section 2, geometric context labels correspond to the five

labels of the different room faces plus an ‘object’ or ‘clut-

ter’ label. On the other hand, our informative edge maps

correspond to the boundaries between faces. Thus, the two

types of labels are complementary and, the issue of clutter

aside, one could in principle generate one label map from

the other. In practice, however, face membership and face

boundary prediction depend on different types of low-level

cues, and it is interesting to see whether joint training can

help to reinforce the quality of both map types. We perform

joint training by sharing all layers of the FCN except for the

deconvolutional layers which produce the softmax proba-

bility maps for the respective types of output. The total loss

of the network is the sum of the two cross-entropy classifi-

cation losses: one for informative edge label prediction, and

one for geometric context label prediction. In Section 5, we

provide evidence that joint loss optimization indeed helps

to improve the accuracy of the edge maps.

In our work, we learn FCNs with the VGG-16 structure

using Caffe [14]. To initialize the FCN weights for our task,

we found it important to use a network pre-trained for seg-

mentation on an indoor scene dataset. Specifically, we use

the FCN with 32-pixel prediction stride (FCN-32) trained

on the NYUDv2 RGBD dataset for the 40-class indoor se-

mantic segmentation task of [9].1 The original network

from [18] has two input streams, one for the RGB input,

and one for the depth feature inputs. We discard the layers

corresponding to the depth inputs and use the remaining lay-

ers to initialize our FCN. We also tried initializing with the

FCN-32 trained for semantic segmentation on the PASCAL

dataset, but obtained very poor performance. We fine-tune

our network with a base learning rate of 10−4 with high mo-

mentum of 0.99. We use a higher learning rate of 10−3 for

the newly inserted final convolutional and deconvolutional

layers. The best parameter settings and stopping iteration

are tuned on the validation set.

Fig. 3 shows edge maps output by the Structured Forest

and the FCN for images with varying degrees of clutter. The

edge maps produced by the forests tend to be dense and

noisy, as compared to sparser and cleaner maps produced

by the FCN. Also, the FCN is better able to predict edges

that are occluded by clutter. Further quantitative evaluation

of edge map prediction will be given in Section 5.

4. Inference Model

We use the framework introduced in [10] for represent-

ing the spatial layout of an indoor scene, which consists of

the following steps: (1) Estimate the vanishing points of the

room (Section 4.1); (2) Based on the vanishing points, gen-

erate a number of candidate box layouts (Section 4.2); (3)

Learn a structured regressor to rank the box layouts based

on features derived from the informative edge maps and

other image information (Section 4.3).

1This network is publicly available at https://gist.github.

com/longjon/16db1e4ad3afc2614067 and was last accessed on

18 April 2015.
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Figure 3. Comparison of Informative Edge Maps generated by the Structured Forest and the FCN. Each triplet of images from left to right,

top to bottom shows the input indoor scene, the output of the 1 Class Forest trained on the SUNbox dataset (Forest-1 Class-SUNbox), and

the 1 Class FCN trained on the Hedau+ dataset (FCN-1 Class-Hedau+(Joint)). Note that the FCN produces good edge maps even in the

presence of clutter such as the couch and the bed in the images above.

Generated Edge Map !

(a) (b)

Figure 4. Adaptive Layout Generation. (a) Uniformly spaced sec-

tors originating from the horizontal vanishing point are first gen-

erated. K = 1 sectors with the highest average edge strength per

pixel are chosen, both above and below the horizontal line through

the vanishing point. (b) N = 2 rays are sampled from each se-

lected sector.

4.1. Vanishing Point Estimation

The first step in finding the best-fit layout is to estimate

the vanishing points of the scene given the image. We use

the approach of [10], which makes the Manhattan World

assumption that there exist three dominant orthogonal van-

ishing points. This approach votes for vanishing points us-

ing edges detected in the image by using the Canny edge

detector [3]. We tried substituting the Canny edges with

our informative edge maps, but this resulted in bad esti-

mates of the vanishing points. This is because edges that

we consider ‘not informative’ for the sake of final layout

estimation, such as those on furniture, tiling, windows, etc.,

are actually informative about the location of the vanishing

points, and detecting a large number of such edges helps

with robust vanishing point estimation.

4.2. Adaptive Layout Generation

In the next step, a family of 3D boxes is generated by

sampling rays originating from the vanishing points. A sin-

gle layout is generated by sampling two rays each from the

vanishing points corresponding to the mostly horizontal and

the mostly vertical lines in the image, and then connecting

their intersections with rays originating from the third van-

ishing point. Hedau et al. [10] sampled 10 rays per direc-

tion uniformly by angle. Schwing et al. [21] used a denser

sampling of about 50 rays per vanishing point to obtain a

significant reduction in the layout estimation error. Other

works performed adaptive ray sampling by taking into ac-

count edge and corner features [4] or edge junctions [20].

Finally, Schwing et al. [22] avoided explicit up-front ray

sampling through their exact inference procedure.

Since the exact inference procedure of [22] is hard to

implement, we came up with our own heuristic strategy

that attempts to sample rays more densely in sectors of the

image where the informative edge map has higher energy.

This strategy is illustrated in Fig. 4. Once the informative

edge maps and the vanishing points have been estimated,

we draw uniformly spaced sectors (w.r.t. angle) originating

from the horizontal vanishing points, as shown in red, in

Fig. 4 (a). We then rank all resulting sectors by the aver-

age informative edge strength and retain top K sectors each

in the upper and the lower parts of the image formed by

drawing a horizontal line through the horizontal vanishing

point.2 Finally, we sample N rays uniformly from each of

the selected sectors. For K = 1, and N = 2, Fig. 4 (b)

shows the selected sectors and the final sampled rays. An

analogous procedure is repeated for selecting rays originat-

ing from the vertical vanishing point.

2A sector is assigned to the upper or lower part of the image based on

the angle of its top ray.
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4.3. Ranking Box Layouts

Once multiple candidate layouts are generated, the best

one is selected through the use of a max-margin structured

regressor. Let us denote an image by x, and a 3D box lay-

out by y. We wish to learn a function f(x, y;w) parame-

terized by some weights w that ranks layouts according to

their compatibility with the input image. For an image xi
with a best-fit box yi, the function f should assign a high

score to layout y that is similar to yi. Given a previously

unseen test image x, the predicted layout is given by

y∗ = argmax
y

f(x, y;w) . (1)

The above structured regression problem is solved using a

max-margin framework [25]. The function f is restricted

to take the form of f(x, y) = wTψ(x, y), where ψ(x, y)
is a feature vector for the input image x and a given layout

y (see [10] for details). We explore three types of input

features ψ(x, y).
Informative Edge (IE) Features. The first type of feature

is based on how well a proposed layout aligns with the gen-

erated informative edge maps. Given a proposed layout y

for an image x, we generate binary masks of each of the

three types of edges (wall/wall, wall/ceiling, wall/floor) in

the layout and then compute the dot products of these masks

with the corresponding informative edge maps generated

for image x. In all of our experiments, we use binary masks

with an edge thickness of 10 pixels.

Line Membership (LM) and Geometric Context (GC)

Features. These two types of features are borrowed from

the prior work of Hedau et al. [10]. We use the unweighted

line membership features derived from the straight lines

detected in the image during vanishing point estimation.

These features consist of a scalar value computed for each

face of a layout, along with the percentage area of a face.

We also experimented with geometric context (GC) features

as described in [10]. These are line membership features

weighted by average label confidences within each type of

face as given by the geometric context labels, along with

average label confidences within each face. However, as we

will show in Section 5, once the IE features are introduced,

we do not need the GC features to get state-of-the-art per-

formance, unlike most of the previous works.

The dimensionalities of the IE, LM, and GC features are

3, 10, and 45 respectively. Section 5 presents detailed infor-

mation about the performance of these different features at

predicting the room layout.

5. Experimental Results

Datasets. The standard dataset for indoor layout prediction

is the dataset of Hedau et al. [10] (referred to as the Hedau

dataset in this work), which consists of 209 training images

and 105 testing images, for evaluation purposes. We use the

same train/test split as other existing work.

Dataset # Train # Val. # Test

Hedau 209 – 105

Hedau+ 284 53 –

SUNbox 543 53 –

LSUN – – 1000

Table 1. Statistics of datasets used in this work. The Hedau dataset

is our primary dataset for training the structured regressor and

for layout prediction evaluation. Hedau+ and SUNbox are larger

datasets we use to train detectors for informative edges. Finally,

we use the LSUN test set for additional evaluation of layout pre-

diction. See text for details.

Like in previous work [10], the structured regressor is

trained on the Hedau train set. As the Hedau train set is

rather small for training local edge predictors, we created a

larger dataset, referred to as Hedau+, by augmenting the

Hedau dataset with 128 extra labeled examples from the

Bedroom dataset used in [11, 12]. The Hedau+ dataset con-

sists of 284 train (209 from the Hedau dataset, along with 75

new images) and 53 validation examples. Hedau+ worked

well for training the FCN model. However, it caused signif-

icant overfitting for training the Structured Forests, as the

structured regressor was also trained on a large subset of

the same images. As a result, it became necessary to in-

troduce another training set disjoint from Hedau. We cre-

ated this dataset, referred to as SUNbox, by collecting and

manually annotating 543 images of indoor scenes from the

SUN2012 dataset [27]. The images of the SUNbox dataset

are generally more cluttered and have a larger variety in the

scenes depicted than the Hedau dataset. As validation set

for SUNbox, we use the same 53 images as in Hedau+. For

training the FCN, we augmented the training set by 16 times

using standard transformations such as cropping, mild rota-

tion and scaling. Augmentation was not found to help the

structured forests.

Finally, to test how our method generalizes to a larger,

more complex dataset, we tested our models on the re-

cently introduced LSUN dataset [1]. This dataset has 4000

training and 1000 test images. Due to constraints on time

and computational resources (the dataset was released af-

ter the ICCV submission deadline), we did not use its

train/validation set, but directly tested our FCN trained on

Hedau+ on the LSUN test set. As we will show in Section

5, our model generalizes well despite not being retrained.

Dataset statistics are summarized in Table 1.

Informative Edge Prediction. We use two setups for train-

ing informative edge predictors: in the three-class setup, we

have three positive classes, namely wall/wall, wall/ceiling,

and wall/floor; in the one-class setup, we consider all infor-

mative edges to belong to a single class.
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Forest FCN

Setting ODS OIS AP ODS OIS AP

BSDS [7] 0.159 0.165 0.052 – – –

3 Class - Hedau+ 0.178 0.176 0.104 0.235 0.237 0.084

3 Class - SUNbox 0.177 0.169 0.103 0.227 0.232 0.086

1 Class - Hedau+ 0.174 0.177 0.094 0.226 0.227 0.080

1 Class - Hedau+ (Joint) – – – 0.255 0.263 0.130

1 Class - SUNbox 0.178 0.172 0.103 0.179 0.180 0.056

1 Class - SUNbox (Joint) – – – 0.206 0.209 0.069

Table 2. Informative edge prediction accuracy of different methods on the Hedau test set. The methods vary in number of positive classes for

the edge maps (3 vs. 1), training dataset (Hedau+ or SUNbox) and training setup (Joint denotes joint training for edge maps and geometric

context as discussed in Section 3). Performance is evaluated using three standard measures [2] of fixed contour threshold (ODS), per-image

best threshold (OIS), and average precision (AP). For all metrics, higher values are better.

Forest FCN

Setting
Uniform Layout Adaptive Layout Uniform Layout Adaptive Layout

Error (%) Error (%) Error (%) Error (%)

3 Class - Hedau+ 23.66 20.59 26.19 16.05

3 Class - SUNbox 19.97 16.89 20.90 16.20

1 Class - Hedau+ 23.15 21.71 20.62 13.89

1 Class - Hedau+ (Joint) – – 18.30 12.83

1 Class - SUNbox 20.81 18.03 23.64 18.43

1 Class - SUNbox (Joint) – – 18.95 15.09

Table 3. Layout Estimation errors obtained on the Hedau test set by using different types of Informative Edge Features. The error is the

percentage of pixels whose face identity disagrees with the ground truth. The structured regressor for layout prediction is trained using

Line Membership and Informative Edge features. Uniform Layout corresponds to using 10 uniformly sampled rays per vanishing point

and Adaptive Layout uses parameters K = 2, N = 3 (refer to Sec. 4 for definition).

We report quantitative results of informative edge predic-

tion in Table 2 using the evaluation framework of [2]. As is

the common practice, we apply non-maximal suppression

(NMS) on the edge maps to obtain thinned edges for eval-

uation. As a baseline, we compare our methods against the

Structured Forests of [7] trained on the Berkeley Segmen-

tation Dataset (BSDS) for generic contour detection.3 The

performance is significantly lower than that of all our meth-

ods, confirming that task-specific training is required for

finding informative edges for layout prediction. The best

FCN beats the best forest on all metrics. Moreover, it is ev-

ident that joint loss optimization improves the quality of the

edge maps obtained.

For the jointly trained FCN, the test errors for the ge-

ometric context prediction stream are around 28-31% –

higher than the error of 26.9% obtained by the original

method of Hoiem et al. [13]. This is most likely due to

Hoiem’s system using mid-level features custom-tailored

for this problem. However, since geometric context pre-

diction was not a central focus of this work, we did not in-

vestigate this issue further. For our purposes, the important

3We also benchmarked Canny Edges on this task, but their performance

is very poor for all measures.

finding is that learning to jointly predict geometric context

and informative edge maps significantly improves the accu-

racy of the latter.

The numbers in Table 2, especially the low AP, suggest

that our informative edge prediction suffers from poor fine-

grained localization. Qualitatively, we observe high edge

probabilities in the correct areas, however, on thinning us-

ing NMS, we obtain poor precision. Nevertheless, these

edge maps work very well for the end goal of estimating

the spatial layout of indoor scenes, as discussed next.

Layout Estimation Performance. In Table 3, we report

the pixel classification errors obtained with different strate-

gies for informative edge prediction and layout sampling.

Uniform layout sampling uses 10 horizontal and 10 vertical

rays as in [10], while adaptive sampling uses parameter set-

tings ofK = 2 andN = 3 as described in Section 4.2. This

gives only a small increase in the number of rays per van-

ishing point (12 vs. 10), but helps to reduce errors across

the board, for all the feature settings.

Two other interesting observations can be made from Ta-

ble 3. First, while all the random forest configurations per-

form almost the same on edge prediction (Table 2), their

performance on the final spatial layout estimation task is
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very different. In particular, as mentioned earlier in this sec-

tion, the forests trained on the Hedau+ dataset suffer from

significant overfitting when an overlapping subset of data

is also used to train the structured regressor. Second, for

the FCNs, we get the best results with single-class edge

maps, while for the forests, we get the best results with

three-class edge maps. We conjecture that FCNs can better

handle intra-class variation, making the availability of more

training data a bigger factor. Forests, on the other hand, use

weaker context in making predictions and probably do bet-

ter with less intra-class variation in the training data. In the

end, the best FCN beats the best forest by over 4%, making

it the decisive winner.

Setting Error (%)

Line Membership (LM) Feature Only 26.42

Forest - IE Only 23.62

Forest - LM + IE 16.89

Forest - LM + IE + GC 16.85

FCN - IE Only 14.74

FCN - LM + IE 12.83

FCN - LM + IE + GC 13.83

Table 4. Pixelwise layout misclassification errors obtained on the

Hedau dataset by using different combinations of features. Forest

and FCN stand for the best performing forest (Forest - 3 Class -

SUNbox) and FCN (FCN - 1 Class - Hedau+ (Joint)) respectively.

The results show that the combination of Line Membership (LM)

and FCN-based Informative Edge (IE) features works the best.

Analysis of Features for the Structured Regressor. The

results in Table 3 were obtained using the combination of

line membership (LM) and informative edge (IE) features.

Next, we perform a more in-depth analysis of the contri-

butions of different features specified in Section 4.3. The

results are presented in Table 4. By using just the LM fea-

tures, we obtain our highest error of 26.42%. Using just

the IE features derived from the best performing forest and

FCN, we obtain lower errors of 23.62% and 14.74% respec-

tively. These numbers hint at the true potential of the FCN-

based features as by using them alone, we already come

within 1.5% of the previous reported state of the art [20]. By

augmenting IE features with LM, we obtain our best perfor-

mance. This suggests that our informative edge maps suffer

from the inability to precisely localize edges, as the LM fea-

tures are computed from lines that are finely localized and

just a pixel wide. Our FCN is derived from VGG-16, which

has five layers of 2×2 pooling with a stride of 2. This means

that 32 pixels of the input get mapped to a single top-layer

neuron, which makes it difficult to produce high-resolution

edge maps. As for the forest, it is unable to handle image

patches containing clutter very well since it uses only local

context.

Rows 4 and 7 of Table 4 report performance with geo-

Method Error (%)

Hedau Test Dataset

Hedau et al. [10] 21.20

Del Pero et al. [4] 16.30

Gupta et al. [8] 16.20

Zhao et al. [29] 14.50

Schwing et al. [22] 13.59

Ramalingam et al. [20] 13.34

Ours (Forest - 3 Class - SUNbox) 16.89

Ours (FCN - 1 Class - Joint - Hedau+) 12.83

LSUN Test Dataset

Hedau et al. [10] 24.23

Ours (FCN - 1 Class - Joint - Hedau+) 16.71

Table 5. Comparison of the best reported pixel misclassification

errors of different methods. The FCN based features combined

with adaptive ray sampling obtain state-of-the-art error, beating

those that use exact ray inference and features including Geomet-

ric Context, Orientation Map, and Junction information.

metric context (GC) features, similar to prior work [10, 22,

21, 20, 16]. With the best-performing forest, we use the

geometric context labels output by the method of Hedau et

al. [10], while for the jointly trained FCN, we use the la-

bels output by the FCN itself. Surprisingly, adding the GC

features does not reduce our layout prediction error, and in

the case of the FCN, the error actually goes up. After qual-

itatively analyzing the layout predictions and the geomet-

ric context labels, we believe that this is due to the lack

of smoothness and consistency constraints over the GC la-

bels, which some of the newer works try to address [30, 23].

These results also seem to suggest that given good informa-

tive edge maps, not a lot of information is added by the

geometric context labels.

Comparison with the state of the art. Table 5 compares

the best results of previous methods on the layout estima-

tion task to those of our best model. Our error of 12.83%

beats the previous best error of 13.34% of Ramalingam et

al. [20]. It is interesting that even though we do not perform

exact inference like [22], or sample as many rays as [21], we

are able to obtain very good results using the combination of

our informative edge based features and adaptive sampling.

Furthermore, unlike all the previous methods, which used

an array of features including Geometric Context, Orien-

tation Maps, Junction Information, and their combinations,

we only rely on edge-based features. We also do not use any

information about 3D clutter shapes unlike [4, 29]. Fig. 5

displays some of our best and worst predicted layouts on the

Hedau dataset.

Finally, as mentioned in the beginning of this section, we

evaluated our model on the much larger LSUN test dataset

without any retraining or fine-tuning. As can be seen from

the last two lines of Table 5, the prediction error on this test

set is about 4% higher than on the Hedau test set, but this is
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0.45%! 1.41%!

68.12%!90.38%! 61.05%!

1.77%!

Figure 5. Examples of best and worst results on the Hedau test set by our best performing method, FCN - 1 Class - Hedau+ (Joint). The

top row shows pairs of image and predicted informative edge map of some of the best results obtained, while the bottom row shows some

of the worst. Below each image is the pixel misclassification error percentage.

at least partially due to the more diverse nature of this test

set. The only currently available baseline for LSUN is for

the method of [10], and we beat it handily.

6. Conclusion

In this paper, we have presented two methods for the

prediction of informative edge maps and achieved state-of-

the-art results on indoor scene layout prediction by using

just edge-based features, unlike previous works that rely on

mid-level area-based features like geometric context [10]

and orientation maps [16]. Among the learned informative

edge prediction methods, the FCN clearly outperforms the

Structured Forests on all accounts. Furthermore, we show

that our FCN trained on the Hedau dataset generalizes well

by achieving state-of-the-art results on the LSUN dataset.

We also show that geometric context [13] helps in training

the network, but once we use the network to obtain good

features that focus on boundaries, GC features do not add

much value, if any, to determining the layout of an indoor

scene.

Our final prediction pipeline is fairly straightforward:

Given an image, extract the informative edge map by run-

ning the trained FCN directly on top of image pixels, detect

vanishing points, sample candidate layouts, and finally rank

the layouts using simple features computed from the edge

map and the lines used to detect vanishing points. This is

in contrast to prior state of the art, which requires cumber-

some, multi-stage processes such as extracting superpixels,

computing their statistics, and applying classifiers, just for

generating the intermediate geometric context features, fol-

lowed by complex inference procedures.

For future work, we believe it is possible to further

improve the resolution of the edge maps, and hence reduce

the layout error by using an FCN with a fewer pooling

layers or a smaller deconvolutional stride. Training FCNs

on the newly available LSUN data is also likely to prove

helpful.
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