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Abstract

We address a question answering task on real-world im-

ages that is set up as a Visual Turing Test. By combining

latest advances in image representation and natural lan-

guage processing, we propose Neural-Image-QA, an end-

to-end formulation to this problem for which all parts are

trained jointly. In contrast to previous efforts, we are facing

a multi-modal problem where the language output (answer)

is conditioned on visual and natural language input (image

and question). Our approach Neural-Image-QA doubles the

performance of the previous best approach on this problem.

We provide additional insights into the problem by analyz-

ing how much information is contained only in the language

part for which we provide a new human baseline. To study

human consensus, which is related to the ambiguities inher-

ent in this challenging task, we propose two novel metrics

and collect additional answers which extends the original

DAQUAR dataset to DAQUAR-Consensus.

1. Introduction

With the advances of natural language processing and

image understanding, more complex and demanding tasks

have become within reach. Our aim is to take advantage

of the most recent developments to push the state-of-the-

art for answering natural language questions on real-world

images. This task unites inference of question intends and

visual scene understanding with a word sequence prediction

task.
Most recently, architectures based on the idea of lay-

ered, end-to-end trainable artificial neural networks have

improved the state of the art across a wide range of diverse

tasks. Most prominently Convolutional Neural Networks

have raised the bar on image classification tasks [16] and

Long Short Term Memory Networks are dominating per-

formance on a range of sequence prediction tasks such as

machine translation [28].
Very recently these two trends of employing neural ar-

chitectures have been combined fruitfully with methods that
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Figure 1. Our approach Neural-Image-QA to question answering

with a Recurrent Neural Network using Long Short Term Memory

(LSTM). To answer a question about an image, we feed in both,

the image (CNN features) and the question (green boxes) into the

LSTM. After the (variable length) question is encoded, we gener-

ate the answers (multiple words, orange boxes). During the answer

generation phase the previously predicted answers are fed into the

LSTM until the 〈END〉 symbol is predicted.

can generate image [12] and video descriptions [30]. Both

are conditioning on the visual features that stem from deep

learning architectures and employ recurrent neural network

approaches to produce descriptions.

To further push the boundaries and explore the limits

of deep learning architectures, we propose an architecture

for answering questions about images. In contrast to prior

work, this task needs conditioning on language as well

visual input. Both modalities have to be interpreted and

jointly represented as an answer depends on inferred mean-

ing of the question and image content.

While there is a rich body of work on natural language

understanding that has addressed textual question answer-

ing tasks based on semantic parsing, symbolic representa-

tion and deduction systems, which also has seen applica-

tions to question answering on images [20], there is initial

evidence that deep architectures can indeed achieve a sim-

ilar goal [33]. This motivates our work to seek end-to-end

architectures that learn to answer questions in a single holis-

tic and monolithic model.

We propose Neural-Image-QA, an approach to question
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answering with a recurrent neural network. An overview

is given in Figure 1. The image is analyzed via a Convo-

lutional Neural Network (CNN) and the question together

with the visual representation is fed into a Long Short Term

Memory (LSTM) network. The system is trained to pro-

duce the correct answer to the question on the image. CNN

and LSTM are trained jointly and end-to-end starting from

words and pixels.

Contributions: We proposes a novel approach based on re-

current neural networks for the challenging task of answer-

ing of questions about images. It combines a CNN with a

LSTM into an end-to-end architecture that predict answers

conditioning on a question and an image. Our approach

significantly outperforms prior work on this task – doubling

the performance. We collect additional data to study human

consensus on this task, propose two new metrics sensitive

to these effects, and provide a new baseline, by asking hu-

mans to answer the questions without observing the image.

We demonstrate a variant of our system that also answers

question without accessing any visual information, which

beats the human baseline.

2. Related Work

As our method touches upon different areas in machine

learning, computer vision and natural language processing,

we have organized related work in the following way:

Convolutional Neural Networks for visual recognition.

We are building on the recent success of Convolutional Neu-

ral Networks (CNN) for visual recognition [16, 17, 25], that

are directly learnt from the raw image data and pre-trained

on large image corpora. Due to the rapid progress in this

area within the last two years, a rich set of models [27, 29]

is at our disposal.

Recurrent Neural Networks (RNN) for sequence model-

ing. Recurrent Neural Networks allow Neural Networks

to handle sequences of flexible length. A particular variant

called Long Short Term Memory (LSTM) [9] has shown

recent success on natural language tasks such as machine

translation [3, 28].

Combining RNNs and CNNs for description of visual

content. The task of describing visual content like still

images as well as videos has been successfully addressed

with a combination of the previous two ideas [5, 12, 31, 32,

37]. This is achieved by using the RNN-type model that

first gets to observe the visual content and is trained to af-

terwards predict a sequence of words that is a description of

the visual content. Our work extends this idea to question

answering, where we formulate a model trained to generate

an answer based on visual as well as natural language input.

Grounding of natural language and visual concepts.

Dealing with natural language input does involve the asso-

ciation of words with meaning. This is often referred to as

grounding problem - in particular if the “meaning” is associ-

ated with a sensory input. While such problems have been

historically addressed by symbolic semantic parsing tech-

niques [15, 22], there is a recent trend of machine learning-

based approaches [12, 13, 14] to find the associations. Our

approach follows the idea that we do not enforce or evaluate

any particular representation of “meaning” on the language

or image modality. We treat this as latent and leave this to

the joint training approach to establish an appropriate inter-

nal representation for the question answering task.

Textual question answering. Answering on purely tex-

tual questions has been studied in the NLP community

[2, 18] and state of the art techniques typically employ

semantic parsing to arrive at a logical form capturing the

intended meaning and infer relevant answers. Only very

recently, the success of the previously mentioned neural

sequence models as RNNs has carried over to this task

[10, 33]. More specifically [10] uses dependency-tree Re-

cursive NN instead of LSTM, and reduce the question-

answering problem to a classification task. Moreover, ac-

cording to [10] their method cannot be easily applied to vi-

sion. [33] propose different kind of network - memory net-

works - and it is unclear how to apply [33] to take advantage

of the visual content. However, neither [10] nor [33] show

an end-to-end, monolithic approaches that produce multiple

words answers for question on images.

Visual Turing Test. Most recently several approaches

have been proposed to approach Visual Turing Test [21],

i.e. answering question about visual content. For instance

[8] have proposed a binary (yes/no) version of Visual Tur-

ing Test on synthetic data. In [20], we present a question

answering system based on a semantic parser on a more var-

ied set of human question-answer pairs. In contrast, in this

work, our method is based on a neural architecture, which

is trained end-to-end and therefore liberates the approach

from any ontological commitment that would otherwise be

introduced by a semantic parser.
We like to note that shortly after this work, several

neural-based models [24, 19, 7] have also been suggested.

Also several new datasets for Visual Turing Tests have just

been proposed [1, 35] that are worth further investigations.

3. Approach

Answering questions on images is the problem of pre-

dicting an answer a given an image x and a question q ac-

cording to a parametric probability measure:

â = argmax
a∈A

p(a|x, q;θ) (1)

where θ represent a vector of all parameters to learn and A
is a set of all answers. Later we describe how we represent

x, a, q, and p(·|x, q;θ) in more details.
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Figure 2. Our approach Neural-Image-QA, see Section 3 for de-

tails.

In our scenario questions can have multiple word an-

swers and we consequently decompose the problem to pre-

dicting a set of answer words aq,x =
{

a1,a2, ...,aN (q,x)

}

,

where at are words from a finite vocabulary V ′, and

N (q, x) is the number of answer words for the given ques-

tion and image. In our approach, named Neural-Image-QA,

we propose to tackle the problem as follows. To predict

multiple words we formulate the problem as predicting a se-

quence of words from the vocabulary V := V ′ ∪ {$} where

the extra token $ indicates the end of the answer sequence,

and points out that the question has been fully answered.

We thus formulate the prediction procedure recursively:

ât = argmax
a∈V

p(a|x, q, Ât−1;θ) (2)

where Ât−1 = {â1, . . . , ât−1} is the set of previous words,

with Â0 = {} at the beginning, when our approach has not

given any answer so far. The approach is terminated when

ât = $. We evaluate the method solely based on the pre-

dicted answer words ignoring the extra token $. To ensure

uniqueness of the predicted answer words, as we want to

predict the set of answer words, the prediction procedure

can be be trivially changed by maximizing over V \ Ât−1.

However, in practice, our algorithm learns to not predict any

previously predicted words.

As shown in Figure 1 and Figure 2, we feed Neural-Image-

QA with a question as a sequence of words, i.e. q =
[

q1, . . . , qn−1, J?K
]

, where each qt is the t-th word ques-

tion and J?K := qn encodes the question mark - the end of

the question. Since our problem is formulated as a variable-

length input/output sequence, we model the parametric dis-

tribution p(·|x, q;θ) of Neural-Image-QA with a recurrent

neural network and a softmax prediction layer. More pre-

cisely, Neural-Image-QA is a deep network built of CNN

[17] and Long-Short Term Memory (LSTM) [9]. LSTM has

been recently shown to be effective in learning a variable-

length sequence-to-sequence mapping [5, 28].
Both question and answer words are represented with
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Figure 3. LSTM unit. See Section 3, Equations (3)-(8) for details.

one-hot vector encoding (a binary vector with exactly one

non-zero entry at the position indicating the index of the

word in the vocabulary) and embedded in a lower dimen-

sional space, using a jointly learnt latent linear embedding.

In the training phase, we augment the question words se-

quence q with the corresponding ground truth answer words

sequence a, i.e. q̂ := [q,a]. During the test time, in the

prediction phase, at time step t, we augment q with previ-

ously predicted answer words â1..t := [â1, . . . , ât−1], i.e.

q̂t := [q, â1..t]. This means the question q and the previous

answers are encoded implicitly in the hidden states of the

LSTM, while the latent hidden representation is learnt. We

encode the image x using a CNN and provide it at every

time step as input to the LSTM. We set the input vt as a

concatenation of [x, q̂t].
As visualized in detail in Figure 3, the LSTM unit takes

an input vector vt at each time step t and predicts an out-

put word zt which is equal to its latent hidden state ht. As

discussed above zt is a linear embedding of the correspond-

ing answer word at. In contrast to a simple RNN unit the

LSTM unit additionally maintains a memory cell c. This

allows to learn long-term dynamics more easily and signifi-

cantly reduces the vanishing and exploding gradients prob-

lem [9]. More precisely, we use the LSTM unit as described

in [36] and the Caffe implementation from [5]. With the

sigmoid nonlinearity σ : R 7→ [0, 1], σ(v) = (1 + e−v)
−1

and the hyperbolic tangent nonlinearity φ : R 7→ [−1, 1],

φ(v) = ev−e−v

ev+e−v = 2σ(2v)− 1, the LSTM updates for time

step t given inputs vt, ht−1, and the memory cell ct−1 as

follows:

it = σ(Wvivt +Whiht−1 + bi) (3)

f t = σ(Wvfvt +Whfht−1 + bf ) (4)

ot = σ(Wvovt +Whoht−1 + bo) (5)

gt = φ(Wvgvt +Whght−1 + bg) (6)

ct = f t ⊙ ct−1 + it ⊙ gt (7)

ht = ot ⊙ φ(ct) (8)

where ⊙ denotes element-wise multiplication. All the

weights W and biases b of the network are learnt jointly

with the cross-entropy loss. Conceptually, as shown in
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Figure 3, Equation 3 corresponds to the input gate, Equa-

tion 6 the input modulation gate, and Equation 4 the forget

gate, which determines how much to keep from the previ-

ous memory ct−1 state. As Figures 1 and 2 suggest, all the

output predictions that occur before the question mark are

excluded from the loss computation, so that the model is

penalized solely based on the predicted answer words.

Implementation We use default hyper-parameters of

LSTM [5] and CNN [11]. All CNN models are first pre-

trained on the ImageNet dataset [25], and next we randomly

initialize and train the last layer together with the LSTM

network on the task. We find this step crucial in obtaining

good results. We have explored the use of a 2 layered LSTM

model, but have consistently obtained worse performance.

In a pilot study, we have found that GoogleNet architecture

[11, 29] consistently outperforms the AlexNet architecture

[11, 16] as a CNN model for our task and model.

4. Experiments

In this section we benchmark our method on a task of

answering questions about images. We compare different

variants of our proposed model to prior work in Section 4.1.

In addition, in Section 4.2, we analyze how well questions

can be answered without using the image in order to gain

an understanding of biases in form of prior knowledge and

common sense. We provide a new human baseline for this

task. In Section 4.3 we discuss ambiguities in the question

answering tasks and analyze them further by introducing

metrics that are sensitive to these phenomena. In particular,

the WUPS score [20] is extended to a consensus metric that

considers multiple human answers. Additional results are

available in the supplementary material and on the project

webpage 1.

Experimental protocol We evaluate our approach on the

DAQUAR dataset [20] which provides 12, 468 human ques-

tion answer pairs on images of indoor scenes [26] and fol-

low the same evaluation protocol by providing results on

accuracy and the WUPS score at {0.9, 0.0}. We run exper-

iments for the full dataset as well as their proposed reduced

set that restricts the output space to only 37 object cate-

gories and uses 25 test images. In addition, we also evaluate

the methods on different subsets of DAQUAR where only 1,

2, 3 or 4 word answers are present.

WUPS scores We base our experiments as well as the

consensus metrics on WUPS scores [20]. The metric is a

generalization of the accuracy measure that accounts for

word-level ambiguities in the answer words. For instance

‘carton’ and ‘box’ can be associated with a similar concept,

1https://www.d2.mpi-inf.mpg.de/

visual-turing-challenge

Accu- WUPS WUPS

racy @0.9 @0.0

Malinowski et al. [20] 7.86 11.86 38.79

Neural-Image-QA (ours)

- multiple words 17.49 23.28 57.76
- single word 19.43 25.28 62.00

Human answers [20] 50.20 50.82 67.27

Language only (ours)

- multiple words 17.06 22.30 56.53
- single word 17.15 22.80 58.42
Human answers, no images 7.34 13.17 35.56

Table 1. Results on DAQUAR, all classes, single reference, in %.

and hence models should not be strongly penalized for this

type of mistakes. Formally:

WUPS(A, T ) =
1

N

N
∑

i=1

min{
∏

a∈Ai

max
t∈T i

µ(a, t),

∏

t∈T i

max
a∈Ai

µ(a, t)}

To embrace the aforementioned ambiguities, [20] suggest

using a thresholded taxonomy-based Wu-Palmer similarity

[34] for µ. The smaller the threshold the more forgiving

metric. As in [20], we report WUPS at two extremes, 0.0
and 0.9.

4.1. Evaluation of NeuralImageQA

We start with the evaluation of our Neural-Image-QA on

the full DAQUAR dataset in order to study different vari-

ants and training conditions. Afterwards we evaluate on the

reduced DAQUAR for additional points of comparison to

prior work.

Results on full DAQUAR Table 1 shows the results of

our Neural-Image-QA method on the full set (“multiple

words”) with 653 images and 5673 question-answer pairs

available at test time. In addition, we evaluate a variant that

is trained to predict only a single word (“single word”) as

well as a variant that does not use visual features (“Lan-

guage only”). In comparison to the prior work [20] (shown

in the first row in Table 1), we observe strong improvements

of over 9% points in accuracy and over 11% in the WUPS

scores [second row in Table 1 that corresponds to “multi-

ple words”]. Note that, we achieve this improvement de-

spite the fact that the only published number available for

the comparison on the full set uses ground truth object an-

notations [20] – which puts our method at a disadvantage.

Further improvements are observed when we train only on

a single word answer, which doubles the accuracy obtained
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Accu- WUPS WUPS

racy @0.9 @0.0

Neural-Image-QA (ours) 21.67 27.99 65.11

Language only (ours) 19.13 25.16 61.51

Table 2. Results of the single word model on the one-word answers

subset of DAQUAR, all classes, single reference, in %.
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Figure 4. Language only (blue bar) and Neural-Image-QA (red

bar) “multi word” models evaluated on different subsets of

DAQUAR. We consider 1, 2, 3, 4 word subsets. The blue and

red horizontal lines represent “single word” variants evaluated on

the answers with exactly 1 word.

in prior work. We attribute this to a joint training of the lan-

guage and visual representations and the dataset bias, where

about 90% of the answers contain only a single word.

We further analyze this effect in Figure 4, where we

show performance of our approach (“multiple words”) in

dependence on the number of words in the answer (trun-

cated at 4 words due to the diminishing performance). The

performance of the “single word” variants on the one-word

subset are shown as horizontal lines. Although accuracy

drops rapidly for longer answers, our model is capable of

producing a significant number of correct two words an-

swers. The “single word” variants have an edge on the sin-

gle answers and benefit from the dataset bias towards these

type of answers. Quantitative results of the “single word”

model on the one-word answers subset of DAQUAR are

shown in Table 2. While we have made substantial progress

compared to prior work, there is still a 30% points margin to

human accuracy and 25 in WUPS score [“Human answers”

in Table 1].

Results on reduced DAQUAR In order to provide perfor-

mance numbers that are comparable to the proposed Multi-

World approach in [20], we also run our method on the re-

duced set with 37 object classes and only 25 images with

297 question-answer pairs at test time.

Table 3 shows that Neural-Image-QA also improves on

the reduced DAQUAR set, achieving 34.68% Accuracy and

40.76% WUPS at 0.9 substantially outperforming [20] by

Accu- WUPS WUPS

racy @0.9 @0.0

Malinowski et al. [20] 12.73 18.10 51.47

Neural-Image-QA (ours)

- multiple words 29.27 36.50 79.47
- single word 34.68 40.76 79.54

Language only (ours)

- multiple words 32.32 38.39 80.05
- single word 31.65 38.35 80.08

Table 3. Results on reduced DAQUAR, single reference, with

a reduced set of 37 object classes and 25 test images with 297

question-answer pairs, in %

21.95% Accuracy and 22.6 WUPS. Similarly to previous

experiments, we achieve the best performance using the

“single word” variant.

4.2. Answering questions without looking at images

In order to study how much information is already con-

tained in questions, we train a version of our model that

ignores the visual input. The results are shown in Table 1

and Table 3 under “Language only (ours)”. The best “Lan-

guage only” models with 17.15% and 32.32% compare very

well in terms of accuracy to the best models that include vi-

sion. The latter achieve 19.43% and 34.68% on the full and

reduced set respectively.

In order to further analyze this finding, we have collected

a new human baseline “Human answer, no image”, where

we have asked participants to answer on the DAQUAR

questions without looking at the images. It turns out that

humans can guess the correct answer in 7.86% of the cases

by exploiting prior knowledge and common sense. Inter-

estingly, our best “language only” model outperforms the

human baseline by over 9%. A substantial number of an-

swers are plausible and resemble a form of common sense

knowledge employed by humans to infer answers without

having seen the image.

4.3. Human Consensus

We observe that in many cases there is an inter human

agreement in the answers for a given image and question

and this is also reflected by the human baseline performance

on the question answering task of 50.20% [“Human an-

swers” in Table 1]. We study and analyze this effect fur-

ther by extending our dataset to multiple human reference

answers in Section 4.3.1, and proposing a new measure –

inspired by the work in psychology [4, 6, 23] – that han-

dles disagreement in Section 4.3.2, as well as conducting

additional experiments in Section 4.3.3.
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Figure 5. Study of inter human agreement. At x-axis: no consen-

sus (0%), at least half consensus (50%), full consensus (100%).

Results in %. Left: consensus on the whole data, right: consensus

on the test data.

4.3.1 DAQUAR-Consensus

In order to study the effects of consensus in the question an-

swering task, we have asked multiple participants to answer

the same question of the DAQUAR dataset given the respec-

tive image. We follow the same scheme as in the original

data collection effort, where the answer is a set of words or

numbers. We do not impose any further restrictions on the

answers. This extends the original data [20] to an average

of 5 test answers per image and question. We refer to this

dataset as DAQUAR-Consensus.

4.3.2 Consensus Measures

While we have to acknowledge inherent ambiguities in our

task, we seek a metric that prefers an answer that is com-

monly seen as preferred. We make two proposals:

Average Consensus: We use our new annotation set that

contains multiple answers per question in order to compute

an expected score in the evaluation:

1

NK

N
∑

i=1

K
∑

k=1

min{
∏

a∈Ai

max
t∈T i

k

µ(a, t),
∏

t∈T i

k

max
a∈Ai

µ(a, t)}

(9)

where for the i-th question Ai is the answer generated by the

architecture and T i
k is the k-th possible human answer cor-

responding to the k-th interpretation of the question. Both

answers Ai and T i
k are sets of the words, and µ is a member-

ship measure, for instance WUP [34]. We call this metric

“Average Consensus Metric (ACM)” since, in the limits, as

K approaches the total number of humans, we truly mea-

sure the inter human agreement of every question.

Min Consensus: The Average Consensus Metric puts

more weights on more “mainstream” answers due to the

summation over possible answers given by humans. In or-

der to measure if the result was at least with one human in

Accu- WUPS WUPS

racy @0.9 @0.0

Subset: No agreement

Language only (ours)

- multiple words 8.86 12.46 38.89
- single word 8.50 12.05 40.94

Neural-Image-QA (ours)

- multiple words 10.31 13.39 40.05
- single word 9.13 13.06 43.48

Subset: ≥ 50% agreement

Language only (ours)

- multiple words 21.17 27.43 66.68
- single word 20.73 27.38 67.69

Neural-Image-QA (ours)

- multiple words 20.45 27.71 67.30
- single word 24.10 30.94 71.95

Subset: Full Agreement

Language only (ours)

- multiple words 27.86 35.26 78.83
- single word 25.26 32.89 79.08

Neural-Image-QA (ours)

- multiple words 22.85 33.29 78.56
- single word 29.62 37.71 82.31

Table 4. Results on DAQUAR, all classes, single reference in %

(the subsets are chosen based on DAQUAR-Consensus).

agreement, we propose a “Min Consensus Metric (MCM)”

by replacing the averaging in Equation 9 with a max opera-

tor. We call such metric Min Consensus and suggest using

both metrics in the benchmarks. We will make the imple-

mentation of both metrics publicly available.

1

N

N
∑

i=1

K
max
k=1



min{
∏

a∈Ai

max
t∈T i

k

µ(a, t),
∏

t∈T i

k

max
a∈Ai

µ(a, t)}





(10)

Intuitively, the max operator uses in evaluation a human an-

swer that is the closest to the predicted one – which repre-

sents a minimal form of consensus.

4.3.3 Consensus results

Using the multiple reference answers in DAQUAR-

Consensus we can show a more detailed analysis of in-

ter human agreement. Figure 5 shows the fraction of the

data where the answers agree between all available ques-

tions (“100”), at least 50% of the available questions and

do not agree at all (no agreement - “0”). We observe that

for the majority of the data, there is a partial agreement,

but even full disagreement is possible. We split the dataset
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Accu- WUPS WUPS

racy @0.9 @0.0

Average Consensus Metric

Language only (ours)

- multiple words 11.60 18.24 52.68
- single word 11.57 18.97 54.39

Neural-Image-QA (ours)

- multiple words 11.31 18.62 53.21
- single word 13.51 21.36 58.03

Min Consensus Metric

Language only (ours)

- multiple words 22.14 29.43 66.88
- single word 22.56 30.93 69.82

Neural-Image-QA (ours)

- multiple words 22.74 30.54 68.17
- single word 26.53 34.87 74.51

Table 5. Results on DAQUAR-Consensus, all classes, consensus

in %.

into three parts according to the above criteria “No agree-

ment”, “≥ 50% agreement” and “Full agreement” and eval-

uate our models on these splits (Table 4 summarizes the

results). On subsets with stronger agreement, we achieve

substantial gains of up to 10% and 20% points in accuracy

over the full set (Table 1) and the Subset: No agreement

(Table 4), respectively. These splits can be seen as curated

versions of DAQUAR, which allows studies with factored

out ambiguities.

The aforementioned “Average Consensus Metric” gen-

eralizes the notion of the agreement, and encourages pre-

dictions of the most agreeable answers. On the other hand

“Min Consensus Metric” has a desired effect of providing a

more optimistic evaluation. Table 5 shows the application

of both measures to our data and models.

Moreover, Table 6 shows that “MCM” applied to hu-

man answers at test time captures ambiguities in interpret-

ing questions by improving the score of the human baseline

from [20] (here, as opposed to Table 5, we exclude the orig-

inal human answers from the measure). It also cooperates

well with WUPS at 0.9, which takes word ambiguities into

account, gaining an about 20% higher score.

4.4. Qualitative results

We show predicted answers of different variants of our

architecture in Table 7, 8, and 9. We have chosen the ex-

amples to highlight differences between Neural-Image-QA

and the “Language only”. We use a “multiple words” ap-

proach only in Table 8, otherwise the “single word” model

is shown. Despite some failure cases, “Language only”

makes “reasonable guesses” like predicting that the largest

object could be table or an object that could be found on the

Accuracy WUPS WUPS

@0.9 @0.0

WUPS [20] 50.20 50.82 67.27

ACM (ours) 36.78 45.68 64.10
MCM (ours) 60.50 69.65 82.40

Table 6. Min and Average Consensus on human answers from

DAQUAR, as reference sentence we use all answers in DAQUAR-

Consensus which are not in DAQUAR, in %

bed is either a pillow or doll.

4.5. Failure cases

While our method answers correctly on a large part of

the challenge (e.g. ≈ 35 WUPS at 0.9 on “what color”

and “how many” question subsets), spatial relations (≈
21 WUPS at 0.9) which account for a substantial part of

DAQUAR remain challenging. Other errors involve ques-

tions with small objects, negations, and shapes (below 12
WUPS at 0.9). Too few training data points for the afore-

mentioned cases may contribute to these mistakes.
Table 9 shows examples of failure cases that include

(in order) strong occlusion, a possible answer not captured

by our ground truth answers, and unusual instances (red

toaster).

5. Conclusions

We have presented a neural architecture for answering

natural language questions about images that contrasts with

prior efforts based on semantic parsing and outperforms

prior work by doubling performance on this challenging

task. A variant of our model that does not use the image to

answer the question performs only slightly worse and even

outperforms a new human baseline that we have collected

under the same condition. We conclude that our model has

learnt biases and patterns that can be seen as forms of com-

mon sense and prior knowledge that humans use to accom-

plish this task. We observe that indoor scene statistics, spa-

tial reasoning, and small objects are not well captured by

the global CNN representation, but the true limitations of

this representation can only be explored on larger datasets.

We extended our existing DAQUAR dataset to DAQUAR-

Consensus, which now provides multiple reference answers

which allows to study inter-human agreement and consen-

sus on the question answer task. We propose two new met-

rics: “Average Consensus”, which takes into account human

disagreement, and “Min Consensus” that captures disagree-

ment in human question answering.

Acknowledgements. Marcus Rohrbach was supported by

a fellowship within the FITweltweit-Program of the German

Academic Exchange Service (DAAD).
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What is on the right side of the cabinet? How many drawers are there? What is the largest object?

Neural-Image-QA: bed 3 bed

Language only: bed 6 table

Table 7. Examples of questions and answers. Correct predictions are colored in green, incorrect in red.

What is on the refrigerator? What is the colour of the comforter? What objects are found on the bed?

Neural-Image-QA: magnet, paper blue, white bed sheets, pillow

Language only: magnet, paper blue, green, red, yellow doll, pillow

Table 8. Examples of questions and answers with multiple words. Correct predictions are colored in green, incorrect in red.

How many chairs are there? What is the object fixed on the window? Which item is red in colour?

Neural-Image-QA: 1 curtain remote control

Language only: 4 curtain clock

Ground truth answers: 2 handle toaster

Table 9. Examples of questions and answers - failure cases.
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