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Abstract

It is desirable to combine multiple feature descriptors

to improve the visual tracking performance because differ-

ent features can provide complementary information to de-

scribe objects of interest. However, how to effectively fuse

multiple features remains a challenging problem in visual

tracking, especially in a data-driven manner. In this paper,

we propose a new data-adaptive visual tracking approach

by using multiple feature fusion via weighted entropy. Un-

like existing visual trackers which simply concatenate mul-

tiple feature vectors together for object representation, we

employ the weighted entropy to evaluate the dissimilarity

between the object state and the background state, and seek

the optimal feature combination by minimizing the weighted

entropy, so that more complementary information can be

exploited for object representation. Experimental results

demonstrate the effectiveness of our approach in tackling

various challenges for visual object tracking.

1. Introduction

Object tracking is a fundamental researching topic in

computer vision, and robust object tracking provides a fur-

ther step to high-level visual analysis and understanding. In

object tracking, the appearance model is an important factor

for object representation, and a variety of feature descriptors

with effective appearance models have been proposed in the

literature [33]. Due to the computational convenience, sin-

gle feature descriptor has been widely used in appearance

based visual tracking models [4, 16, 28, 37]. However, sin-

gle feature is usually not powerful enough to describe ob-

jects of interests and it is desirable to combine multiple fea-

ture descriptors to improve the visual tracking performance

because different features can provide complementary in-

formation [24, 41].

Over the past few years, some researchers have proposed

several multiple feature fusion based visual tracking meth-

ods, where different features were concatenated directly for

object representation [22]. Kwon et al. [19] decomposed

the observation model into multiple basic observation mod-

els, where each model was associated one feature. Then,

Figure 1. Flowchart of our proposed approach. Our approach

contains two main parts: 1) tracking with complementary fea-

ture evaluation and 2) system updating. We first perform corner

tracking and obtain an initial state, and then sample a set of can-

didate states around the initial state. Each state is first evaluated

with three different features (intensity image, color histogram and

Haar feature), and then they are evaluated and fused based on the

weighted entropy. In the state updating procedure, we update the

fusion configure by using saved samples with the weighted en-

tropy, and also update the subspaces for different features sepa-

rately.

they selected the optimal features to capture the appearance

variations by using sparse principal component analysis.

Grabner et al. [9] adopted multiple features and selected the

best one according to the background information. How-

ever, both of them are not not effective to discriminate the

object from background, especially when the background

varies drastically.

To make the tracking model discriminative and robust to

the drastic background variation, we propose a new data-

adaptive visual tracking approach by using multiple fea-

ture fusion via weighted entropy, where both the gener-

ative and discriminative information are exploited in our

approach. Figure 1 shows the flowchart of our approach.

Since entropy can represent the disorderness of signals, it

is much easier to separate signals by minimizing their en-

tropy [10, 36]. To better highlight different contributions

of different features in object representation, we employ the

weighted entropy [11, 12, 18] to represent the difference

or disorderness of the candidate states, and the most dis-
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criminative feature fusion strategy can be obtained by min-

imizing the weighted entropy. Specifically, the states which

are close to the optimal state evaluation are assigned larger

weights, and the optimal state is well discriminated from

similar candidate states.

2. Related Work

Appearance Models in Object Tracking: To obtain ro-

bust tracking performance, many appearance models have

been proposed [7, 8, 14, 15, 17, 23, 27, 30]. These appear-

ance models can be mainly classified into two categories:

generative models and discriminative models. Generative

methods learn an appearance model to represent the object

and seek the optimal candidate which has the highest sim-

ilarity with the templates, where the histogram representa-

tion [1, 4], subspace representation[22, 28, 32], and sparse

representation [3, 16, 31, 34] are wisely used to learn the

model. Histogram tackles the pose variation robustly, but

it is easily influenced by camouflage background due to

the lacking of spatial information [4, 5]. PCA (Principal

Component Analysis) subspace[21, 28] preserves the spa-

tial information and can well represent the distributions of

objects. However, when computing the PCA subspace the

information of all object samples is used, which makes the

model ineffective to represent the local sample distribution.

Sparse models [25, 26, 38] represent the object with only a

few samples, which is robust to occlusion. But, the model

fails to utilize the information provided by other samples,

while other samples are useful to make the model robust to

sample clutters. Generative models only consider the ob-

ject appearances, and usually suffer from the large drifting

problem. Discriminative models can address this shortcom-

ing by representing the contrast between the object appear-

ance and background, and many such models have been

proposed in recent years [2, 20, 35, 37]. However, when the

background varies drastically, the discriminative informa-

tion is also inaccurate to robustly track the objects. There-

fore, some researchers combine the generative and discrim-

inative models together to represent the appearance of ob-

jects [39]. To better tackle the occlusion and pose varia-

tions, part-based models are utilized in the two kinds of

models, i.e. generative model [1, 16] or discriminative

model [29, 35]. In our work, we utilize the generative

model to represent the object appearance, and discrimina-

tively compute the optimal multiple feature fusion strategy

by weighted entropy. Hence, our approach is also a hybrid

appearance model for visual tracking.

Multiple Feature Fusion Based Visual Tracking:

Many existing object tracking methods utilize single fea-

ture descriptor to represent the appearance of objects. How-

ever, each type of feature suffers from some limitations

to handle the variations of objects. Therefore, it is de-

sirable to combine multiple feature descriptors to improve

the visual tracking performance because multiple features

can provide complementary information. There have been

some attempts on using multiple features for object track-

ing [24, 41]. For example, Li et al. [21] computed the co-

variance matrix from multiple features and combine them in

the Riemann manifold. They concatenated multiple features

to represent the object appearance and used no complemen-

tary information between features, while we obtained a bet-

ter fusion result by using the complementary information.

Kwon et al. [19] decomposed object tracking into multi-

ple components, and combined multiple features for robust

tracking, where, sparse principal component analysis was

utilized to select the most important features to capture the

appearance variations. No discriminative information was

used in their method. However, by enlarging the difference

between object sample evaluation and background sample

evaluation, we separated the object from background more

effectively. Grabner et al. [9] combined a set of weak classi-

fiers to discriminate the object from the background, where

multiple features were adopted in boosting to select the

most discriminative information for the separation of ob-

jects from the background. In contrast, we use a generative

model and exploit discriminative information in this model,

so that it is more robust to background variations.

3. Feature Evaluation by Weighted Entropy

Let Xt denote the object state at frame t. The object state

represents the position, height and width scales of object.

At each frame, we first perform corner tracking and obtain

an initial state. Then we sample a set of candidate states

around the initial state according to a Gaussian distribution.

Each candidate state is evaluated with the proposed feature

evaluation method. The candidate state with best evaluation

is selected as the optimal object state. By using multiple

features, we can exploit complementary information to rep-

resent the object appearance. In this work, we utilize three

widely used features: intensity image (raw pixel), color his-

togram feature, and Haar feature to represent the object ap-

pearance1. We first evaluate the candidate states with each

feature separately, and then use the weighted entropy to ob-

tain the best combination of these features.

To perform corner tracking, K base sub images (the rep-

resentative image within the object bounding box) are firstly

retained, where Bi is the ith subimage, i = 1, 2, · · · ,K. At

frame t, the base subimage with the smallest Euclidean dis-

tance to object appearance at frame t − 1 is selected as the

current base subimage B̃. We detect Harris corners on B̃,

and compute the translation of each corner separately. For

corner Pi, we search the point P c
i with the most similar tex-

1While three features are used in our approach, more other features can

be easily incorporated into our tracking approach because our method is a

general tracking framework and it is independent to the usage of individual

features.
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ture within a neighborhood, and then obtain the translation

of Pi. Let ET be the l1 norm distance between two textures.

Then the texture similarity is computed as exp(−ET ). The

object translation is defined as the average of the transla-

tions of the corners where the weight of each corner is pro-

portional to the texture similarity. The object size keeps

invariant during the corner tracking. With the corner trans-

lation, we obtain the coarse object state. Then, we refine the

state with feature evaluation.

3.1. Discriminative Feature Evaluation

We employ the weighted entropy to discriminatively

combine multiple features for visual tracking. Let N be the

number of candidate states in each frame, Linten, Lhist and

Lhaar (defined with Eq. (10)) be the candidate state evalu-

ation for the intensity image, color histogram, Haar feature

at the tth frame, respectively. To uniform the evaluation

of different features, we normalize the evaluation of each

feature. We first remove the one which yields the small-

est evaluation first, and then normalize the summation of

the evaluation values of the remaining features to one. Let

L̃inten
i , L̃hist

i and L̃haar
i be the normalized evaluation for

the ith state, and the combined evaluation of the ith candi-

date state is defined as follows:

pi = α0L̃
inten
i +α1L̃

hist
i +(1−α0−α1)L̃

haar
i , (1)

where 0 ≤ α0 ≤ 1, 0 ≤ α1 ≤ 1 (also 0 ≤ α0+α1 ≤ 1) are

the coefficients of L̃inten and L̃hist respectively, which will

be learned for multiple feature fusion. Having obtained α0

and α1, these features can be effectively combined.

Generally, the higher importance of the feature, the

larger weight is assigned. A good multiple feature fu-

sion strategy should make the combined evaluation dis-

criminative. We employ the weighted entropy to measure

the discriminative power of the fused state evaluation. Let

θ = [α0, α1]
T , the weighted entropy of the combined state

evaluation is defined as

H(θ) = −C(θ)
∑

i
wipi lg pi, (2)

s.t. 0 ≤ α0 ≤ 1
0 ≤ α1 ≤ 1

0 ≤ α0+α1 ≤ 1

where wi = g(pi) is the weight of the ith candidate state

and g(pi) is a function of pi. Here, C(θ) = 1/
∑

i wi is

a normalization term, and pi is a function of θ. According

to this fused state evaluation, we separate the optimal state

from the most similar candidate states. Let Ai = [L̃inten
i −

L̃haar
i , L̃hist

i − L̃haar
i ]T , and g(pi) = pβi , β be a constant,

(2) can be rewritten as

H(θ) = −C(θ)
∑
i

pi
1+β lg pi

= −C(θ)
∑
i

(α0L̃
int
i +α1L̃

hist
i +(1−α0−α1)

L̃haar
i )1+β lg(α0L̃

int
i +α1L̃

hist
i +(1−α0

−α1)L̃
haar
i )

= −C(θ)
∑
i

(Ai
T θ + L̃haar

i )1+β lg(Ai
T θ + L̃haar

i ).

(3)
s.t. 0 ≤ α0 ≤ 1

0 ≤ α1 ≤ 1
0 ≤ α0+α1 ≤ 1

Smaller weighted entropy represents that the state evalua-

tion is highly different from others, so that such a state eval-

uation is more discriminative. Thus, we obtain the best fu-

sion coefficient by minimizing (3).

3.2. Optimization

We design an iterative method to minimize the objective

function in (3). Specifically, we utilize the gradient descent

method to seek the optimal fusion coefficient θ. As there are

some constraints on θ, we need to carefully check this re-

quirement of θ in each step. Since β 6= 1, C(θ) is a function

of θ, we define β = 1 and obtain C(θ) = 1/
∑

i pi = 1 to

reduce the computational complexity. To minimize the ob-

jective function in (3), we need to determine the searching

direction. The optimal searching direction is determined by

the gradient direction. Thus, we need to compute the gradi-

ent direction of the objective function in (3). According to

(3), we obtain

∂H(θ)
α0

= −
∑
i

(
Ai

T θ + L̃haar
i

)
(L̃inten

i −L̃haar
i )(1+

2 lg(Ai
T θ + L̃haar

i )),
(4)

∂H(θ)
α1

= −
∑
i

(
Ai

T θ + L̃haar
i

)
(L̃hist

i −L̃haar
i )(1+

2 lg(Ai
T θ + L̃haar

i )).
(5)

Let ∆θ = [∂H(θ)
α0

, ∂H(θ)
α1

]T and then the optimal searching

direction is determined by ∆θ. Let a be the step length,

then the new fusion coefficient at step k+1 is θk+1 = θk −
a∆θ. We use the gradient descent to solve a step length

a0, where the optimal step length also needs to fulfill the

positive constraint of θ in (3).

Figure 2 shows the conditions of the searching direction.

When the current θ is on the boundary and the searching

direction goes outward, we find a new searching direction

(Figure 2(c)). Let the norm of the boundary is q (||q||22 = 1),

the new searching direction is set as:

∆θnew = ∆θ − (∆θ)T qq. (6)

Based on (6), we make the new fusion coefficient stay

within the acceptable range.
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(a) (b)

(c)

Figure 2. Confining the searching direction of solving (3). (a)

When the original value is within the accepted range. (b) When the

original value is on the boundary, and the direction points inward.

(c) When the original value is on the boundary, and the direction

points outward. The searching direction in (a) and (b) need not be

changed. In (c), the direction is projected to an acceptable search-

ing direction.

Let [∆α0,∆α1]
T = ∆θnew. According to the con-

strains of the coefficients in (3), we obtain

min

(
α0 + α1

∆α0 +∆α1
,
α0 + α1 − 1

∆α0 +∆α1

)
≤ a

≤ max

(
α0 + α1

∆α0 +∆α1
,
α0 + α1 − 1

∆α0 +∆α1

)
(7)

min

(
α1

∆α1
,
α1 − 1

∆α1

)
≤ a ≤ max

(
α1

∆α1
,
α1 − 1

∆α1

)
. (8)

For a concise presentation, we define [α0, α1]
T = θk. Ac-

cording to the constrains in (3), we obtain a1 ≤ a ≤ a2. We

define the final optimal step length a∗ as a∗=min(a0, a2).
If a0 ≤ a1, the process ends. The process for minimizing

the equation (3) is summarized as Algorithm 1. When an

object sample is stored, we use the state evaluations at this

frame to form Eq. (3) to obtain the optimal fusion coeffi-

cient. To make the θ retaining historical information, we set

the new θ as

θnew = sθpre + (1− s)θ, (9)

where s ∈ (0, 1) is a scale to balance the importance of

historical information and the new information.

Algorithm 1: Minimizing the weighted entropy objec-

tive function

Input: L̃inten
i , L̃hist

i , L̃haar
i , i = 1, · · · , N .

Output: θ.

1 Compute ∆θ = [∂H(θ)
α0

, ∂H(θ)
α1

]T with (4) and (5).

2 if θk is on the boundary and the searching direction is

outward then

3 Compute ∆θnew with (6).

4 end

5 Obtain a0 with gradient descent.

6 Obtain a1 and a2 fulfilling the constraints in (3).

7 Obtain a∗=min(a0, a2).
8 if a0 ≤ a1 then

9 End.

10 end

11 Define θk+1 = θk − a∗∆θ.

12 if achieving maximum iteration number (4 in this

paper) then

13 Terminate.

14 end

15 else

16 Back to Line 1.

17 end

Figure 3. The features. (a) A subimage and corresponding four

kinds of part sub images. (b) The three kinds of features, intensity

image, color histogram and Haar feature. For Haar feature, we

divide the part subimage into several patches, and for each patch

we obtain three values by computing the convolution with the Haar

modes (white areas are 1, the other areas are -1). The histogram

feature is formed by concatenating the histograms of the patches.

4. Multiple Feature Fusion for Visual Tracking

In this section, we show how to evaluate the state for

each individual feature and how to combine them for object

tracking.

4.1. Forming Multiple Features

We utilize three features, i.e. intensity image, color his-

togram and Haar feature, to represent the object appearance

(as shows in Figure 3). These features have complemen-

3131



Algorithm 2: Our object tracking approach

1 Perform corner tracking and obtain an initial state.

2 Sample a set of candidate states, Xi
t , i = 1, ..., N

around the initial state.

3 for i = 1, ..., N do

4 Evaluate Xi
t according to intensity image.

5 Evaluate Xi
t according to histogram.

6 Evaluate Xi
t according to Haar feature.

7 Obtain the fused evaluation with (1).

8 end

9 Obtain the optimal object state.

10 Update fusion coefficients whenever a sample is saved.

11 Update subspaces every M saved samples.

12 Update base sub images every M saved samples.

tary advantages. The intensity image [28] retains the orig-

inal information of the object appearance. The histogram

is robust to local distortion. Haar feature can represent the

differences between neighbor object areas [2, 37], which is

also robust to local variations.

To tackle occlusion problem, we divide the object subim-

age into four parts of sub images (Figure 3(a)), and perform

state evaluation for each part of subimage. The evaluation

of each feature is defined as the sum of the four part subim-

age’s evaluations. When extracting Haar features, we divide

the part subimage into a set of small patches, and obtain

three values by computing the convolution with the three

kinds of Haar modes (Figure 3(b)) for each patch. Then the

Haar feature is represented by concatenating the values of

the patches. The intensity image and color histogram fea-

tures are also unfolded to vectors before evaluation.

4.2. Evaluating States with Incremental PCA

We use Principal Component Analysis (PCA) to evaluate

each feature. Let U be the PCA subspace, Ft be the object

feature in the tth frame, F t be the mean of the historical

object feature. Given the object observation Ot in the tth
frame, the likelihood of state Xt is defined as

p(Ot|Xt) = exp
(
−c

∥∥(Ft − F t)− UUT (Ft − F t)
∥∥2
2

)
,

(10)

where c is a constant. To adapt to the object appearance

variations, we update the subspace for each kind of feature

every M saved frames. The subspace is obtained by per-

forming singular value decomposition (SVD) on a matrix

formed of previous information and new samples.

4.3. Updating Base Sub Images

To make the model adaptive to object appearance varia-

tion, we update the base sub images with new saved object

samples. Let Et be the average value of the objective func-

tion in (1) in terms of all frames from 1 to t. If the evaluation

Et of the optimal sample It is larger than a constant scale

of Et, the object appearance normally has no large variation

and then we consider It is not polluted (e.g. occluded), and

save It. Otherwise, we drop It. To obtain better tracking

accuracy, we update the base sub images by using every M
saved object sub images rather then the polluted samples to

update the subspace. Specifically, we form a set of K +M
candidate sub images with previous K base sub images and

the new M saved sub images. Then we select K candi-

date sub images to form the new base sub images. For each

candidate subimage, we compute the sum of the Euclidean

distances between the current candidate subimage and other

candidate sub images. The sub images corresponding to

the largest K sums are selected. In this way, we make the

base sub images better represent various object appearance

forms. If the two sub images both are previous base sub im-

ages in the procedure of computing the distances between

candidate sub images, the distance between them is mul-

tiplied by a constant s1 (s1 = 1.5 in this paper). When

there are large background clutters, increasing s1 increases

the probability of selecting the old sub images, and then the

model is able to avoid drifting due to incorrect new saved

samples. In another part, when the object experiences pose

variations, by decreasing s1 the model is more likely to se-

lect new object samples to represent new object appearance

forms. The process of our tracking system is summarized

as Algorithm 2.

5. Experiments

In this section, we show the experimental results of

our method. This section contains four parts. Firstly,

we give the implementation details of our method. Sec-

ondly, we validate our multiple feature fusion based method

with four methods which use single feature for state eval-

uation. Thirdly, we test the discriminating ability of the

weighted entropy by comparing with the entropy based fu-

sion method. Finally, we compare our method with nine

state-of-the-art methods. Both quantitative and qualita-

tive analysis are presented to show the effectiveness of our

method.

5.1. Implementation Details

We test our approach on the 51 benchmark videos [33]

which involves various challenges. The experiments are

performed using C++ on a computer with 2.5G HZ CPU,

8G RAM. In each experiment, we warp the object subimage

specified by the state to a normalized 32×32 subimage, and

sample 200 particles per frame. For each candidate state, we

divide the corresponding object subimage into four parts,

i.e. left, right, top and bottom. Each part is further divided

into 8 patches from which we form three kinds of features,

i.e. intensity, color histogram and Haar feature. The bin
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Figure 4. Some frames of the comparing methods and ourFigure 4. Some frames of the comparing methods and ours on two

videos. The objects suffer from deformation or background clut-

ter. With the weighted entropy based fusion strategy, our method

obtains more discriminative state evaluation and performs more

robustly than other four comparing methods.
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Figure 5. Fusion coefficients of each feature on two video se-

quences. Through weighted entropy, we obtain the optimal fusion

coefficients for most discriminative state evaluation.

number of color histogram is set to be 32. The evaluations

of the three kinds of features are fused to select the opti-

mal state. We update the fusion coefficient whenever a new

subimage is saved. We set θ = [0.33, 0.33]T initially when

updating the fusion coefficients, and set s = 0.98. When

computing the reconstruction error, we set c = 10−6 (the

pixel value is not warped to [0, 1]) for intensity feature and

Haar feature, and set c = 1 for the histogram feature. The

subspaces are updated every 5 saved sub images. The run

time of our method is around 0.4 sec/frame. We propose an

efficient method to solve the objective function. The time

cost of the system depends on feature choosing and fea-

ture evaluation method. Choosing faster feature evaluation

method improves the processing speed. We compare our

method with nine state-of-the-art methods: IVT [28], VTD

[19], Frag [1], SLAM [21], ALSA [16], CT [37], Struck

[13], SCM [40] and ColorT [6]. For the comparing meth-

ods, we utilize the source codes provided by the authors.

We utilize the pixel center error and PASC overlap evalu-

ation to evaluate the tracking performance. The precision

plotted is plot over [0,50] with interval 10, and the success

plot is plotted over [0,1] with interval 0.2.

5.2. Multiple Features vs. Single Feature

We compare our approach with single feature based

trackers on ten video sequences. The ten video sequences

Table 1. AUC value of two criteria of Intensity, Histogram, Haar,

Select and Ours on ten videos. Select represents the method select-

ing the most discriminative single feature according to weighted

entropy to perform state evaluation.

Intensity Histogram Haar Select Ours

Center 0.612 0.505 0.402 0.567 0.823

PASC 0.539 0.450 0.381 0.509 0.698
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Figure 6. Pixel center error of our method and four single feature

based methods at each frame on two video sequences. Our method

tracks the objects more robustly than other four methods on the

two videos.
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Figure 7. Pixel center error of Ent and our method at each frame

on two video sequences. Our method represents the object states

more accurately than Ent on the two videos.

Table 2. AUC values of two criteria of Ent and Ours on ten videos.

Ent Ours

Center 0.614 0.823

PASC 0.535 0.698

are Basketball, Car4, Couple, FaceOcc1, FaceOcc2, Jog-

ging.1, Jogging.2, Shaking, Singer2, Subway. As shown in

Table 1, our method discriminates the object more robustly

than single feature based methods. Figures 4 and 5 show

sample frames and the fusion coefficients for two video se-

quences, respectively. In Jogging.1, there is large object de-

formation. The haar features of local patches are disturbed,

while the histogram feature tolerates with local distortion

and is more useful to discriminate from background. With

the weighted entropy, the histogram feature is given larger

weight. In Subway, the background is similar to the object.

The histogram feature is disturbed by the background and

is given smaller weight. We see that our method is able to

enlarge the weight of the feature which is more discrimina-

tive from background. Figure 6 shows the pixel center error

of different methods on Jogging.1 and Subway.
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Figure 8. Precision AUC and success AUC of the 11 attributes on the 51 benchmark videos. Our method ranks in the top three on all the

attributes according to the two criteria, and ranks the first on five attributes (SV, OCC, OV, BC and LR) according to success AUC. The

number after each attribute is the corresponding video number.

Figure 10. Sample frames of our method and four other methods, ColorT [6], ALSA [16], SCM [40] and Struck [13], on six videos.

Various challenges [33], such as drastic deformation and severe occlusion, exist in these videos. Our method tackles these challenges

effectively in comparison to the state-of-the-arts.
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Figure 9. Precision and success plot of our method and four com-

paring methods, ColorT [6], ALSA [16], SCM [40] and Struck

[13], on the 51 benchmark videos. The five methods are the top

five according to Table 3. Our method ranks the second according

to precision AUC, and ranks the first according to success AUC.

5.3. Weighted vs. Nonweighted Entropy

In this section, we compare our weighted entropy with

entropy based fusion method (Ent) on ten video sequences

(the same as those in Sec 5.2). By setting the weights of

the candidate states according to the state evaluations, the

states near the optimal state are more different from each

other using weighted entropy. As shown in Table 2, our

method obtains more accurate tracking performances than

the entropy method. Figure 7 shows the pixel center error of

Ent and our method at each frame on two video sequences.

5.4. Comparison with Stateofthearts

Quantitative Analysis. We compare our method with

nine state-of-the-art methods on the 51 benchmark video

sequences. The AUC values of our method and compar-

ing methods according to two kinds of criteria are shown in

Table 3. From the table, we see that our method achieves

best AUC values on overlap criterion, and obtains second

best AUC value on the pixel center error criterion. We also

show the performance of each comparing method on the 11
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Figure 11. Pixel center error of our method and four comparing methods on four videos at each frame. Compared with other four methods,

our method seldom loses tracks on the four videos.

Table 3. AUC value of pixel center error and PASC overlap of the comparing methods and our method. Red: best. Blue: second best.

IVT VTD Frag ALSA CT Struck SCM ColorT SLAM Ours

Center 0.458 0.577 0.440 0.636 0.492 0.723 0.610 0.657 0.586 0.694

PASC 0.357 0.459 0.354 0.517 0.400 0.567 0.503 0.517 0.486 0.571

attributes in Figure 8. The video attributes can be found in

[33]. We see that on all attributes and both the two criteria,

our method ranks among top three. Under the overlap crite-

rion, our approach achieves the best on 5 attributes, and the

second best on other 6 attributes. By utilizing the comple-

mentary information between various features, our method

obtains better performance than SLAM [21] and VTD [19]

which also uses multiple cues. Figure 9 shows the precision

plot and success plot on the 51 benchmark videos. We see

that our approach achieves very competitive performance

with the state-of-the-art trackers.

Qualitative Analysis. Figure 10 shows some sample

frames of our method and the other four comparing methods

on six videos. Figure 11 shows the pixel center error of dif-

ferent methods on four videos. We divide the object subim-

age into four parts and perform PCA on each part subimage.

When occlusion occurs, e.g. Suv, the not occluded parts still

have large evaluation values, and when combining the eval-

uations of different parts together the object state also have

large evaluation values. Thus the object state can be se-

lected out robustly when occlusion occurs. Moreover, by in-

troducing discrimination into the appearance model through

weighed entropy, our method discriminates the object from

background more effectively. On the contrary, other track-

ers, such as Struck [13] and ColorT [6], are influenced by

severe occlusion, e.g. Suv, and fail to obtain robust perfor-

mances.

When large pose variations occur, e.g. Jogging.1, many

tackers are influenced and drift away. In contrast, the his-

togram feature tolerates with local distortion and is given

large weight by weighted entropy as Figure 5 shows. And

then, our method is able to tolerate with deformation.

Our method also tackles illumination variation effec-

tively, e.g. Basketball and Shaking, by utilizing PCA ap-

pearance model. When the object experiences illumina-

tion variation, the object samples are distributed in linear

subspace approximately. PCA is able to represent the lin-

ear subspace and thus our method is robust to illumination

variation. When the object experience background clutter,

our method finds the most discriminative feature evalua-

tion through weighted entropy, e.g. Subway. And then our

method can discriminate the object from background effec-

tively. However, when the background clutter is severe, e.g.

Ironman, our method is disturbed largely and fails to obtain

robust tracking performance any more.

6. Conclusion and Future Work

In this paper, we have proposed a new multiple fea-

ture fusion based state evaluation method with weighted

entropy. Through weighted entropy, we are able to uti-

lize the complementary information provided by multiple

cues, and make the candidate states around the optimal state

more different from each other. Three different features

and PCA subspace model are used in this paper, however

other features and feature evaluation methods can be eas-

ily adopted in this strategy. In the future, we will continue

the researches in the complementary information between

various features and forming more discriminative features.

Moreover, how to employ our feature fusion method to

other vision applications such as image classification and

action recognition is also interesting future topic.
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