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Abstract

In this paper, we propose a simultaneous local binary

feature learning and encoding (SLBFLE) method for face

recognition. Different from existing hand-crafted face de-

scriptors such as local binary pattern (LBP) and Gabor fea-

tures which require strong prior knowledge, our SLBFLE is

an unsupervised feature learning approach which is auto-

matically learned from raw pixels. Unlike existing bina-

ry face descriptors such as the LBP and discriminant face

descriptor (DFD) which use a two-stage feature extraction

approach, our SLBFLE jointly learns binary codes for local

face patches and the codebook for feature encoding so that

discriminative information from raw pixels can be simulta-

neously learned with a one-stage procedure. Experimental

results on four widely used face datasets including LFW, Y-

ouTube Face (YTF), FERET and PaSC clearly demonstrate

the effectiveness of the proposed method.

1. Introduction

Face recognition is a classical and longstanding comput-

er vision problem and a variety of face recognition algo-

rithms have been proposed in the literature [1, 4, 23, 24,

38, 42, 52, 53, 54, 55]. Generally, there are two impor-

tant procedures in a practical face recognition system: face

representation and face matching. The aim of face repre-

sentation is to extract discriminative feature descriptors to

make face images more separable, and the objective of face

matching is to design effective classifiers to differentiate d-

ifferent face patterns. In this work, we focus on the first one

and present a new unsupervised feature learning approach

for face representation.

Existing face representation methods can be mainly

classified into two categories: holistic feature representa-

tion [4, 38] and local feature representation [1, 28]. Rep-

resentative holistic feature representation methods include

principal component analysis (PCA) [38] and linear dis-

criminant analysis (LDA) [4], and typical local feature de-
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Figure 1. The basic idea of the proposed SLBFLE approach for

face representation. For each training face image, we extract pixel

difference vectors (PDVs) and jointly learn a discriminative map-

ping � and a dictionary � for feature extraction. The mapping is

to project each PDV into a low-dimensional binary vector, and the

dictionary is used as the codebook for feature local encoding. For

each test image, the PDVs are first extracted and encoded into bi-

nary codes using the learned feature mapping, and then converted

as a histogram feature with the learned dictionary.

scriptors are local binary pattern (LBP) [1] and Gabor fea-

tures [28]. While many face descriptors have been proposed

in the literature [23, 24, 42, 52, 53, 54], most of them are

hand-crafted and usually require strong prior knowledge to

design. Moreover, some of them are computationally ex-

pensive, which may limit their practical applications.

Recently, feature learning has been successfully applied

for face recognition. For example, Cao et al. [8] present-

ed a learning-based (LE) feature representation method by

applying the bag-of-word (BoW) framework. Hussain et

al. [19] proposed a local quantized pattern (LQP) and Lei et

al. [25] proposed a discriminant face descriptor (DFD)

method to learn LBP-like features. Sun et al. [36] proposed

a deep convolutional neural networks method to learn face

representations. However, most of them learn real-valued

face feature descriptors. For face recognition, binary fea-

tures are more robust to local changes in face images be-

cause small variations caused by varying expressions and
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Figure 2. The basic idea of the LBP method, where a two-stage

procedure is used for local feature extraction: feature mapping and

feature encoding. For the feature mapping stage, the difference

between the central pixel and the neighboring pixels are comput-

ed and binarized with a fixed threshold. For the feature encoding

stage, the mapped binary codes are encoded as a real value by us-

ing a hand-crafted pattern coding strategy.

illuminations can be eliminated by quantized binary codes.

In this paper, we propose a new simultaneous local bi-

nary feature learning and encoding (SLBFLE) method for

face recognition. Figure 1 illustrates the basic idea of our

proposed approach. Motivated by the fact that binary fea-

tures are robust to local changes such as varying illumina-

tions and expressions [1, 20, 33, 34], we aim to learn com-

pact binary codes directly from raw pixels for face repre-

sentation. Unlike previous binary feature descriptors such

as LBP and discriminant face descriptor (DFD) [25] which

use a two-stage feature extraction approach, our proposed

SLBFLE jointly learns binary codes for local face patches

and the codebook for feature encoding so that discrimina-

tive information from raw pixels can be jointly learned with

a one-stage procedure. Experimental results on four wide-

ly used face datasets including LFW, YouTube Face (YTF),

FERET and PaSC clearly demonstrate the effectiveness of

the proposed method.

2. Proposed Approach

In this section, we first review the LBP method, and then

present the proposed SLBFLE method. Lastly, we show

how to use SLBFLE for face representation.

2.1. Review of LBP

LBP is an effective feature descriptor in face recogni-

tion [1]. For each pixel in face image, LBP first computes

the difference between the central pixel and the neighboring

pixels and binarizes the difference with a fixed threshold.

Secondly, these binary bins are encoded as a real value by

using a hand-crafted pattern coding strategy. Figure 2 illus-

trates the basic idea of LBP, where two individual stages are

used for feature representation.

There are two shortcomings in LBP: 1) both the binariza-

tion and feature encoding stages are hand-crafted, which

are not optimal for local feature representation; 2) a two-

stage procedure is used in LBP, which is not effective e-

nough because some useful information for codebook learn-
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Figure 3. An illustration to show how to extract pixel difference

vectors (PDV) from the original face image. Given a face patch

whose size is (2�+1)×(2�+1), we first compute the difference

between the central pixel and the neighboring pixels. Then, these

differences are considered as a PDV. In this figure, � is selected

as 2, so that there are 24 neighboring pixels selected and the PDV

is a 24-dimensional feature vector.

ing may be compromised in the binarization stage. To ad-

dress this, we propose a SLBFLE method to learn a dis-

criminative mapping and a compact codebook for feature

mapping and encoding jointly, so that more data-adaptive

information can be exploited in the learned features. The

following describes the details of the proposed method.

2.2. SLBFLE

Let X = [x1,x2, ⋅ ⋅ ⋅ ,x� ] ∈ ℝ
�×� be a set of � train-

ing samples, where x� ∈ ℝ
� (1 ≤ � ≤ � ) is a pixel differ-

ence vector (PDV) extracted from an original face image.

Figure 3 illustrates how to extract a PDV for a given face

patch. Compared with the original raw pixel patch, PDV

measures the difference between the central pixel and the

neighboring pixels within a patch, so that it can better de-

scribe how pixel values change spatially and implicitly en-

code important visual patterns such as edges and lines in

face images.

As aforementioned, our SLBFLE method aims to jointly

learn a discriminative mapping and a dictionary for feature

mapping and encoding. Assume there are � hash functions

to be learned in SLBFLE, which map and quantize each x�

into a binary vector b� = [b�1, ⋅ ⋅ ⋅ , b�� ] ∈ {0, 1}1×� , so

that the binary codes are learned automatically rather than

using an empirical thresholding method. Let w� ∈ ℝ
� be

the projection vector for the �th function, the �th binary

code b�� of x� can be computed as follows:

b�� = 0.5× (sgn(w�
� x�) + 1) (1)

where sgn(�) equals to 1 if � ≥ 0 and -1 otherwise.

Having obtained binary codes for these PDVs in the

training set, we also require a codebook to pool those bina-

ry codes in each face image into a histogram feature. Pre-

vious methods applied the �-means algorithm to learn the

codebook [8, 19, 25]. However, some useful information

for codebook learning may be compromised in the mapping
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learning stage if they are learned sequentially. In this work,

we learn them simultaneously so that discriminative infor-

mation can be jointly exploited.

Let D = [d1,d2, ⋅ ⋅ ⋅ ,d� ] and A = [�1, �2, ⋅ ⋅ ⋅ , �� ]
be the dictionary and the corresponding representation coef-

ficient matrix, respectively, where d� ∈ ℝ
1×� (1 ≤ � ≤ �)

is the �th atom in the dictionary, � is the total number of

atoms in the dictionary, �� ∈ ℝ
1×� is the representation

coefficient for x�. We formulate the following optimiza-

tion problem:

min
w,D,�

� = �1 + �1�2 + �2�3 + �3�4

=

�
∑

�=1

(

∥(b� − 0.5)−D��∥
2 + �∥��∥1

)

+ �1

�
∑

�=1

�
∑

�=1

∥(b�� − 0.5)−w
�
� x�∥

2

+ �2

�
∑

�=1

∥

�
∑

�=1

(b�� − 0.5)∥2

− �3∥b�� − 0.5∥2 (2)

where b� = [b�1, b�2, ⋅ ⋅ ⋅ , b�� ] is the binary code vector

for x�, and b�� is the �th bit of b�, �1, �2 and �3 are three

parameters to balance the importance of different terms.

The objective of �1 is to learn a dictionary � over the

binary codes where each binary vector can be sparsely re-

constructed by �. The goal of �2 is to minimize the quan-

tization loss between the original real-valued features and

the binarized codes, so that most energy of the real-valued

PDVs can be preserved in the learned binary codes. The

physical meaning of �3 is to ensure that each feature bit in

the learned binary codes is evenly distributed over all the

training samples (almost half of them are 1, and the other

half are 0), so that the information conveyed by each bit is

as large as possible. Finally, �4 ensures that each projec-

tion vector results to independent and uncorrelated binary

vectors.

Let W = [w1,w2, ⋅ ⋅ ⋅w� ] ∈ ℝ
�×� be the projection

matrix. We can map each PDV sample x� into a binary

vector as follows:

b� = 0.5× (sgn(W�
x�) + 1) (3)

The balancing constraint in �3 can be relaxed by maxi-

mizing the variance for the �th bit as justified in [43]. Then,

(2) can be re-written into the matrix form as follows:

min
W,D,A

� = �1 + �2�2 − �3�3

= ∥(B− 0.5)−DA∥2� + �∥A∥1

+ �1∥(B− 0.5)−W
�
X∥2�

+ �2∥(B− 0.5)× 1
�×1∥2�

− �3tr
(

(B− 0.5)(B− 0.5)�
)

(4)

where � = 0.5 × (sgn(W�
X) + 1) ∈ {0, 1}�×� is the

binary code matrix of all the training samples.

While the objective function in (4) is not convex for D,

A, and W, simultaneously, it is convex to one of them when

the other two are fixed. We iteratively optimize W, D and

A by using the following iterative approach. We first initial-

ize W, D and A appropriate parameters and then iteratively

update them sequentially as follows:

Step 1: Learning A with fixed W and D: when W

and D are fixed, the objective function in (4) can be re-

written as follows:

min
A

� = ∥(B− 0.5)−DA∥2� + �∥A∥1 (5)

Since (5) is non-differentiable due to the sparsity function,

standard unconstrained optimization techniques are infeasi-

ble and gradient-based methods cannot be applied directly.

Instead, we optimize the objective function by decompos-

ing it into a series of individual ℓ1-regularized least square

problem for �� as follows:

min
��

� =
�
∑

�=1

(∥(b� − 0.5)−D��∥
2
2 + �

�
∑

�=1

∣�(�)
� ∣) (6)

where �� is the �th column of �, and ∣�
(�)
� ∣ is the �th el-

ement of ��. This optimization problem actually reflects

a sparse coding problem which can already be solved by

several optimization solutions [22, 49]. In this paper, we

use the feature sign search algorithm in [22] to optimize ��

sequentially.

Step 2: Learning D with fixed W and A: when W

and A are fixed, the optimization function in (4) can be re-

written as the following objective function:

min
D

� = ∥(B− 0.5)−DA∥2�

subject to: ∥d�∥
2 ≤ 1, 1 ≤ � ≤ �. (7)

The optimization objective function in (7) is a standard

ℓ2-constrained optimization problem. We use the conven-

tional conjugate gradient decent method in [21] to optimize

D.

Step 3: Learning W with fixed D and A: when D and

A are fixed, (4) can be re-written as follows:

min
W

� = ∥(B− 0.5)−DA∥2�

+ �1∥(B− 0.5)−W
�
X∥2�

− �2∥(B− 0.5)× 1
�×1∥2�

+ �3tr
(

(B− 0.5)(B− 0.5)�
)

(8)

To our knowledge, (8) is an NP-hard problem due to the

non-linear sgn(⋅) function. To address this, we relax it with
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Algorithm 1: SLBFLE

Input: Training set X = [x1,x2, ⋅ ⋅ ⋅ ,x� ], iteration

number � , parameters �1, �2 and �3, and

binary code length �.

Output: Projection W, dictionary D, and coefficient

matrix A.
Step 1 (Initialization):

1.1 Initialize W as the top � eigenvectors of XX
�

corresponding to the � smallest eigenvalues.

1.2 Initialize D and A with arbitrary initializations.

Step 2 (Optimization):

for � = 1, 2, ⋅ ⋅ ⋅ , � do

Update A with fixed W and D using (5) .

Update D with fixed W and A using (7) .

Update W with fixed D and A using (9) .

If ∣W� −W
�−1∣ < � and � > 2, go to Step 3.

end

Step 3 (Output):

Output the projection matrix W, dictionary D, and

coefficient matrix A.

the signed magnitude [12, 43] and rewrite it as follows:

min
W

� = ∥W�
X− 0.5−DA∥2�

+ �1∥(B− 0.5)−W
�
X∥2� (9)

− �2tr(11×�
W

�
X1

�×1)

− �3tr(W�
XX

�
W)

= (1 + �1 − �3)tr(W
�
XX

�
W)

− 2�1tr((B� − 0.5)W�
X)

− 2tr((W�
X)�DA)

− �2tr(11×�
W

�
X1

�×1) (10)

We use the gradient descent method with the curvilinear

search algorithm in [44] to solve W.

We repeat the above three steps until the algorithm is

convergent. Algorithm 1 summarized the detailed proce-

dure of the proposed SLBFLE method.

2.3. SLBFLE-based Face Representation

Having obtained the feature mapping W and the dictio-

nary D, we first project each PDV into a low-dimensional

binary vector and encode it as a real value. Then, all PDVs

within the same face region is represented as a histogram

feature. Finally, these features from all blocks within a face

are concatenated as the feature representation of the whole

face image. Figure 4 illustrates how to use the proposed

SLBFLE for face representation.

3. Experiments

We conducted face recognition experiments on four

widely used face datasets including LFW, YTF, FERET and

Image 1
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Cosine

Similarity
Same or 
different?

Codebook

Assignment

Histogram 

Representation

Figure 4. The flow-chart of the SLBFLE-based face representa-

tion approach. For each training face, we first divide it into several

non-overlapped regions and learn the feature mapping W and dic-

tionary D for each region. Then, we applied the learned filter and

dictionary to extract histogram feature for each block and concate-

nated into a longer feature vector for face representation. Finally,

the cosine similarity measure is used to measure face similarity for

verification.

PaSC. The followings describe the details of the experi-

ments and results.

3.1. Results on LFW

The LFW dataset [17] contains 13233 images from 5749

persons. Facial images in this dataset were collected from

the web, so that there are large intra-class variations in pose,

illumination and expression because these images are cap-

tured in wild conditions. In our experiments, we evaluat-

ed our proposed method with the unsupervised setting and

the image-restricted with label-free outside data setting. We

followed the standard evaluation protocol on the “View 2”

dataset [17] which includes 3000 matched pairs and 3000
mismatched pairs and is divided into 10 folds, where each

fold consists of 300 matched (positive) pairs and 300 mis-

matched (negative) pairs. We used the aligned LFW-a

dataset1 for our evaluation, where each face image in LFW

was aligned and cropped into 128×128 to remove the back-

ground information. We learned feature representation with

our proposed SLBFLE. Specifically, each PDV was first

projected into a �-bit binary codes with the learned pro-

jection W and then encoded as a feature with the learned

dictionary D. The parameters �1, �2, and �3 were empiri-

cally tuned as 0.001, 0.001 and 0.01, respectively, by using

a cross-validation strategy on the “View 1” subset of the

LFW dataset. We tested our method with different neigh-

borhood radius sizes (� is set as 2, 3 and 4), which yields

a 24-, 48-, and 80-dimensional PDV, respectively. We fur-

ther applied the whitened PCA (WPCA) method to project

each sample into a 500-dimensional feature vector to reduce

the redundancy. For the unsupervised setting, the nearest

neighbor classifier with the cosine similarity was used for

1Available: http://www.openu.ac.il/home/hassner/data/lfwa/.
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