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Abstract

This paper addresses semantic image segmentation by

incorporating rich information into Markov Random Field

(MRF), including high-order relations and mixture of label

contexts. Unlike previous works that optimized MRFs

using iterative algorithm, we solve MRF by proposing a

Convolutional Neural Network (CNN), namely Deep Pars-

ing Network (DPN)1, which enables deterministic end-to-

end computation in a single forward pass. Specifically,

DPN extends a contemporary CNN architecture to model

unary terms and additional layers are carefully devised to

approximate the mean field algorithm (MF) for pairwise

terms. It has several appealing properties. First, different

from the recent works that combined CNN and MRF, where

many iterations of MF were required for each training

image during back-propagation, DPN is able to achieve

high performance by approximating one iteration of MF.

Second, DPN represents various types of pairwise terms,

making many existing works as its special cases. Third,

DPN makes MF easier to be parallelized and speeded up

in Graphical Processing Unit (GPU). DPN is thoroughly

evaluated on the PASCAL VOC 2012 dataset, where a sin-

gle DPN model yields a new state-of-the-art segmentation

accuracy of 77.5%.

1. Introduction

Markov Random Field (MRF) or Conditional Random

Field (CRF) has achieved great successes in semantic im-

age segmentation, which is one of the most challenging

problems in computer vision. Existing works such as

[31, 29, 9, 34, 11, 2, 8, 25, 22] can be generally categorized

into two groups based on their definitions of the unary and

pairwise terms of MRF.

In the first group, researchers improved labeling ac-

curacy by exploring rich information to define the pair-

∗indicates shared first authorship.
1Project page: http://personal.ie.cuhk.edu.hk/

˜lz013/projects/DPN.html. For more technical details, please

contact the corresponding author Ping Luo via pluo.lhi@gmail.com.

wise functions, including long-range dependencies [16, 17],

high-order potentials [37, 36], and semantic label contexts

[21, 26, 38]. For example, Krähenbühl et al. [16] attained

accurate segmentation boundary by inferring on a fully-

connected graph. Vineet et al. [37] extended [16] by

defining both high-order and long-range terms between

pixels. Global or local semantic contexts between labels

were also investigated by [38]. Although they accomplished

promising results, they modeled the unary terms as SVM or

Adaboost, whose learning capacity becomes a bottleneck.

The learning and inference of complex pairwise terms are

often expensive.

In the second group, people learned a strong unary clas-

sifier by leveraging the recent advances of deep learning,

such as the Convolutional Neural Network (CNN). With

deep models, these works [23, 24, 25, 22, 3, 28, 39, 30, 19]

demonstrated encouraging results using simple definition of

the pairwise function or even ignore it. For instance, Long

et al. [22] transformed fully-connected layers of CNN into

convolutional layers, making accurate per-pixel classifica-

tion possible using the contemporary CNN architectures

that were pre-trained on ImageNet [6]. Chen et al. [3]

improved [22] by feeding the outputs of CNN into a MRF

with simple pairwise potentials, but it treated CNN and

MRF as separated components. A recent advance was

obtained by [30], which jointly trained CNN and MRF by

passing the error of MRF inference backward into CNN, but

iterative inference of MRF such as the mean field algorithm

(MF) [27] is required for each training image during back-

propagation (BP). Zheng et al. [39] further showed that

the procedure of MF inference can be represented as a

Recurrent Neural Network (RNN), but their computational

costs are similar. We found that directly combing CNN

and MRF as above is inefficient, because CNN typically

has millions of parameters while MRF infers thousands of

latent variables; and even worse, incorporating complex

pairwise terms into MRF becomes impractical, limiting the

performance of the entire system.

This work proposes a novel Deep Parsing Network

(DPN), which is able to jointly train CNN and complex

pairwise terms. DPN has several appealing properties.
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(1) DPN solves MRF with a single feed-forward pass,

reducing computational cost and meanwhile maintaining

high performance. Specifically, DPN models unary terms

by extending the VGG-16 network (VGG16) [32] pre-

trained on ImageNet, while additional layers are carefully

designed to model complex pairwise terms. Learning of

these terms is transformed into deterministic end-to-end

computation by BP, instead of embedding MF into BP as

[30, 19] did. Although MF can be represented by RNN [39],

it needs to recurrently compute the forward pass so as to

achieve good performance and thus is time-consuming, e.g.

each forward pass contains hundred thousands of weights.

DPN approximates MF by using only one iteration. This

is made possible by joint learning strong unary terms and

rich pairwise information. (2) Pairwise terms determine

the graphical structure. In previous works, if the former is

changed, so is the latter as well as its inference procedure.

But with DPN, modifying the complexity of pairwise terms,

e.g. range of pixels and contexts, is as simple as modifying

the receptive fields of convolutions, without varying BP.

DPN is able to represent multiple types of pairwise terms,

making many previous works [3, 39, 30] as its special

cases. (3) DPN approximates MF with convolutional and

pooling operations, which can be speeded up by low-

rank approximation [14] and easily parallelized [4] in a

Graphical Processing Unit (GPU).

Our contributions are summarized as below. (1) A

novel DPN is proposed to jointly train VGG16 and rich

pairwise information, i.e. mixture of label contexts and

high-order relations. Compared to existing deep models,

DPN can approximate MF with only one iteration, reducing

computational cost but still maintaining high performance.

(2) We disclose that DPN represents multiple types of

MRFs, making many previous works such as RNN [39] and

DeepLab [3] as its special cases. (3) Extensive experiments

investigate which component of DPN is crucial to achieve

high performance. A single DPN model achieves a new

state-of-the-art accuracy of 77.5% on the PASCAL VOC

2012 [7] test set. (4) We analyze the time complexity of

DPN on GPU.

2. Our Approach

DPN learns MRF by extending VGG16 to model unary

terms and additional layers are carefully designed for pair-

wise terms.

Overview MRF [10] is an undirected graph where each

node represents a pixel in an image I, and each edge repre-

sents relation between pixels. Each node is associated with

a binary latent variable, yiu ∈ {0, 1}, indicating whether

a pixel i has label u. We have ∀u ∈ L = {1, 2, ..., l},

representing a set of l labels. The energy function of MRF

is written as

E(y) =
∑

∀i∈V

Φ(yui ) +
∑

∀i,j∈E

Ψ(yui , y
v
j ), (1)

where y, V , and E denote a set of latent variables, nodes,

and edges, respectively. Φ(yui ) is the unary term, measuring

the cost of assigning label u to the i-th pixel. For instance,

if pixel i belongs to the first category other than the second

one, we should have Φ(y1i ) < Φ(y2i ). Moreover, Ψ(yui , y
v
j )

is the pairwise term that measures the penalty of assigning

labels u, v to pixels i, j respectively.

Intuitively, the unary terms represent per-pixel classifica-

tions, while the pairwise terms represent a set of smoothness

constraints. The unary term in Eqn.(1) is typically defined

as

Φ(yui ) = − ln p(yui = 1|I) (2)

where p(yui = 1|I) indicates the probability of the presence

of label u at pixel i, modeling by VGG16. To simplify

discussions, we abbreviate it as pui . The smoothness term

can be formulated as

Ψ(yui , y
v
j ) = μ(u, v)d(i, j), (3)

where the first term learns the penalty of global co-

occurrence between any pair of labels, e.g. the output value

of μ(u, v) is large if u and v should not coexist, while the

second term calculates the distances between pixels, e.g.

d(i, j) = ω1‖Ii − Ij‖
2 + ω2‖[xi yi] − [xj yj ]‖

2. Here,

Ii indicates a feature vector such as RGB values extracted

from the i-th pixel, x, y denote coordinates of pixels’

positions, and ω1, ω2 are the constant weights. Eqn.(3)

implies that if two pixels are close and look similar, they

are encouraged to have labels that are compatible. It has

been adopted by most of the recent deep models [3, 39, 30]

for semantic image segmentation.

However, Eqn.(3) has two main drawbacks. First, its

first term captures the co-occurrence frequency of two

labels in the training data, but neglects the spatial context

between objects. For example, ‘person’ may appear beside

‘table’, but not at its bottom. This spatial context is a

mixture of patterns, as different object configurations may

appear in different images. Second, it defines only the

pairwise relations between pixels, missing their high-order

interactions.

To resolve these issues, we define the smoothness term

by leveraging rich information between pixels, which is one

of the advantages of DPN over existing deep models. We

have

Ψ(yui , y
v
j ) =

K
∑

k=1

λkμk(i, u, j, v)
∑

∀z∈Nj

d(j, z)pvz . (4)

The first term in Eqn.(4) learns a mixture of local label

contexts, penalizing label assignment in a local region,
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Figure 1: (a) Illustration of the pairwise terms in DPN. (b) explains the

label contexts. (c) and (d) show that mean field update of DPN corresponds

to convolutions.

where K is the number of components in mixture and λk

is an indicator, determining which component is activated.

We define λk ∈ {0, 1} and
∑K

k=1 λk = 1. An intuitive

illustration is given in Fig.1 (b), where the dots in red and

blue represent a center pixel i and its neighboring pixels j,

i.e. j ∈ Ni, and (i, u) indicates assigning label u to pixel i.

Here, μ(i, u, j, v) outputs labeling cost between (i, u) and

(j, v) with respect to their relative positions. For instance,

if u, v represent ‘person’ and ‘table’, the learned penalties

of positions j that are at the bottom of center i should be

large. The second term basically models a triple penalty,

which involves pixels i, j, and j’s neighbors, implying that

if (i, u) and (j, v) are compatible, then (i, u) should be also

compatible with j’s nearby pixels (z, v), ∀z ∈ Nj , as shown

in Fig.1 (a).

Learning parameters (i.e. weights of VGG16 and costs

of label contexts) in Eqn.(1) is to minimize the distances

between ground-truth label map and y, which needs to be

inferred subject to the smoothness constraints.

Inference Overview Inference of Eqn.(1) can be

obtained by the mean field (MF) algorithm [27],

which estimates the joint distribution of MRF,

P (y)= 1
Z
exp{−E(y)}, by using a fully-factorized

proposal distribution, Q(y) =
∏

∀i∈V

∏

∀u∈Lq
u
i , where

each qui is a variable we need to estimate, indicating the

predicted probability of assigning label u to pixel i. To

simplify the discussion, we denote Φ(yui ) and Ψ(yui , y
v
j ) as

Φu
i and Ψuv

ij , respectively. Q(y) is typically optimized by

minimizing a free energy function [15] of MRF,

F (Q) =
∑

∀i∈V

∑

∀u∈L

qui Φ
u
i +

∑

∀i,j∈E

∑

∀u∈L

∑

∀v∈L

qui q
v
jΨ

uv
ij

+
∑

∀i∈V

∑

∀u∈L

qui ln qui . (5)

Specifically, the first term in Eqn.(5) characterizes the cost

of each pixel’s predictions, while the second term char-

acterizes the consistencies of predictions between pixels.

The last term is the entropy, measuring the confidences of

predictions. To estimate qui , we differentiate Eqn.(5) with

respect to it and equate the resulting expression to zero. We

then have a closed-form expression,

qui ∝ exp
{

− (Φu
i +

∑

∀j∈Ni

∑

∀v∈L

qvjΨ
uv
ij )

}

, (6)

such that the predictions for each pixel is independently

attained by repeating Eqn.(6), which implies whether pixel i

have label u is proportional to the estimated probabilities of

all its neighboring pixels, weighted by their corresponding

smoothness penalties. Substituting Eqn.(4) into (6), we

have

qui ∝ exp
{

− Φu
i −

K
∑

k=1

λk

∑

∀v∈L

∑

∀j∈Ni

(7)

μk(i, u, j, v)
∑

∀z∈Nj

d(j, z)qvj q
v
z

}

,

where each qui is initialized by the corresponding pui in

Eqn.(2), which is the unary prediction of VGG16. Eqn.(7)

satisfies the smoothness constraints.

In the following, DPN approximates one iteration of

Eqn.(7) by decomposing it into two steps. Let Qv be a

predicted label map of the v-th category. In the first step

as shown in Fig.1 (c), we calculate the triple penalty term

in (7) by applying a m×m filter on each position j, where

each element of this filter equals d(j, z)qvj , resulting in Qv ′.

Apparently, this step smoothes the prediction of pixel j with

respect to the distances between it and its neighborhood. In

the second step as illustrated in (d), the labeling contexts

can be obtained by convolving Qv ′ with a n× n filter, each

element of which equals μk(i, u, j, v), penalizing the triple

relations as shown in (a).

3. Deep Parsing Network

This section describes the implementation of Eq.(7) in

a Deep Parsing Network (DPN). DPN extends VGG16 as

unary term and additional layers are designed to approxi-

mate one iteration of MF inference as the pairwise term.

The hyper-parameters of VGG16 and DPN are compared in

Table 1.

VGG16 As listed in Table 1 (a), the first row represents

the name of layer and ‘x-y’ in the second row represents

the size of the receptive field and the stride of convolution,

respectively. For instance, ‘3-1’ in the convolutional layer

implies that the receptive field of each filter is 3×3 and it

is applied on every single pixel of an input feature map,

while ‘2-2’ in the max-pooling layer indicates each feature
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(a) VGG16: 224×224×3 input image; 1×1000 output labels

1 2 3 4 5 6 7 8 9 10 11 12

layer

filter–stride

#channel

activation

size

2×conv

3-1

64

relu
224

max

2-2

64

idn
112

2×conv

3-1

128

relu
112

max

2-2

128

idn
56

3×conv

3-1

256

relu
56

max

2-2

256

idn
28

3×conv

3-1

512

relu
28

max

2-2

512

idn
14

3×conv

3-1

512

relu
14

max

2-2

512

idn
7

2×fc

-

1

relu
4096

fc

-

1

soft
1000

(b) DPN: 512×512×3 input image; 512×512×21 output label maps

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

layer

filter–stride

#channel

activation

size

2×conv

3-1

64

relu
512

max

2-2

64

idn
256

2×conv

3-1

128

relu
256

max

2-2

128

idn
128

3×conv

3-1

256

relu
128

max

2-2

256

idn
64

3×conv

3-1

512

relu
64

3×conv

5-1

512

relu
64

conv

25-1

4096

relu
64

conv

1-1

4096

relu
64

conv

1-1

21

sigm
512

lconv

50-1

21

lin
512

conv

9-1

105

lin
512

bmin

1-1

21

idn
512

sum

1-1

21

soft
512

Table 1: The comparisons between the network architectures of VGG16 and DPN, as shown in (a) and (b) respectively. Each table contains five rows,

representing the ‘name of layer’, ‘receptive field of filter’−‘stride’, ‘number of output feature maps’, ‘activation function’ and ‘size of output feature

maps’, respectively. Furthermore, ‘conv’, ‘lconv’,‘max’, ‘bmin’, ‘fc’, and ‘sum’ represent the convolution, local convolution, max pooling, block min

pooling, fully connection, and summation, respectively. Moreover, ‘relu’, ‘idn’, ‘soft’, ‘sigm’, and ‘lin’ represent the activation functions, including rectified

linear unit [18], identity, softmax, sigmoid, and linear, respectively.

map is pooled over every other pixel within a 2×2 local

region. The last three rows show the number of the output

feature maps, activation functions, and the size of output

feature maps, respectively. As summarized in Table 1 (a),

VGG16 contains thirteen convolutional layers, five max-

pooling layers, and three fully-connected layers. These

layers can be partitioned into twelve groups, each of which

covers one or more homogenous layers. For example, the

first group comprises two convolutional layers with 3×3

receptive field and 64 output feature maps, each of which

is 224×224.

3.1. Modeling Unary Terms

To make full use of VGG16, which is pre-trained by

ImageNet, we adopt all its parameters to initialize the

filters of the first ten groups of DPN. To simplify the

discussions, we take PASCAL VOC 2012 (VOC12) [7] as

an example. Note that DPN can be easily adapted to any

other semantic image segmentation dataset by modifying

its hyper-parameters. VOC12 contains 21 categories and

each image is rescaled to 512×512 in training. Therefore,

DPN needs to predict totally 512×512×21 labels, i.e. one

label for each pixel. To this end, we extends VGG16 in two

aspects.

In particular, let ai and bi denote the i-th group in Table

1 (a) and (b), respectively. First, we increase resolution of

VGG16 by removing its max pooling layers at a8 and a10,

because most of the information is lost after pooling, e.g.

a10 reduces the input size by 32 times, i.e. from 224×224

to 7×7. As a result, the smallest size of feature map in

DPN is 64×64, keeping much more information compared

with VGG16. Note that the filters of b8 are initialized as

the filters of a9, but the 3×3 receptive field is padded into

5×5 as shown in Fig.2 (a), where the cells in white are the

original values of the a9’s filter and the cells in gray are

zeros. This is done because a8 is not presented in DPN, such

that each filter in a9 should be convolved on every other

25 5 

(a) (b)

5 

512

512 

21 channels 

(c) Local 
convolution 
of b12

ሺ,  ሻ  . 50࢜

ሺi, jሻ   
 

 ࢜

50 

  ሻ࢜,ሺ
Figure 2: (a) and (b) show the padding of the filters. (c) illustrates local

convolution of b12.

pixel of a7. To maintain the convolution with one stride, we

pad the filters with zeros. Furthermore, the feature maps in

b11 are up-sampled to 512×512 by bilinear interpolation.

Since DPN is trained with label maps of the entire images,

the missing information in the preceding layers of b11 can

be recovered by BP.

Second, two fully-connected layers at a11 are trans-

formed to two convolutional layers at b9 and b10, respec-

tively. As shown in Table 1 (a), the first ‘fc’ layer learns

7×7×512×4096 parameters, which can be altered to 4096

filters in b9, each of which is 25×25×512. Since a8 and a10

have been removed, the 7×7 receptive field is padded into

25×25 similar as above and shown in Fig.2 (b). The second

‘fc’ layer learns a 4096×4096 weight matrix, corresponding

to 4096 filters in b10. Each filter is 1×1×4096.

Overall, b11 generates the unary labeling results, pro-

ducing twenty-one 512×512 feature maps, each of which

represents the probabilistic label map of each category.

3.2. Modeling Smoothness Terms

The last four layers of DPN, i.e. from b12 to b15, are

carefully designed to smooth the unary labeling results.

• b12 As listed in Table 1 (b), ‘lconv’ in b12 indicates

a locally convolutional layer, which is widely used in

face recognition [33, 35] to capture different information

from different facial positions. Similarly, distinct spatial

positions of b12 have different filters, and each filter is

shared across 21 input channels, as shown in Fig.2 (c). It
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Figure 3: (a) and (b) illustrates the convolutions of b13 and the poolings

in b14.

can be formulated as

o12
(j,v) = lin(k(j,v) ∗ o

11
(j,v)), (8)

where lin(x) = ax + b representing the linear activation

function, ‘∗’ is the convolutional operator, and k(j,v) is

a 50×50×1 filter at position j of channel v. We have

k(j,1) = k(j,2) = ... = k(j,21) shared across 21 channels.

o11
(j,v) indicates a local patch in b11, while o12

(j,v) is the

corresponding output of b12. Since b12 has stride one,

the result of kj ∗ o11
(j,v) is a scalar. In summary, b12 has

512×512 different filters and produces 21 output feature

maps.

Eqn.(8) implements the triple penalty of Eqn.(7). Re-

call that each output feature map of b11 indicates a proba-

bilistic label map of a specific object appearing in the image.

As a result, Eqn.(8) suggests that the probability of object

v presented at position j is updated by weighted averaging

over the probabilities at its nearby positions. Thus, as shown

in Fig.1 (c), o11
(j,v) corresponds to a patch of Qv centered at

j, which has values pvz , ∀z ∈ N 50×50
j . Similarly, k(j,v)

is initialized by d(j, z)pvj , implying each filter captures

dissimilarities between positions. These filters remain fixed

during BP, other than learned as in conventional CNN2.

• b13 As shown in Table 1 (b) and Fig.3 (a), b13 is

a convolutional layer that generates 105 feature maps by

using 105 filters of size 9×9×21. For example, the value

of (i, u = 1) is attained by applying a 9×9×21 filter at

positions {(j, v = 1, ..., 21)}. In other words, b13 learns

a filter for each category to penalize the probabilistic label

maps of b12, corresponding to the local label contexts in

Eqn.(7) by assuming K = 5 and n = 9, as shown in Fig.1

(d).

• b14 As illustrated in Table 1 and Fig.3 (b), b14 is a

block min pooling layer that pools over every 1×1 region

with one stride across every 5 input channels, leading to

21 output channels, i.e. 105÷5=21. b14 activates the

contextual pattern with the smallest penalty.

2Each filter in b12 actually represents a distance metric between pixels

in a specific region. In VOC12, the patterns of all the training images

in a specific region are heterogenous, because of various object shapes.

Therefore, we initialize each filter with Euclidean distance. Nevertheless,

Eqn.(8) is a more general form than the triple penalty in Eqn.(7), i.e. filters

in (8) can be automatically learned from data, if the patterns in a specific

region are homogenous, such as face or human images, which have more

regular shapes than images in VOC12.

• b15 This layer combines both the unary and smooth-

ness terms by summing the outputs of b11 and b14 in an

element-wise manner similar to Eqn.(7),

o15
(i,u) =

exp
{

ln(o11
(i,u))− o14

(i,u)

}

∑21
u=1 exp

{

ln(o11
(i,u))− o14

(i,u)

} , (9)

where probability of assigning label u to pixel i is normal-

ized over all the labels.

Relation to Previous Deep Models Many existing deep

models such as [39, 3, 30] employed Eqn.(3) as the pairwise

terms, which are the special cases of Eqn.(7). To see this,

let K=1 and j=i, the right hand side of (7) reduces to

exp{−Φu
i −

∑

v∈L

λ1μ1(i, u, i, v)
∑

z∈Ni

d(i, z)pvi p
v
z}

= exp{−Φu
i −

∑

v∈L

μ(u, v)
∑

z∈Ni,z �=i

d(i, z)pvz}, (10)

where μ(u, v) and d(i, z) represent the global label co-

occurrence and pairwise pixel similarity of Eqn.(3), respec-

tively. This is because λ1 is a constant, d(i, i) = 0, and

μ(i, u, i, v) = μ(u, v). Eqn.(10) is the corresponding MF

update equation of (3).

3.3. Learning Algorithms

Learning The first ten groups of DPN are initialized

by VGG16
3, while the last four groups can be initialized

randomly. DPN is then fine-tuned in an incremental manner

with four stages. During fine-tuning, all these stages solve

the pixelwise softmax loss [22], but updating different sets

of parameters.

First, we add a loss function to b11 and fine-tune the

weights from b1 to b11 without the last four groups, in

order to learn the unary terms. Second, to learn the

triple relations, we stack b12 on top of b11 and update its

parameters (i.e. ω1, ω2 in the distance measure), but the

weights of the preceding groups (i.e. b1∼b11) are fixed.

Third, b13 and b14 are stacked onto b12 and similarly,

their weights are updated with all the preceding parameters

fixed, so as to learn the local label contexts. Finally, all the

parameters are jointly fine-tuned.

Implementation DPN transforms Eqn.(7) into convo-

lutions and poolings in the groups from b12 to b15, such

that filtering at each pixel can be performed in a parallel

manner. Assume we have f input and f ′ output feature

maps, N ×N pixels, filters with s× s receptive field, and a

mini-batch with M samples. b12 takes a total f ·N2 ·s2 ·M
operations, b13 takes f · f ′ · N2 · s2 · M operations,

while both b14 and b15 require f · N2 · M operations.

3We use the released VGG16 model, which is public available at

http://www.robots.ox.ac.uk/˜vgg/research/very_

deep/
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For example, when M=10 as in our experiment, we have

21×5122×502×10=1.3×1011 operations in b12, which

has the highest complexity in DPN. We parallelize these

operations using matrix multiplication on GPU as [4] did,

b12 can be computed within 30ms. The total runtime of the

last four layers of DPN is 75ms. Note that convolutions in

DPN can be further speeded up by low-rank decompositions

[14] of the filters and model compressions [13].

However, direct calculation of Eqn.(7) is accelerated by

fast Gaussian filtering [1]. For a mini-batch of ten 512×512

images, a recently optimized implementation [16] takes 12

seconds on CPU to compute one iteration of (7). Therefore,

DPN makes (7) easier to be parallelized and speeded up.

4. Experiments

Dataset We evaluate the proposed approach on the PAS-

CAL VOC 2012 (VOC12) [7] dataset, which contains 20

object categories and one background category. Following

previous works such as [12, 22, 3], we employ 10, 582
images for training, 1, 449 images for validation, and 1, 456
images for testing.

Evaluation Metrics All existing works employed mean

pixelwise intersection-over-union (denoted as mIoU) [22]

to evaluate their performance. To fully examine the effec-

tiveness of DPN, we introduce another three metrics, in-

cluding tagging accuracy (TA), localization accuracy (LA),

and boundary accuracy (BA). (1) TA compares the predict-

ed image-level tags with the ground truth tags, calculating

the accuracy of multi-class image classification. (2) LA

evaluates the IoU between the predicted object bounding

boxes4 and the ground truth bounding boxes (denoted as

bIoU), measuring the precision of object localization. (3)

For those objects that have been correctly localized, we

compare the predicted object boundary with the ground

truth boundary, measuring the precision of semantic bound-

ary similar to [12].

Comparisons DPN is compared with the best-

performing methods on VOC12, including FCN [22],

Zoom-out [25], DeepLab [3], WSSL [28], BoxSup [5],

Piecewise [19], and RNN [39]. All these methods are

based on CNNs and MRFs, and trained on VOC12 data

following [22]. They can be grouped according to different

aspects: (1) joint-train: Piecewise and RNN; (2) w/o

joint-train: DeepLab, WSSL, FCN, and BoxSup; (3) pre-

train on COCO: RNN, WSSL, and BoxSup. The first

and the second groups are the methods with and without

joint training CNNs and MRFs, respectively. Methods in

the last group also employed MS-COCO [20] to pre-train

deep models. To conduct a comprehensive comparison, the

performance of DPN are reported on both settings, i.e., with

and without pre-training on COCO.

4They are the bounding boxes of the predicted segmentation regions.

Receptive Field baseline 10×10 50×50 100×100

mIoU (%) 63.4 63.8 64.7 64.3

(a) Comparisons between different receptive fields of b12.

Receptive Field 1×1 5×5 9×9 9×9 mixtures

mIoU (%) 64.8 66.0 66.3 66.5

(b) Comparisons between different receptive fields of b13.

Pairwise Terms DSN [30] DeepLab [3] DPN

improvement (%) 2.6 3.3 5.4

(c) Comparing pairwise terms of different methods.

Table 2: Ablation study of hyper-parameters.

In the following, Sec.4.1 investigates the effectiveness of

different components of DPN on the VOC12 validation set.

Sec.4.2 compares DPN with the state-of-the-art methods on

the VOC12 test set.

4.1. Effectiveness of DPN

All the models evaluated in this section are trained and

tested on VOC12.

Triple Penalty The receptive field of b12 indicates

the range of triple relations for each pixel. We examine

different settings of the receptive fields, including ‘10×10’,

‘50×50’, and ‘100×100’, as shown in Table 2 (a), where

‘50×50’ achieves the best mIoU, which is sightly better

than ‘100×100’. For a 512×512 image, this result implies

that 50×50 neighborhood is sufficient to capture relations

between pixels, while smaller or larger regions tend to

under-fit or over-fit the training data. Moreover, all models

of triple relations outperform the ‘baseline’ method that

models dense pairwise relations, i.e. VGG16+denseCRF

[16].

Label Contexts Receptive field of b13 indicates the

range of local label context. To evaluate its effectiveness,

we fix the receptive field of b12 as 50×50. As summarized

in Table 2 (b), ‘9×9 mixtures’ improves preceding settings

by 1.7, 0.5, and 0.2 percent respectively. We observe large

gaps exist between ‘1×1’ and ‘5×5’. Note that the 1×1

receptive field of b13 corresponds to learning a global label

co-occurrence without considering local spatial contexts.

Table 2 (c) shows that the pairwise terms of DPN are more

effective than DSN and DeepLab5.

More importantly, mIoU of all the categories can be

improved when increasing the size of receptive field and

learning a mixture. Specifically, for each category, the im-

provements of the last three settings in Table 2 (b) over the

first one are 1.2±0.2, 1.5±0.2, and 1.7±0.3, respectively.

We also visualize the learned label compatibilities and

contexts in Fig.4 (a) and (b), respectively. (a) is obtained

by summing each filter in b13 over 9×9 region, indicating

5The other deep models such as RNN and Piecewise did not report the

exact imrprovements after combining unary and pairwise terms.
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Figure 4: Visualization of (a) learned label compatibility (b) learned

contextual information. (Best viewed in color)

(a) Original Image

(d) +Triple Penalty

(c) Unary Term

(e) +Label Contexts (f) +Joint Tuning

(b) Ground Truth

Figure 5: Step-by-step visualization of DPN. (Best viewed in color)

how likely a column object would present when a row

object is presented. Blue represents high possibility. (a)

is non-symmetry. For example, when ‘horse’ is presented,

‘person’ is more likely to present than the other objects.

Also, ‘chair’ is compatible with ‘table’ and ‘bkg’ is com-

patible with all the objects. (b) visualizes some contextual

patterns, where ‘A:B’ indicates that when ‘A’ is presented,

where ‘B’ is more likely to present. For example, ‘bkg’ is

around ‘train’, ‘motor bike’ is below ‘person’, and ‘person’

is sitting on ‘chair’.

Incremental Learning As discussed in Sec.3.3, DPN is

trained in an incremental manner. The right hand side of Ta-

ble 3 (a) demonstrates that each stage leads to performance

gain compared to its previous stage. For instance, ‘triple

penalty’ improves ‘unary term’ by 2.3 percent, while ‘label

contexts’ improves ‘triple penalty’ by 1.8 percent. More

importantly, joint fine-tuning all the components (i.e. unary

terms and pairwise terms) in DPN achieves another gain

of 1.3 percent. A step-by-step visualization is provided in

Fig.5.

We also compare ‘incremental learning’ with ‘joint

learning’, which fine-tunes all the components of DPN at

the same time. The training curves of them are plotted in

Fig.6 (a), showing that the former leads to higher and more

stable accuracies with respect to different iterations, while

the latter may get stuck at local minima. This difference
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Figure 6: Ablation study of (a) training strategy (b) required MF

iterations. (Best viewed in color)
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Figure 7: Stage-wise analysis of (a) mean tagging accuracy (b) mean

localization accuracy (c) mean boundary accuracy.

is easy to understand, because incremental learning only

introduces new parameters until all existing parameters

have been fine-tuned.

One-iteration MF DPN approximates one iteration of

MF. Fig.6 (b) illustrates that DPN reaches a good accuracy

with one MF iteration. A CRF [16] with dense pairwise

edges needs more than 5 iterations to converge. It also

has a large gap compared to DPN. Note that the existing

deep models such as [3, 39, 30] required 5∼10 iterations to

converge as well.

Different Components Modeling Different Informa-

tion We further evaluate DPN using three metrics. The

results are given in Fig.7. For example, (a) illustrates that

the tagging accuracy can be improved in the third stage, as

it captures label co-occurrence with a mixture of contextual

patterns. However, TA is decreased a little after the final

stage. Since joint tuning maximizes segmentation accu-

racies by optimizing all components together, extremely

small objects, which rarely occur in VOC training set,

are discarded. As shown in (b), accuracies of object

localization are significantly improved in the second and the

final stages. This is intuitive because the unary prediction

can be refined by long-range and high-order pixel relations,

and joint training further improves results. (c) discloses

that the second stage also captures object boundary, since

it measures dissimilarities between pixels.

Per-class Analysis Table 3 (a) reports the per-class

accuracies of four evaluation metrics, where the first four

rows represent the mIoU of four stages, while the last

three rows represent TA, LA, and BA, respectively. We

have several valuable observations, which motivate future

researches. (1) Joint training benefits most of the categories,
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areo bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv Avg.

Unary Term (mIoU) 77.5 34.1 76.2 58.3 63.3 78.1 72.5 76.5 26.6 59.9 40.8 70.0 62.9 69.3 76.3 39.2 70.4 37.6 72.5 57.3 62.4

+ Triple Penalty 82.3 35.9 80.6 60.1 64.8 79.5 74.1 80.9 27.9 63.5 40.4 73.8 66.7 70.8 79.0 42.0 74.1 39.1 73.2 58.5 64.7

+ Label Contexts 83.2 35.6 82.6 61.6 65.5 80.5 74.3 82.6 29.9 67.9 47.5 75.2 70.3 71.4 79.6 42.7 77.8 40.6 75.3 59.1 66.5

+ Joint Tuning 84.8 37.5 80.7 66.3 67.5 84.2 76.4 81.5 33.8 65.8 50.4 76.8 67.1 74.9 81.1 48.3 75.9 41.8 76.6 60.4 67.8

TA (tagging Acc.) 98.8 97.9 98.4 97.7 96.1 98.6 95.2 96.8 90.1 97.5 95.7 96.7 96.3 98.1 93.3 96.1 98.7 92.2 97.4 96.3 96.4

LA (bIoU) 81.7 76.3 75.5 70.3 54.4 86.4 70.6 85.6 51.8 79.6 57.1 83.3 79.2 80.0 74.1 53.1 79.1 68.4 76.3 58.8 72.1

BA (boundary Acc.) 95.9 83.9 96.9 92.6 93.8 94.0 95.7 95.6 89.5 93.3 91.4 95.2 94.2 92.7 94.5 90.4 94.8 90.5 93.7 96.6 93.3

(a) Per-class results on VOC12 val.

areo bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mIoU

FCN [22] 76.8 34.2 68.9 49.4 60.3 75.3 74.7 77.6 21.4 62.5 46.8 71.8 63.9 76.5 73.9 45.2 72.4 37.4 70.9 55.1 62.2

Zoom-out [25] 85.6 37.3 83.2 62.5 66.0 85.1 80.7 84.9 27.2 73.2 57.5 78.1 79.2 81.1 77.1 53.6 74.0 49.2 71.7 63.3 69.6

Piecewise [19] 87.5 37.7 75.8 57.4 72.3 88.4 82.6 80.0 33.4 71.5 55.0 79.3 78.4 81.3 82.7 56.1 79.8 48.6 77.1 66.3 70.7

DeepLab [3] 84.4 54.5 81.5 63.6 65.9 85.1 79.1 83.4 30.7 74.1 59.8 79.0 76.1 83.2 80.8 59.7 82.2 50.4 73.1 63.7 71.6

RNN [39] 87.5 39.0 79.7 64.2 68.3 87.6 80.8 84.4 30.4 78.2 60.4 80.5 77.8 83.1 80.6 59.5 82.8 47.8 78.3 67.1 72.0

WSSL† [28] 89.2 46.7 88.5 63.5 68.4 87.0 81.2 86.3 32.6 80.7 62.4 81.0 81.3 84.3 82.1 56.2 84.6 58.3 76.2 67.2 73.9

RNN† [39] 90.4 55.3 88.7 68.4 69.8 88.3 82.4 85.1 32.6 78.5 64.4 79.6 81.9 86.4 81.8 58.6 82.4 53.5 77.4 70.1 74.7

BoxSup† [5] 89.8 38.0 89.2 68.9 68.0 89.6 83.0 87.7 34.4 83.6 67.1 81.5 83.7 85.2 83.5 58.6 84.9 55.8 81.2 70.7 75.2

DPN 87.7 59.4 78.4 64.9 70.3 89.3 83.5 86.1 31.7 79.9 62.6 81.9 80.0 83.5 82.3 60.5 83.2 53.4 77.9 65.0 74.1

DPN† 89.0 61.6 87.7 66.8 74.7 91.2 84.3 87.6 36.5 86.3 66.1 84.4 87.8 85.6 85.4 63.6 87.3 61.3 79.4 66.4 77.5

(b) Per-class results on VOC12 test. The approaches pre-trained on COCO [20] are marked with †.

Table 3: Per-class results on VOC12.

except animals such as ‘bird’, ‘cat’, and ‘cow’. Some

instances of these categories are extremely small so that

joint training discards them for smoother results. (2)

Training DPN with pixelwise label maps implicitly models

image-level tags, since it achieves a high averaged TA of

96.4%. (3) Object localization always helps. However,

for the object with complex boundary such as ‘bike’, its

mIoU is low even it can be localized, e.g. ‘bike’ has

high LA but low BA and mIoU. (4) Failures of different

categories have different factors. With these three metrics,

they can be easily identified. For example, the failures of

‘chair’, ‘table’, and ‘plant’ are caused by the difficulties

to accurately capture their bounding boxes and boundaries.

Although ‘bottle’ and ‘tv’ are also difficult to localize, they

achieve moderate mIoU because of their regular shapes. In

other words, mIoU of ‘bottle’ and ‘tv’ can be significantly

improved if they can be accurately localized.

4.2. Overall Performance

As shown in Table 3 (b), we compare DPN with the

best-performing methods6 on VOC12 test set based on two

settings, i.e. with and without pre-training on COCO. The

approaches pre-trained on COCO are marked with ‘†’. We

evaluate DPN on several scales of the images and then

average the results following [3, 19].

DPN outperforms all the existing methods that were

trained on VOC12, but DPN needs only one MF iteration

to solve MRF, other than 10 iterations of RNN, DeepLab,

and Piecewise. By averaging the results of two DPNs, we

achieve 74.1% accuracy on VOC12 without outside training

data. As discussed in Sec.3.3, MF iteration is the most

6The results of these methods were presented in either the published

papers or arXiv pre-prints.

complex step even when it is implemented as convolutions.

Therefore, DPN at least reduces 10× runtime compared to

previous works.

Following [39, 5], we pre-train DPN with COCO, where

20 object categories that are also presented in VOC12 are

selected for training. A single DPN† has achieved 77.5%

mIoU on VOC12 test set. As shown in Table 3 (b), we

observe that DPN† achieves best performances on more

than half of the object classes.

5. Conclusion

We proposed Deep Parsing Network (DPN) to address

semantic image segmentation, which has several appealing

properties. First, DPN unifies the inference and learning

of unary term and pairwise terms in a single convolutional

network. No iterative inference are required during back-

propagation. Second, high-order relations and mixtures

of label contexts are incorporated to its pairwise terms

modeling, making existing works serve as special cases.

Third, DPN is built upon conventional operations of CNN,

thus easy to be parallelized and speeded up.

DPN achieves state-of-the-art performance on VOC12,

and multiple valuable facts about semantic image segmen-

tion are revealed through extensive experiments. Future

directions include investigating the generalizability of DPN

to more challenging scenarios, e.g. large number of object

classes and substantial appearance/scale variations.
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