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Abstract

We describe a technique to recover depth from a light

field (LF) using two proposed features of the LF focal s-

tack. One feature is the property that non-occluding pix-

els exhibit symmetry along the focal depth dimension cen-

tered at the in-focus slice. The other is a data consistency

measure based on analysis-by-synthesis, i.e., the difference

between the synthesized focal stack given the hypothesized

depth map and that from the LF. These terms are used in

an iterative optimization framework to extract scene depth.

Experimental results on real Lytro and Raytrix data demon-

strate that our technique outperforms state-of-the-art solu-

tions and is significantly more robust to noise and under-

sampling.

1. Introduction

Given the commercial availability of light field (LF)

cameras such as the Lytro [1] and Raytrix [4], the use of

LFs for scene capture and analysis is becoming more attac-

tive. It has been shown that given the simultaneous multiple

views, LFs enable improved image analysis, e.g., stereo re-

construction [20], refocusing [29], saliency detection [23],

and scene classification [39].

In our work, we use commercially available LF cam-

eras, namely Lytro and Raytrix. Note that these cameras

have significantly lower sampling density (380× 380) than

most previous LF-based approaches (e.g., Stanford camer-

a array, camera gantry [3]). Using the Lytro and Raytrix

cameras presents challenges: while they provide high angu-

lar sampling, they are still spatially undersampled (causing

aliasing in refocusing, as shown in Fig. 2), and SNR is low

due to ultra small aperture (14µm in Lytro, 20µm in Lytro

Illum, and 50µm in Raytrix) and limited view extracting

toolbox [2]. As shown in Figs. 1 and 2, previous approach-

es have issues with noise and refocusing.

In this paper, we propose a new depth from light field

(DfLF) technique by exploring two new features of the focal

stack. Our contributions are:

• Symmetry analysis on the focal stack. We show that

Scene
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Figure 1. Noise handling (Lytro raw data extracted by [2]). Tra-

ditional stereo matching approaches either use a large smoothness

term or first denoise the input [8, 41]. Both have the effect of

blurring boundaries. Our technique is able to recover fine details

without oversmoothing using the original noisy input.

the profile is symmetrically centered at the in-focus

slice if the pixel corresponds to a non-occluding 3D

point, even under noise and undersampling.

• New data consistency measure based on analysis-by-

synthesis. Given a depth map hypothesis, we synthe-

size the focal stack. This is compared with that com-

puted directly from the LF.

• Iterative optimization framework that incorporates the

two features.

Experimental results on real Lytro and Raytrix images

demonstrate that our technique outperforms the state-of-

the-art solutions and is significantly more robust to noise

and undersampling.

2. Related Work

Our work is related to multi-view reconstruction and

Depth-from-Focus; more detailed surveys can be found in

[10, 11, 27, 28]. Here we only briefly discuss the most rel-

evant ones to our approach.

Using LF data as input, Wanner and Goldlücke [37, 36,

39] optimize the direction field in 2D Epipolar Image (EPI)
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Figure 3. Pipeline of our method.
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Figure 2. Aliasing in Synthesized LF Focal Stack. The scan lines

show that refocusing possibly induces gradients (aliasing) to out-

of-focus flat regions. Brute-force sharpness measure treats aliasing

as edges and produces incorrect estimation (blue cost profile). Our

method is able to obtain the correct background disparity (magenta

cost profile). We add smoothness prior to both focus cues.

and directly map the directions to depths for stereo match-

ing and object segmentation. However, this technique does

not work well under heavy occlusion and significant im-

age noise. Chen et al. [5] propose a bilateral consistency

metric that separately handles occluding and non-occluding

pixels. They combine both distance and color similarity

to determine their likelihood of being occluded. The ap-

proach works robustly in the presence of heavy occlusion

but requires low noise inputs. Heber et al. [18, 17] model

depth from LF as a rank minimization problem and propose

a global matching term to measure the warping cost of all

other views to the center view. While their method is robust

to reflections and specularities, it tends to produce smooth

transition around edges. Kamal et al. [19] adopt similar

rank minimization idea in local patches across views. They

assume clean data of Lamebrain surfaces and use sparse er-

ror term in the modeling (accounts for mismatching due to

occlusion, but is ineffective in resolving Gaussian noises).

Kim et al. [21] are able to generate high quality results but

need dense spatio-angular sampling.

Our DfLF is based on the principles of depth-from-

defocus/focus (DfD/DfF). In DfD, several images focus-

ing at different depths are captured at the fixed viewpoint

[10, 11, 42] and focus variations are analyzed to infer scene

depth. In a similar vein, DfF [35, 6, 24, 26, 27] estimates

depth by the sharpness of a series of focus changing im-

ages. Depth is computed based on the most in-focus slice.

To avoid issues caused by textureless regions, active illumi-

nation methods [25] are used. Hasinoff et al. [16] analyzed

a series of images with varying focus and aperture to form

a focus-aperture image (AFI), then apply AFI model fitting

to recover scene depth.

There are studies [31, 34] that explore the strengths

and weaknesses of DfD/DfF and stereo. They show that

DfD/DfF is robust to noise while stereo can more reliably

handle over/under saturated features. There are also tech-

niques that combine stereo with DfD/DfF. In [22], a dispar-

ity defocus constraint is computed to form a defocus kernel

map as a guidance for segmenting the in-focus regions. [22]

models defocus and correspondence measure as data cost in

the energy minimization frame work. Rajagopalan et al.

[30] measure the consistency of the point spread function

(PSF) ratios estimated from DfD for disparity computation

under MRF framework. However, their solution is less ef-

fective with larger blur kernels.

Camera array systems where each camera has a different

focus have been constructed, e.g., [13, 14, 15]. Here, edges

of each view are estimated using DfD, with an edge con-

sistence term being used in the multi-view stereo pipeline.

Their system requires complex hardware settings. Tao et

al. [33] combine DfD and depth from correspondence (D-

fC) by first estimating disparity on the EPI then applying

MRF propagation. However, objects that are too far from

the main lens focus plane and pixels near occlusion bound-

aries may result in large errors.

Our approach also combines focus analysis and stere-

o. Our work has two unique characteristics: (1) our focus

measure is robust to image noise and aliasing due to un-
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dersampling, and (2) we propose a novel data consistency

measure based on analysis by synthesis. Fig. 3 shows the

processing pipeline of our approach. In contrast to tradi-

tional DfD/DfF methods where sharpness is estimated on s-

ingle focal stack images, we perform symmetry analysis on

the entire focal stack. The matching cost is the difference

between the hypothesized local focal stack (of each pixel)

based on the hypothesized depth map and the LF version.

These measures, together with a data consistency term, are

optimized using MRF.

3. Color Symmetry in Focal Stack

A focal stack of a scene is a sequence of images captured

with different focus settings; an LF can be used to produce

a synthetic focal stack. We first describe our notations. The

input LF is parameterized in two-plane parametrization (2P-

P), where camera plane st is at z = 0 and the image plane

uv is at z = 1. In 2PP, a ray is represented as a vector

(s, t, u, v) and we denote its radiance as r1(s, t, u, v), with

the subscript indicating the depth of uv plane. The disparity

output o is with respect to the center reference view I , where

the ground truth disparity is denoted as d. We use ϕp(f) to

denote the color profile of pixel p in o at focal slice f in the

focal stack (f is defined in disparity). We first analyze the

local symmetry/asymmetry property of ϕp(f) with respect

to f and set out to derive a new focusness metric.

In our LF refocusing, a focal slice at disparity f is gen-

erated by integrating all the recorded rays corresponding to

disparity f in sub-aperture views. Without loss of general-

ity, we simplify our analysis by using 2D LF consisted of

only s and u dimensions and only three sub-aperture views.

Fig. 4 illustrates the ray integration process for three focal

slices at disparities (d − δ), d, and (d + δ), where δ is a

small disparity shift. In the analysis, the scene is planar and

parallel to the image plane with ground truth disparity d. By

similarity rule, we can compute its depth as B
d , where B is

the baseline between two neighboring sub-aperture views.

Fig. 4(a) shows an example of a texture boundary pixel p
with its coordinate pu. We show that the color profile ϕp(f)
is locally symmetric around the ground truth disparity d.
For the focal slice at d + δ, the radiance from the left view
is r1(−B,−B+pu+(d+δ)). By reparameterizing it using

the u-plane at z = B
d , we get the radiance as:

r1(−B,−B + pu + (d+ δ)) (1)

= rB
d
(−B,−B +

B

d
(pu + (d+ δ))),

= rB
d
(−B,

B

d
(pu + δ)).

Similarly, the radiance from the right view is:

r1(B,B + pu − (d+ δ)) = rB
d
(B,

B

d
(pu − δ)). (2)

The pixel value at p in the rendered focal slice is the re-

sult of integrating the radiance set Aδ = {rB
d
(−B, Bd (pu +

δ)), rB
d
(0, Bd pu), rB

d
(B, Bd (pu − δ)}.

We conduct a similar analysis for the focal slice at
d − δ. The radiance set will be A−δ = {rB

d
(−B, Bd (pu −

δ)), rB
d
(0, Bd pu), rB

d
(B, Bd (pu + δ)}. Since the surface is

exactly at depth B
d , according to Lambertion surface as-

sumption, we have

rB
d
(−B,

B

d
(pu + δ)) = rB

d
(B,

B

d
(pu + δ)), (3)

rB
d
(B,

B

d
(pu − δ)) = rB

d
(−B,

B

d
(pu − δ)),

i.e. Aδ = A−δ , which means ϕp(d + δ) = ϕp(d − δ).
The color profile ϕp(f) is locally symmetric around the true

surface depth d.

Fig. 4(b) and (c) show examples of occlusion bound-

ary pixels. The ray integrations for pixels on the occlud-

er (Fig. 4(b)) and on the occluded surface (Fig. 4(c)) are

different. Unlike the texture boundary pixels, their color

profiles do not have exact local symmetry property1. How-

ever, with more assumptions about the color variations on

surfaces, we can show that the color profiles for those oc-

clusion boundary pixels approximately exhibit local sym-

metry/asymmetry properties.

Notice that for occlusion boundary pixel on the occlud-

er (Fig. 4(b)), the only different radiances between the in-

tegration set Aδ and A−δ are those rays marked as green

i.e. rB
d
(−B, Bd (pu + δ)) and rB

d
(B, Bd (pu + δ)). Assum-

ing that the surface color is smooth, which indicates that

rB
d
(−B, Bd (pu + δ)) ≈ rB

d
(B, Bd (pu + δ)), we will have

ϕp(d + δ) ≈ ϕp(d − δ). In other words, the color profile

ϕp(f) for boundary pixels on the occluder is approximately

symmetric around the true surface depth d.
For occlusion boundary pixel on the occluded surface

(Fig. 4 (c)), except the center ray, none of the other rays
originate from the same surface2. When the disparity varies
from d − δmax to d + δmax, the integrated rays sweep
across the surfaces in the directions indicated by arrows
in the figure. Assuming the radiances vary linearly dur-
ing the sweep, i.e. rB

d
(−B, Bd (pu + δ)) = k1pδ + b1p and

rB
d
(B, Bd (pu − δ)) = k2pδ+ b2p where k1p, b1p, k2p, and b2p are

the coefficients of the linear model for each surface3 and δ
varies in range [−δmax, δmax], we have the ϕp(d+ δ) com-
puted as:

ϕp(d+ δ) =
1

3
(k1p + k

2
p)δ +

1

3
(b1p + b

2
p + bp), (4)

where δ ∈ [−δmax, δmax], bp is the constant radiance from

the center view. This shows that ϕp(f) is locally linear

1This difference directs to a probability estimation of the occlusion map

in section 5.
2Since δ is small, if the point is blocked from one view (in this figure,

the right view) when δ = 0, the blocking status will not change.
3Note that k∗p = 0 indicates constant color surface.
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Figure 4. Local symmetry/asymmetry property analysis in LF focal stack.

around the true depth d under the linear surface color as-

sumption. The modified function ϕ′
p(f) = ϕp(f) − ϕp(d)

is thus locally asymmetric around the true depth d.
Based on the analysis, for each pixel p at focal plane f ,

we can define the following in-focus score sinp (f) according

to the location of pixel p4:

s
in
p (f) =

{

sϕp (f) if p is a non-occluded pixel

sϕ
′

p (f) if p is an occluded pixel
(5)

where

s
ϕ
p (f) =

∫ δmax

0

ρ (ϕp(f + δ)− ϕp(f − δ)) dδ, (6)

s
ϕ′

p (f) =

∫ δmax

0

ρ
(

ϕ
′

p(f + δ) + ϕ
′

p(f − δ)
)

dδ, (7)

and the function ρ(υ) = 1−e−|υ|2/(2σ
2) is a robust distance

function with σ controlling its sensitiveness to noises. This

distance function will be reused in other equations in this

paper but probably with different σ values.

In order to exactly evaluate Eq. 5, we need to dis-

tinguish between occluded boundaries and non-occluded

boundaries. However, the information about occlusion is

unknown without the depth/disparity map. We resolve the

chicken-and-egg problem by probabilistic reasoning. Given

an occlusion probability map β (described in section 5), our

final in-focus score is defined as:

sinp (f) = βp ·min(sϕp (f), s
ϕ′

p (f)) + (1− βp) · s
ϕ
p (f). (8)

We expect that sinp (d(x)) will be locally minimum (if not a

global one).

Aliasing and Noise. Our analysis shows that the symme-

try/asymmetry property of a pixel in the focal stack is in-

dependent of image noise or sampling rate: the focal stack

synthesis process blends the same set of pixels. For exam-

ple, local symmetry holds in the color profile for a texture

boundary pixel is because the sets of radiances Aδ and A−δ

are the same. Changing the angular sampling rate or lower-

ing spatial resolution only changes the size of Aδ and A−δ ,

4Non-occluded boundaries include texture boundaries and occlusion

boundaries on the side of the occluder.

��ሺ�ሻ �
�

Figure 5. Examples of ϕp(f) for scanlines of the reference view.

The ground truth disparities are marked as red lines on ϕp(f).

and does not affect the relationship between Aδ and A−δ .

While noise affects the individual values of the elements

in the radiance set, the integrating process averages out the

noise for the focal slice output. (We assume that the noise

has zero mean gaussian distribution.)

Fig. 5 shows examples of the ϕp(f) for scanlines of the

reference view. The left is obtained from LF data “ohta”

with 5 × 5 sub aperture views and its disparity (recipro-

cal to the depth) varies within [3, 16] in pixel unit, and the

right one is from LF data “buddha2” with 9×9 sub aperture

views and disparity range [−0.9, 1.4]. We can see that the

local symcenter indicates its true disparity for non-occluded

pixels.

4. Data Consistency Measure

In conventional stereo matching, the data consistency

metric of a hypothesized disparity is based on the color dif-

ference between corresponding pixels across all input views

(e.g., the data term in the graph-cut framework). If the light

field captured by an LF camera has significant noise due

to low exposure (small aperture), this metric becomes less

reliable.

Our data consistency metric is instead based on focal s-

tack synthesis/rendering. More specifically, given a hypoth-

esized disparity map and an all-focus central image, we ren-

der a local focal stack around each pixel. By local: (1) we

only use a small patch around the pixel to produce the focal

stack, and (2) we only render a section of the focal stack of
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Figure 6. Retrieving the radiances from the center view that corre-

spond to the radiances in other views. In rendering the focal slice

shifted from the true disparity d by δ, the green (red) ray in the

center view corresponds to the green (red) ray in the left (right)

view. See text for corresponding ray identification.

range [d(p), d(p)+ δmax] for each pixel around its true sur-

face disparity d(p). In other words, the rendered focal stack

section of each pixel starts from in-focus to out-of-focus by

focal shift δmax. Although the true d(p) is unknown, we

show that the section can be rendered given the center view

and a rough disparity estimation. This leads to a focal pro-

file for each pixel ψp(δ), where δ ∈ [0, δmax] is the focal

shift deviated from the true surface disparity. We match the

section ψp(δ) to the LF synthesized one ϕp(f) and compute

the difference as the data consistency measure.

Our key observation is that the reference center view

records the majority of the scene radiances except those

blocked from the center view. Fig. 6 shows an example of

retrieving the radiances in the center view corresponding to

the radiances from the other views for rendering the focal

slice at disparity d+δ for pixel p. Although the true surface

disparity d of pixel p is used in the illustration, we show

that the rendered result is independent of d. We derive the

corresponding radiance position in the center view through

reparametrization.

When focusing at disparity d + δ, the radiance from the

left view is r1(−B,−B + pu + d + δ) = r B

d′
(−B,−B +

B
d′
(pu + d + δ)), where d′ is the disparity of the sur-

face point where the radiance originates from. Using the

Lambertian surface assumption, we have r B

d′
(−B,−B +

B
d′
(pu + d + δ)) = r B

d′
(0,−B + B

d′
(pu + d + δ)). Ray

(0,−B + B
d′
(pu + d + δ)) will intersect with z = 1 plane

at (−B + B
d′
(pu + d + δ))/B

d′
= pu + (d − d′ + δ). This

means that if the corresponding surface point is not occlud-

ed wrt the center view, the corresponding radiance in the

center view is at distance (∆d + δ), where ∆d = d − d′,
to the current rendering pixel p. For the right view, a simi-

lar derivation shows that the corresponding radiance in the

center view is at distance −(∆d + δ) to p. So, instead of

depending on the true surface disparity, the locations of the

corresponding radiances in the center view only depend on

the relative disparity differences and the amount of focal

shift.

Using the above analysis, we replace the radiances from

other views with those from the center view to render the

section of the focal slice f ∈ [d(p), d(p) + δmax], i.e.

δ ∈ [0, δmax] for each pixel p. We define a mask kδp(q)
to indicate the locations of the radiances in the center view

when focusing at d(p)+ δ. This sampling kernel kδp(q) = 1
if and only if q = p± (d(p)−d(q)+ δ). The rendered focal

slice section ψp(δ) can be represented as:

ψp(δ) =

∫
q

kδp(q)Iqdq, (9)

where Iq is the color of pixel q in the reference view I .

With the rendered ψp(δ) for each pixel, our focal stack

matching score is computed as:

smp (f) =

∫ δmax

0

ρ (ψp(δ)− ϕp(f + δ)) dδ (10)

As for initialization, we start with ∀q, d(p) − d(q) = 0,

and the sampling kernel kδp(q) reduces to that of uniform

sampling. We denote the correspondence matching score at

initialization as smp,0(f), which will be used in Section 5 for

occlusion map estimation.
Our focal stack matching measure averages over the an-

gular samples (and hence reduces noise), making it robust
for comparison against the ground truth focal stack. How-
ever, it does not account for angular color variations. In
contrast, the traditional measures (color/gradient consisten-
cies across all sub-aperture views) serve this purpose and
thus we add these two traditional metrics to further improve
the robustness of our estimation:

s
c
p(d) =

1

N

N
∑

i=1

λρ(Iiqi(d)−Ip)+(1−λ)ρ(Giqi(d)−Gp), (11)

where N is the number of sub-aperture views, Ii, Gi are

the i-th sub-aperture view and its gradient field, I,G are

the reference image and its gradient field. Function qi(d)
corresponds to the pixel in view i that corresponds to pixel

p in the reference view with the hypothesis depth d. In all

our experiments, we use λ(= 0.5).

5. Depth Estimation via Energy Minimization

Finally, we show how to integrate our symmetry-based

focusness measure with our new data consistency measure.

Occlusion Map. For more reliable estimation, we seek

to approximate an occlusion map β. In our analysis (sec-

tion 3), we have shown that ϕp(f) exhibits local symme-

try for texture boundary pixels. This local symmetry gets

weaker for pixels on the occluder and disappears for pix-

els at the true depth on the occluded surface.5 From this

5We do not consider pixels on smooth region (non-boundary) since for

smooth region, it is well known that the focus cue is theoretically ambigu-

ous. However, for those smooth region, ϕp(f) is locally constant, i.e.,

technically is still symmetric.
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(a) Prob. map of occ. boundary (b) Ground truth occ. map

Figure 7. (a) Our probability map of occlusion boundary. (b)

Ground truth occlusion map (black: no occlusion; blue to red: oc-

cluded from 1 to more than 12 views).

observation, occluded pixels will result in higher minimum

in-focus score sϕp,min = minf s
ϕ
p (f). They also have high-

er correspondence matching cost smp,0(f) since the initial-

ization assumption is invalid at occlusion boundary pixels.

Boundary pixels have relatively high variance in ϕp(f), and

hence high variance in the in-focus score sϕp (f). By com-

bining the above three factors, we use the following equa-

tion to compute the probability βp:

βp = ρ1(s
ϕ
p,min) · ρ2(s

m
p,0) · ρ3(var(s

ϕ
p )), (12)

where ρi(υ) = 1 − e−υ2/(2σ2

i ), i ∈ {1, 2, 3}, which maps

υ to [0, 1] with σi set as 90% upper quartiles of the corre-

sponding quantities over the entire image, and var(·) com-

putes the variance. Fig. 7 shows a probability map of the

occlusion boundary.

Algorithm. We model depth estimation as an energy min-
imization problem. The energy function is a typical MRF
formulation:

E(o) =
∑

p

E
data(op) + λR

∑

q∈Ωp

E
smooth(op, oq), (13)

E
data(op) = s

in
p (op) + λms

m
p (op) + λcs

c
p(op),

E
smooth(op, oq) = ρ(Ip − Iq) · (op − oq)

2
,

where Ωp is the four neighborhood of pixel p, λm, λc and

λR are weighting factors, and ρ(υ) = 1 − e−|υ|2/(2·0.05
2).

Algorithm 1 shows our complete approach.

6. Experiments

We implement Algorithm 1 using graph cut algorithm

for energy minimization as our basic method (denoted as

“ours”). In order to further deal with challenging cases with

many constant color objects, we adopt a multi-scale opti-

mization scheme (denoted as “ours msc”), where the down-

sampled version of the problem is first solved and then the

result is upsampled [12] to guide the disparity estimation

for finer levels. In many experiments, the basic method al-

ready produces satisfactory results.

Algorithm 1: Robust Disparity Estimation from LF

Data: LF input I(s,t), disparity range [dmin, dmax], max

focal shift δmax

Result: Disparity map o

Initialization i = 0, o0 = 0, E0 = E(o0), ∆E = 1e6;

Synthesis LF focal stack ϕp(f);

Compute sinp and scp for all p in center view;

while i ≤max iter and ∆E ≥ min err update do

forall the p in center view do

Render ψp(δ) for δ ∈ [0, δmax] based on oi;

Compute smp ;

Solve oi+1 = argmino E(o) Eq. 13 by Graph-cut;

Ei+1 = E(oi+1), ∆E = Ei − Ei+1 ;

i = i+ 1 ;

We first experiment on the synthetic LF datasets used in

[39, 37, 38, 33, 5] to validate the effectiveness of the pro-

posed measures. We compare our technique with graph cut

method (GC) involving classical data cost only (Eq. 11).

Second, we evaluate on real LFs from [33] in comparison

with the methods of Sun et al. [32], Wanner et al. [39] and

Tao et al. [33]. Then, we test on our own real LFs captured

by Lytro: indoor and outdoor sets. The noise level of indoor

images is higher than that of outdoor set due to insufficient

lighting. The sub-aperture images are extracted using MAT-

LAB Light Field Toolbox v0.2 [9], which exhibit significant

amount of noise.

Execution time. The main computation load is the focal

stack computation and the local focal stack rendering. Cur-

rent technique [7] shows that LF refocusing achieves real

time with GPU programming. Similarly, the local focal s-

tack rendering is also parallelizable. However, our current

implementation is in Matlab, and runs on CPU at 3.4GHz

with 12G memory. It takes around 20 mins for an LF of size

7 × 7 × 370 × 370 with 60 disparity labels, where the fo-

cal stack computation takes around 10 mins. We leave GPU

implementation as future work.

Parameters. We can adjust the weighting parameters in

Eq. 13 for optimal results according to the noise level of the

input data. They are relatively stable inside each data set of

similar SNR level. This is analogous to fine-tuning weight-

s to balance data and smoothness terms in classical MRF.

Table 1 lists all parameter settings used in our experiments.

In all our experiments, we set δmax to be 1/5 of the overall

disparity range.

Table 1. Parameter settings.
Data Set Outdoor Indoor Tao’s Multi-scale StillLife Raytrix

λm 0.5 0.4 0.4 0.4 0.5 0.9

λc 0.8 0.9 0.9 0.9 0.9 0.5

λR 0.05 0.05 0.05 0.08 0.05 0.1
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Reference view 9x9 views 5x5 views 3x3 views

Focal slice

Figure 8. View number analysis. Although the refocusing results

exhibit strong aliasing in sparsely sampled dataset, our method

produces almost indistinguishable results.

View number analysis. In order to show the robustness

of our algorithm to refocusing aliasings, we test on Still-

Life [39] with sampling rates being 9x9, 5x5 and 3x3 views.

Fig. 8 shows our results. Although the refocusing result-

s exhibit strong aliasing in sparsely sampled dataset, our

method produces almost indistinguishable results.

Table 2. Error comparison on datasets with Guassian noise.
Noise variation 10/255 Noise variation 20/255

Methods Buddha Cube Mona Buddha Cube Mona

SCam[5] 0.0703 0.0569 0.0973 0.2552 0.2001 0.2760

LAGC[40] 0.1325 0.5745 0.0771 0.9806 0.9249 0.4527

GCDL[39] 0.0610 0.0150 0.0347 0.3038 0.2109 0.3863

Ours 0.0173 0.0148 0.0206 0.0303 0.0154 0.0383

Noise analysis. To validate the robustness of our algorith-

m to noises, we add Gaussian noises (with noise variation

20/255 and 10/255) to several clean LF datasets from [39]

and compare the mean square errors between our method

and methods SCam [5], LAGC [40]6 and GCDL [39] in Ta-

ble 2. LAGC [40] can be viewed as a sophisticated GC

method with line-assisted high order regularization and oc-

clusion reasoning. From the comparison, we can see that

our results are much more robust to noises by incorporat-

ing noise-invariant data measures, while the other methods

heavily rely on color matching across views and bring nois-

es into their disparity maps.

Combined cost. As shown in the previous work [33, 22],

combining different depth cues is beneficial in depth recov-

ery. The cost metric from a single depth cue often suffers

from having multiple competing local minimums in the cost

profile. Combining multiple depth cues will solve the am-

biguity by ruling out inconsistent local minimums between

different cues. Fig. 9 shows a such example. For the oc-

clusion boundary pixel marked by the blue circle, the cost

profile (blue curve) from the focus cue has multiple com-

peting local minimums. The preferred disparity label is not

the true disparity. The correspondence matching cost profile

(green curve) has a flat valley. Disparity from each single

cost profile will be erroneous. Our combined cost profile

6We use the code from the authors’ project page.

Reference view Back focus Front focus
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Label

Correspondence Combined Focus

Figure 9. Cost profile on occlusion boundary. Only use the focus

score(blue) or correspondence score(green) will lead to the wrong

disparity estimation. Our combined score(red) implies the correct

disparity.

(red curve) correctly reveals the true disparity7, where the

true disparity has low costs in both profiles.

Real examples. We compare our results with the result-

s from Tao et al. [33], Sun et al. [32] and Wanner et al.’s

GCDL [39] in Fig. 10. This dataset contains heavy noise.

The results of Sun’s and Wanner’s methods are from the

project page of [33]. Sun’s and Wanner’s methods fail to re-

cover meaningful disparity maps because of ambiguous cor-

respondence matching. While by combining multiple cues,

Tao’s algorithm gives a rough disparity estimation. Howev-

er their results are overall blurry. Our multi-scale method

clearly outperforms those methods. Unlike Tao’s, our re-

sults have sharp boundaries and more details.

Fig. 11 shows the results on our data. Both GC and Tao’s

method lose fine structures, since the details are vulnerable

to noises. However, our method recovers fine details with

extracted noisy images. Even official Lytro software pro-

duces less satisfactory results, although it can access more

accurate and cleaner sub-aperture images. Among the re-

sults, our iron wire is most complete. We recover com-

plex plants well, such as the top leaf and the fine branch

structures in the bonsai example. Our results preserve much

clearer details in flower examples.

The results of Raytrix dataset are shown in Fig. 12. Com-

pared with the results from Wanner’s method [39], our re-

sults are much clearer.

Fig 13 shows the improvement from our multi-scale

scheme for more challenging noisy images with objects of

constant color. The correspondence matching cost is severe-

ly affected by noises. Our multi-scale successfully recover-

7The true disparity is validated manually by matching sub-aperture

views in photoshop.
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Reference Our msc Tao et al. Sun et al. Wanner et al.

Figure 10. Comparison between our results and the results from

Tao [33], Sun [32] and Wanner’s GCDL [39] on the dataset from

Tao et al[33].
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Figure 11. Disparity reconstruction results on indoor and outdoor

datasets.

s the disparity map of those scenes, while the GC, Tao’s

method fail in finding the right correspondence.

Reference OursWanner et al.

Figure 12. Disparity reconstruction results on Raytrix dataset.

Reference GC OursTao’s Ours msc

Reference GC OursTao’s Ours msc

Figure 13. Disparity result comparison between GC, Tao’s, ours

and our multi-scale optimization method.

7. Conclusion

We have presented a new depth-from-light-field (DfLF)

technique by exploring two new properties of the LF fo-

cal stack. We proposed the use of a symmetry property of

the focal stack synthesized from the LF: if the focal dimen-

sion is parameterized in disparity, non-occluding pixels in

the focal stack exhibit symmetry along the focal dimension

centered at the in-focus slice. We showed that this symme-

try property is valid even if the LF is noisy or undersampled,

and as a result, useful as a new robust focus measure. We

have further proposed a new data consistency measure by

rendering a (local) focal stack from the hypothesized depth

map and computing its difference with the LF synthesized

focal stack. This new data consistency measure behaves

much more robustly under noise than traditional color d-

ifferences across views. We validated our approach on a

large variety of LF data, captured using LF camera array

and LF cameras; our results outperformeed state-of-the-art

techniques.

One plan is to explore automatic parameter tuning for

better energy minimization function for specific types of

scenes. Of particular interest is example-based learning. In

addition, we would like to investigate the use of contour

detection to determine if the image/scene contains a smal-

l or large number of occlusion boundaries. This analysis

can provide useful cues for adjusting λm, λc and λR in Eq.

13 accordingly. Currently, some of our results still appear

rather flat due to the first-order smoothness term. Higher-

order smoothness priors may be used for capturing more

detailed scene geometry.
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