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Abstract

Wearable cameras, such as Google Glass and Go Pro,

enable video data collection over larger areas and from dif-

ferent views. In this paper, we tackle a new problem of lo-

cating the co-interest person (CIP), i.e., the one who draws

attention from most camera wearers, from temporally syn-

chronized videos taken by multiple wearable cameras. Our

basic idea is to exploit the motion patterns of people and

use them to correlate the persons across different videos, in-

stead of performing appearance-based matching as in tra-

ditional video co-segmentation/localization. This way, we

can identify CIP even if a group of people with similar ap-

pearance are present in the view. More specifically, we de-

tect a set of persons on each frame as the candidates of

the CIP and then build a Conditional Random Field (CRF)

model to select the one with consistent motion patterns in

different videos and high spacial-temporal consistency in

each video. We collect three sets of wearable-camera videos

for testing the proposed algorithm. All the involved people

have similar appearances in the collected videos and the

experiments demonstrate the effectiveness of the proposed

algorithm.

1. Introduction

Video-based individual, interactive, and group activity

recognition has attracted more and more interests in the

computer vision community. Using fixed cameras for col-

lecting videos suffers from the problem of only covering

very limited areas. This problem will get even worse when

recognizing activities in a social event, such as a concert,

ceremony or party, where multiple people are present and

move from time to time. Recently, wearable cameras, such

as Google Glass or Go Pro, provide a new solution, where

all or part of the involved persons wear a camera over head

to record what they see over time [8, 21, 23].

(a) A co-interest person (in red boxes) identified in the same frame across different videos.

(b) A co-interest person (in red boxes) identified along the same video.

Video 1 Video 2 Video 3 Video 6Video 5Video 4

Frame 1 Frame 2 Frame 3 Frame 6Frame 5Frame 4

Figure 1. An illustration of the basic idea underlying the proposed

CIP detection approach. (a) A CIP (in red boxes) always shows

consistent 3D motion patterns across all the videos in which he/she

is present. (b) A CIP (in red boxes) usually shows high spatial-

temporal consistency along a video. Our proposed algorithm con-

siders the consistency in both (a) and (b) for CIP detection. Note

that Video 3 in (a) is an egocentric video of the CIP.

By combining the temporally synchronized videos from

different wearers, we can recognize the activity occurred

in a large area, because camera wearers can walk or move

the head to follow the people or event of interest [35].

An important problem arising from this setting is to iden-

tify the co-interest person (CIP) that attracts the attentions

from multiple wearers since this person usually plays a cen-

tral role in ongoing event of interest [12]. The CIP and

his/her activities are of particular importance for surveil-

lance, anomaly detection and social network construction.

For examples, in a public scenario such as an airport, CIP

can be a person with abnormal behavior or activity who usu-

ally draws attention from multiple camera-wearing security

guards and the quick detection of such CIPs can promote

the public security. In a kindergarten, CIP may be a kid

with strange behavior that continuously draws joint atten-

tions from camera-wearing teachers or other kids. In this

case, the CIP detection can facilitate the early findings of

various child development issues. In a group discussion,

people usually focus on the person who leads or gives the

speech at any time and the identification of such CIPs over

time can help summarize and edit all the videos from the

attendee’s cameras for more effective information manage-
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ment and retrieval. In this paper, we develop a new ap-

proach to detect CIPs from multiple videos taken by wear-

able cameras.

In many social events, attendees may wear clothes with

similar color and texture, such as wearing specific uniforms

in work and suits in a formal dinner. In these cases, it is very

difficult to identify CIPs by performing appearance match-

ing across multiple videos, as shown in Fig. 1(a). In this

paper, we identify the CIP based on his/her motion patterns:

it is unlikely that two persons in the view keep showing ex-

actly same motion over time.

However, it is a very challenging problem to identify the

person with the same motion pattern from different videos

even if these videos are temporally synchronized, because

the motion pattern of a person is defined in 3D and can only

be partially reflected in each 2D video. In practice, the 3D

motion of a same person may be projected to completely

different 2D motions in different videos, as illustrated in

Fig.1(a). In addition, in this research, the inference of the

2D motion pattern of a person is further complicated by the

use of the wearable cameras: camera motion and person

motion are mixed in generating each video.

In this paper, we address this challenging problem by

combining the temporally synchronized frames from differ-

ent videos using a Conditional Random Field (CRF) model.

We first perform human detection to obtain a set of candi-

dates of the CIP. Then we build a CRF by taking each frame

as a node and the candidates on that frame as its states. In

this CRF, we define an inter-video energy that reflects the

motion-pattern difference of the candidates drawn from dif-

ferent videos, as illustrated in Fig. 1(a). In particular, we use

histogram of optical flow (HoF), Hankelets [18] and motion

pattern histograms (MPH) [5] to describe the human mo-

tion. We also include an intra-video energy term in the CRF

to measure the location and size consistency of candidates

across frames of a same video, as illustrated in Fig. 1(b).

The minimization of the proposed CRF energy will gener-

ate a CIP on each frame of each video that shows both inter-

video and intra-video properties. To handle the case where

a frame contains no CIP, e.g., the CIP can not see himself in

his egocentric video, as shown by Video 3 in Fig.1(a), we

also introduce an idle state in each frame.

2. Related Work

2.1. Video cosegmentation

Related to this paper is a series of prior research on

video co-segmentation, where common objects are seg-

mented from multiple videos. Video co-segmentation can

be treated as an extension of the long-studied image co-

segmentation [6, 13, 14, 16, 19, 20, 25, 28, 29, 33], where

the input is a set of images instead of videos.

However, different from the proposed CIP detection, the

multiple videos used for video co-segmentation are usually

not temporarily synchronized: they may record the same

object at different time. As a result, the co-segmented

person may not show motion consistency across different

videos. In practice, almost all the existing co-segmentation

algorithms are based on object-appearance matching. For

example, [3] and [26] model the co-segmentation as a

foreground/background separation problem based on the

appearance information. Wang et al. [32] develop an

appearance-based weakly supervised co-segmentation algo-

rithm which also needs the labels for a few frames. In [15],

the common objects are localized in different videos by us-

ing the appearance and local features.

Some of prior video co-segmentation methods use the

motion information to help track and/or segment the ob-

jects in each video but not corresponding objects across

videos as in the proposed CIP detection. Chiu and Fritz

[4] propose a multi-class co-segmentation algorithm based

on a non-parametric Bayesian model which uses the motion

information for object segmentation. In [34], a number of

tracklets are detected inside each video and the appearance

and shape information along the tracklets are then extracted

to identify the common target in multiple videos. In [9], co-

segmentation is formulated as a co-selection graph where

motions are estimated to measure the spatial temporal con-

sistency. In [11], motion trajectories are detected to match

the action across video pairs. However, the action match-

ing is only in the high-level of the action type. There is no

frame-by-frame motion consistency between these videos

since they are not temporally synchronized.

In addition, when multiple people are present in the view

of each video, most works on video co-segmentation iden-

tify all of them as a common object – person. In the pro-

posed CIP detection, we need to distinguish them and iden-

tify one person with presence in all or most of the videos.

2.2. Gaze concurrences

Also related to our work is the research on gaze concur-

rences of multiple video takers. Robertson and Reid [24]

estimate face orientation by learning 2D face features from

different views. In [27], the points of interest are estimated

in a crowded scene. However, these methods rely on video

data captured from a third person. As a result, the area cov-

ered by these videos are quite limited and the accuracy of

head pose estimation degrades when distance to the cam-

era increases [22]. Park et al. present an algorithm to lo-

cate gaze concurrences directly from videos taken by head-

mounted cameras. However, this algorithm requires a prior

scanning of the area of interest (for example, a room or an

auditorium) to reconstruct the reference structure. This may

not be available in practice.
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3. Proposed Method

To detect CIP over time, we record a set of N tempo-

rally synchronized long-streaming videos that are taken by

N wearable cameras over time [0, T ]. The CIP in these

videos may change over time. To simplify the problem, we

first apply a sliding window technique to divide the time

[0, T ] into overlapped short time windows with length T .

Over each short time window, we assume that the CIP does

not change in these N videos and we propose an algorithm

to detect such a person in each window. The proposed al-

gorithm also provides an energy for the CIP detection in

each window. This energy value negatively reflected the

confidence of the CIP detection. Finally, we merge the CIP

detection results over all the windows based on their ener-

gies to achieve a CIP detection at each frame over [0, T ], as

illustrated in Fig. 2.
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Figure 2. The framework of the proposed algorithm.

To merge CIP detection results from all the windows,

we always select the one with lowest detection energy at

each frame. Specifically, by using sliding window tech-

nique, the constructed windows are partially overlapped and

each frame, say t, is covered by multiple windows, say

W1,W2, · · · ,WK . In each window Wk, the CIP detection

algorithm (to be introduced in Section 3.1) generates a CIP

detection Pk and an associated energy Ek . We find the one

with the lowest energy as

k∗ = arg min
1≤k≤K

Ek (1)

and set Pk∗ as the final CIP detection in this frame t.

An example is shown in Fig. 3. In this figure, Wi denotes

the partially overlapped windows, and Pi and Ei denote the

CIP detected in each window Wi and its energy, respec-

tively. If P1 = P2 = P ′ and P3 = P4 = P5 = P6 = P7 =
P ′′, as shown in Fig. 3, then the red dashed line actually

indicates a time when CIP is changed from P ′ to P ′′.

In the following, we focus on developing the proposed

CIP detection algorithm in each window W .

W1

W2

W3

W4

W5

P1=P’, E1=0.20

P2=P’, E2=0.42

P3=P”, E3=0.86

P4=P”, E4=0.55

P5=P”, E5=0.15

Result

P6=P”, E6=0.10

P7=P”, E7=0.11

P”P’

W6

W7

Co-interest person changes

Figure 3. An example that illustrates the merging of the CIP detec-

tion results.

3.1. CIP detection using a CRF model

Over a short-time window W , the N input videos are

actually cropped intoN synchronized short video clips F =
{Fn|n = 1, 2, · · · , N} with Fn = {Fn

t |t = 1, · · · , T }
where Fn

t is the t-th frame in the n-th video clip.

As shown in Fig. 2, we first perform the human detec-

tion on each frame and take each detection as a CIP candi-

date. A conditional random field (CRF) [7] is then con-

structed by treating each frame as a node and each can-

didate on this frame as a state of this node. Using this

CRF model, our goal is to seek a candidate hn
t on each

frame Fn
t as the detected CIP. Specifically, the CIP detec-

tion H = {hn
t |n = 1, · · · , N ; t = 1, · · · , T } has a poste-

rior probability

p(H |F) ∝ exp(−E(H |F))

with E(H |F) =
∑

n,m,t,r

Ψ(hn
t , h

m
r |Fn

t , F
m
r ), (2)

where Ψ(hn
t , h

m
r |Fn

t , F
m
r ) is a energy of matching hn

t and

hm
r as the same person and taking it as the CIP. In the re-

mainder of the paper, we simplify the notation of this pair-

wise energy as Ψ(hn
t , h

m
r ) and the energy functionE(H |F)

as E(H) when there is no ambiguity. This way, the CIP de-

tection in the short time window is reduced to a problem of

finding an optimal H that minimizes the energy E(H |F).
The major problem to be solved here is the definition

of the pairwise energy Ψ(hn
t , h

m
r ), which should reflect the

correspondence of the CIP between a pair of frames drawn

from F . In this paper, we consider two cases: 1) the two

frames are from the same video clip (intra-video), and 2)

the two frames are from different video clips (inter-video).

For Case 1), the CIP in a same video clip shows two typi-

cal properties: (i) its relative location in the frame does not

change much over time, because the camera wearer usually

moves his head/eyes to follow the CIP even if the CIP is

moving; (ii) The size of the CIP does not change much be-

tween neighboring frames. For Case 2), we only consider

the synchronized frame pairs from different video clips. In

this case, the detected CIP should show consistent 3D mo-

tions.
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In our CRF model, we define two different energies Ψ1

and Ψ2 for the intra-video and inter-video frame pairs, re-

spectively, as illustrated in Fig. 4 and rewrite the energy

function E(H) in Eq. (2) as

E(H) =
∑

n,t,r 6=t

Ψ1(h
n
t , h

n
r ) +

∑

t,n,m 6=n

Ψ2(h
n
t , h

m
t ). (3)

Different from many previous works [7, 9], no unary en-

ergy term is defined in this paper since we do not consider

the candidate’s appearance information. The construction

of Ψ1 and Ψ2 will be elaborated in the following section.

Video 1 Video 2 Video 3 Video N

Frame 1

Frame 2

Frame T

Figure 4. An illustration of the CRF construction for CIP detec-

tion. Each column denotes one video and each row denotes the

same frame from different videos. We treat each frame as a node

and the detected CIP candidates on each frame as the states of the

node. In this CRF, the red lines indicate that the inter-video en-

ergies are defined over all pairs of synchronized frames between

different videos. The green lines indicate that the location-change

penalty term in the inter-video energy is defined between each pair

of frames inside a video, and the purple lines indicate that the size-

change penalty in the inter-video energy is defined only between

neighboring frames inside a video.

3.2. IntraVideo Energy and InterVideo Energy

Intra-Video Energy. Ideally, a CIP that draws a camera-

wearer’s attention usually stays in the view center of the

wearer. However, the view center of the wearer may not

be perfectly aligned with the center of the camera he/she

wears. Therefore, we do not consider center bias in defining

the intra-video energy in this work. Instead, the relative

location of the CIP usually does not change much in a short

video clip and we can penalize the location change between

frames for CIP detection. In addition, in a short video clip,

the size of CIP should not change substantially. Considering

these two properties, we define the intra-video energy as

Ψ1(h
n
t , h

n
r ) = 1− (‖cnt − cnr ‖+ 1)−1

+δ(t, r − 1)
(

1− (‖snt − snr ‖+ 1)−1
) (4)

where cnt , cnr (snt , snr ) denote the center (size) of the can-

didate in frame t and r in video n, respectively. δ(x, y) is

the indicator function that equals to 1 if x = y and 0 oth-

erwise. The inclusion of this indicator function ensures that

the penalty to the CIP size change is only defined for adja-

cent frames.

Inter-Video Energy. As mentioned above, the inter-

video energy is based on motion patterns of the CIP. In this

paper, we extract the motion patterns using two types of

features: frame-based and trajectory-based features.
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Figure 5. Frame-based motion feature extraction.

The frame-based features are defined to measure the mo-

mentary motion of the CIP using the information from a pair

of neighboring frames. Specifically, we calculate the optical

flow using neighboring frames [2]. To remove the influence

of camera motion, we further calculate the relative optical

flow for each candidate by subtracting the average optical

flow in its surrounding region. An example is shown in the

top row of Fig. 5(b), where the red box indicates a candi-

date and the region between the red box and its surrounding

blue box is taken for computing the average optical flow for

subtraction.

In this paper, we assume all the videos are taken from

a similar altitude. This way, at a specific time the 3D

vertical motion of the CIP should be projected to simi-

lar directions (up or down) in all the cameras but a 3D

horizontal motion may be projected to opposite direc-

tions in different cameras. For example, in Fig. 5(a),

the same hand motion is from right to left when viewed

from front, but from left to right when viewed from back.

Therefore, in this paper we propose to ignore the hor-

izontal motion direction information in constructing the

frame-based features. Many previous works use a his-

togram of optical flow (HOF) quantized at 8 directions:

East(E), West(W), North(N), South(S), North-East(NE),

North-West(NW), South-East(SE) and South-West(SW) as

motion features. By ignoring the horizontal motion direc-

tions, in this paper, we reduce these 8 directions into 5 by

merging three histogram-bin pairs, i.e., merging NW into

NE, W into E, and SW into SE, which are vertically sym-

metric, as shown in Fig. 5(b).

To construct the frame-based features for each CIP can-

didate on each frame, we divide its bounding box along the

vertical direction in a pyramid style, as shown Fig. 5(b).
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The bounding box is first uniformly divide into two smaller

boxes, each of which is then further divided into two equal-

size boxes. In our experiment, we perform 3 rounds of pyra-

mid division and in total achieve 1 + 2 + 4 + 8 = 15 boxes

in 4 scales for each candidate. By computing and concate-

nating the 5-bin HOF (as mentioned above) for the origi-

nal bounding box and the subdivided boxes, we construct

an HOF-based feature f̂n
t with a dimension of 5 × 15 =

75. Within each box (including the original bounding box

and its subdivided boxes), we further compute the aver-

age magnitudes of the optical flow along x and y direc-

tions, and the corresponding standard deviations of these

magnitudes along x and y directions, respectively to con-

struct a magnitude-based feature f̃n
t with a dimension of

4 × 15 = 60. In this paper, the frame-based feature is de-

fined as the union of the HOF-based and the magnitude-

based features.

In practice, the change of the camera angle usually re-

sults in the change of the optical-flow magnitudes in f̃n
t .

Therefore, when comparing frame-based features between

two candidates, we use L1 distance for the HOF-based fea-

tures and the correlation metric for the magnitude features:

ΨF (h
n
t , h

m
t ) = 1− exp(−‖f̂n

t − f̂m
t ‖) + corr(f̃n

t , f̃
m
t ).

(5)

In addition to the frame-based features, we also ex-

tract trajectory-based features based on short tracklets to

capture the motion over a longer time. The Hankelets

features, Movement Pattern Histograms (MPH), and Mo-

tion Barcodes show good view-invariance property and

have been successfully used for cross-view action recog-

nition [1, 5, 18]. In this paper, we use Hankelets features

and Movement Pattern Histograms (MPH) features as the

trajectory-based features.

Tracklet. Starting from each candidate, we generate a

tracklet with the typical length of 15 frames. In this pa-

per, we use a simple greedy tracking strategy [34]: given a

candidate in a frame, the candidate in the next frame with

the highest spatial overlap is taken and this process is then

repeated frame by frame to form the tracklet.

Dense trajectory. Improved dense trajectories have

been used to efficiently represent videos with camera mo-

tions [31]. In this paper, we extract such improved trajec-

tory features (typically 15 frames). If the majority part of a

trajectory, e.g., on more than 8 out of 15 frames, is not co-

incident with a tracklet, we treat it to be a trajectory in the

background. In this paper, we remove background trajecto-

ries and only keep the trajectories in the foreground.

Hankelet. Following [18], we construct one Hankelet

(a 16×8 Hankel matrix) for each trajectory. The Hankelets

feature for a candidate is the combination of the Hanklets

for all the trajectories in this candidate’s bounding box.

MPH. The MPH features for a candidate’s trajectories

consist of 5 histograms, corresponding to the 5 motion di-

rections as used in the frame-based features (see Fig. 5(b)).

For each direction, the histogram takes each frame as a bin

and the histogram value corresponds to the total trajectory

magnitude along this motion direction in this frame.

The difference between two Hankelets Kr and Ks is de-

fined as d(Kr,Ks) = 2 − ‖KrK
T
r + KsK

T
s ‖F [18]. As

mentioned above, each candidate corresponds to a set of

Hanklets, one for each trajectory. In this paper, we define

the Hankelet-based difference between two candidates as

the average one over all Hankelet pairs across these two

candidates. By using L1 distance for the MPH features, we

define the trajectory-based energy term as

ΨT (h
n

t , h
m

t ) =
1

NH

∑

r∈h
n

t
;s∈h

m

t

d(Kr,Ks)+
1

5

5∑

d=1

‖Md

hn

t
−M

d

hm

t
‖

(6)

where NH denotes the number of all different Hankelet

pairs across two candidates and Md
hn

t

indicates the d-th his-

togram (in total 5 directions) in the MPH features.

Finally, we define the inter-video energy as

Ψ2(h
n
t , h

m
t ) = ΨF (h

n
t , h

m
t ) + ΨT (h

n
t , h

m
t ).

3.3. Identifying the frames without CIP

One problem of the CRF model defined above is its as-

sumption that there is always a CIP in each frame. This

may not be true in practice. For example, the CIP’s ego-

centric video usually cannot capture himself. Similar issues

may occur when the CIP is occluded in some of the frames.

To handle this issue, we add an idle state for each node

(frame). Let A = {An
t |A

n
t = hn

t

⋃

Int , n = 1, · · · , N ; t =
1, · · · , T } denote the state set which includes the idle states

Int . The energy function is redefined as

E(A) = E(H)+
∑

n,t,r 6=t

Ψ′
1(I

n
t , A

n
r )+

∑

t,n,m 6=n

Ψ′
2(I

n
t , A

m
t ),

(7)

where Ψ′
1 and Ψ′

2 denote the intra-video and inter-video en-

ergies that involve idle states, respectively. In this paper,

we simply define them using the average intra-video energy

and inter-video energy over the candidate pairs:

Ψ′
1(I

n
t , A

n
r ) =

1

N1

∑

n,t,r 6=t

Ψ1(h
n
t , h

n
r )

Ψ′
2(I

n
t , A

m
t ) =

1

N2

∑

t,n,m 6=n

Ψ2(h
n
t , h

m
t )

(8)

where N1 and N2 denote the number of all different can-

didate pairs used in calculating the average intra-video and

inter-video energies, respectively. As illustrated in Fig. 6,

the average energy is located between the minimal energy

for a pair of CIPs and the energies between a pair of can-

didates with at least one non-CIP. This will facilitate the

selection of idle state in a frame when the CIP is missing in

this frame.
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Non-CIP CIP
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Figure 6. An illustration of using the average energy over all can-

didate pairs as the energy terms for idle states. The average energy

is located between the minimal energy for a pair of CIPs and the

energies between a pair of candidates with at least one non-CIP.

Eq. (7) is a well known NP-hard discrete energy mini-

mization problem [10, 17]. In this paper, we use the TRW-S

algorithm [17] to solve for an approximately optimal solu-

tion.

4. Experimental Results

4.1. Data collection

We collect three sets of temporally synchronized videos

taken by multiple wearable cameras. These three sets of

videos, denoted as V1, V2 and V3 respectively, are taken

in different scenes, including both indoor and outdoor set-

tings. For each video set, there are 6 persons who are both

performers and camera wearers and therefore generate 6

videos. Each person wears a GoPro camera over the head.

We arrange the video recording in a way that the 6 perform-

ers alternately play as the CIP in the video recording by per-

forming different actions. All 6 persons wear white shirts

and bluish jeans thus sharing very similar appearances. We

manually label the CIP by a bounding box in each frame

by using the video annotation tool provided in [30]. In to-

tal, we collected 24,000 frames (16 minutes), 25,000 frames

(16 minutes 40 seconds) and 20,000 frames (13 minutes 20

seconds) for these three video sets V1, V2, and V3 respec-

tively.

4.2. Results

We first show an example to illustrate the effectiveness of

the proposed motion features for identifying the same per-

son from different videos that are temporally synchronized.

As shown in Fig. 7(a), blue bounding boxes indicate the de-

tected CIP candidates and red points indicate the improved

dense trajectories for each candidate. The MPH features,

the color histograms in Lab color channels, and the HOF

features are visualized below the corresponding frames. In

Fig. 7(b), confusion matrices between different candidates

are given when using different features – each element in

the confusion matrices indicates the energy in matching one

candidate from frame F1 and a candidate from frame F2.

Note that C1 and D1 are the same person, and C2 and D2 are

also the same person. Bold font in these matrices indicates

the matching energy (i.e., feature difference) of the same

person across these two frames and clearly the smaller, the

better. We can see that when using the four motion features,

these bold-font elements are usually the smallest elements

in the respective confusion matrices. However, when using

the color features, the bold-font elements are not the small-

est in their respective confusion matrix. This shows that the

motion features can be more effective than the color features

in person identification when the involved people share a

very similar appearance.
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Figure 7. An example to illustrate the effectiveness of the proposed

motion features.

We then evaluate the proposed algorithm on the collected

three video sets. For each detected CIP, denoted by C, if

there is a ground truth box G with an overlap O = C
⋂

G

C
⋃

G

larger than 0.5, we count this detected CIP C to be a true

positive. In this way we can calculate the precision, recall,

and the F -score= 2×precision×recall
precision+recall

. Table 1 shows the

quantitative performance of the proposed algorithm and a

state-of-the-art video co-segmentation method [34], as well

as the variants of the proposed algorithm using different

features. For the comparison method [34], instead of us-

ing the object proposal result, we directly feed the bound-

ing boxes of the detected candidates to its pipeline. “Frame

based” and “Trajectory based” are the variants of the pro-

posed methods using only the frame-based features and the

trajectory-based features, respectively. “Color based” is an-

other variant of the proposed method using only the color

features of Lab histograms instead of any motion features.

We can see that the comparison method [34] shows a similar

performance as “Color based” and both of them do not per-

form as good as the proposed algorithm. To demonstrate the

usefulness of the location-change penalty term in Eq. (4),
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we also report the results of the proposed algorithm without

this location-change penalty term, indicated by “w/o loca-

tion penalty” in Table 1.

Table 1. The performance of the proposed algorithm and its vari-

ants, and a comparison video co-segmentation method [34].

Methods Videos Precision Recall F -score

Method in [34]

V1 0.4538 0.4082 0.4298

V2 0.4673 0.4066 0.4348

V3 0.4245 0.4033 0.4136

Color based

V1 0.4232 0.4405 0.4317

V2 0.4401 0.4259 0.4329

V3 0.3812 0.4270 0.4028

Frame based

V1 0.4667 0.5011 0.4833

V2 0.4481 0.5066 0.4756

V3 0.4089 0.4401 0.4239

Trajectory based

V1 0.5101 0.5523 0.5304

V2 0.4898 0.5396 0.5135

V3 0.4611 0.5122 0.4853

w/o location penalty

V1 0.4891 0.5207 0.5044

V2 0.4622 0.4758 0.4689

V3 0.4532 0.5107 0.4802

Proposed

V1 0.5598 0.6036 0.5809

V2 0.5287 0.5682 0.5477

V3 0.5027 0.5984 0.5464

Note that the performance of the proposed algorithm is

highly dependent on the accuracy of human detection that is

used for candidate detection. If a CIP is present but not de-

tected as a candidate, the proposed algorithm will surely fail

to detect the CIP. We also conduct an experiment to evalu-

ate the proposed CIP detection algorithm only on the frames

where the underlying CIP is among the detected candidates.

We hope this result can show the performance of the pro-

posed CIP detection by excluding the errors from human

detection. Specifically, if no detected candidate shows a

larger-than-0.5 overlap (intersection divided by union) with

the ground-truth CIP on a frame, we exclude the CIP detec-

tion on this frame from the performance evaluation. Table 2

shows the results before and after excluding such frames

into evaluation.

Figures 8 and 9 show the CIP detection results on sam-

ple frames from V1 and V3, respectively. Blue, red and

green boxes indicate the detected candidates, the detected

CIP and the ground truth, respectively. Frames with a solid

red square on the top-left corner indicate that no CIP is de-

tected by our algorithm, e.g., they are drawn from the CIP’s

egocentric video or the CIP is occluded in these frames.

Frames with a solid blue square on the top-left corner indi-

Table 2. The performances of the proposed method before and af-

ter excluding the frames where the CIP is present but not among

the detected candidates.

Models sets Precision Recall F -score

Before

V1 0.5598 0.6036 0.5809

V2 0.5287 0.5682 0.5477

V3 0.5027 0.5984 0.5464

After

V1 0.6134 0.6591 0.6354

V2 0.5960 0.6011 0.5985

V3 0.5789 0.6603 0.6169

cate that no candidate is detected in these frames. As shown

in Fig. 8, the proposed algorithm can detect CIP even if the

CIP shows similar appearance to other people in the same

scene. From the top four rows of Video 3, the bottom row

of Video 1, and the second row of Video 2 in Fig. 8, we

can see that the proposed algorithm can handle CIP missing

cases, e.g., on the frames drawn from the CIP’s egocentric

video, by introducing the idle states. The second row of

Video 4 in Fig. 8 shows a failure case, which is caused by

the partial occlusion of the CIP. The top two rows of Video

3 in Fig. 9 show another failure case where the CIP is not

detected because it is not among the detected candidates.

The most time consuming steps in the proposed algo-

rithm are the candidate detection and the extraction of the

raw features, such as the dense trajectories and optical

flow. The major components of the algorithm, including

the motion-feature generation, the CRF construction and the

CRF optimization, take an average time of 20 seconds (de-

pendent on the number of candidates detected in a video

clip) on a laptop with Intel i7-2620M CPU and 4GB RAM,

where each CRF is constructed for a 100-frame window

over 6 synchronized videos. Therefore, in total 600 frames

are modeled by a CRF in our experiments.

5. Conclusions

In this paper, we developed a new algorithm to detect co-

interest persons (CIPs) from multiple, temporally synchro-

nized videos that are taken by multiple wearable cameras

from different view angles. In particular, the proposed algo-

rithm extracts and matches the motion patterns across these

videos for CIP detection and can handle the case where the

CIP shares a very similar appearance to other nearby non-

CIP persons. The proposed algorithm is based on a CRF

model which integrates both intra-video and inter-video

properties. In the experiments, we collected three video

sets, each of which contains six 13+ minute GoPro videos

that are temporally synchronized for performance evalua-

tion. The results show that the proposed alglorithm outper-

forms a state-of-the-art video co-segmentation method and

other color-based methods.
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Video 1 Video 2 Video 3 Video 4 Video 5 Video 6

Figure 8. The CIP detection on sample frames from V1. Blue, red and green boxes indicate the detected candidates, the detected CIP and

the ground truth, respectively. Frames with a solid red square on the top-left corner indicate that no CIP is detected by our algorithm, e.g.,

they are drawn from the CIP’s egocentric video or the CIP is occluded in these frames. Frames with a solid blue square on the top-left

corner indicate that no candidate is detected in these frames. Best viewed in color.

Video 1 Video 2 Video 3 Video 4 Video 5 Video 6

Figure 9. The CIP detection on sample frames from V3. See the caption of Fig. 8 for the meaning of different-color boxes. Best viewed in

color.
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