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Abstract

We propose a new direction for fast video super-

resolution (VideoSR) via a SR draft ensemble, which is de-

fined as the set of high-resolution patch candidates before

final image deconvolution. Our method contains two main

components – i.e., SR draft ensemble generation and its op-

timal reconstruction. The first component is to renovate

traditional feedforward reconstruction pipeline and greatly

enhance its ability to compute different super-resolution re-

sults considering large motion variation and possible er-

rors arising in this process. Then we combine SR drafts

through the nonlinear process in a deep convolutional neu-

ral network (CNN). We analyze why this framework is pro-

posed and explain its unique advantages compared to previ-

ous iterative methods to update different modules in passes.

Promising experimental results are shown on natural video

sequences.

1. Introduction

Video super-resolution (VideoSR), a.k.a. multi-frame

super-resolution (MFSR), refers to the process of estimating

a high resolution (HR) image from a sequence of low res-

olution (LR) observations. It is fundamental in visual pro-

cessing, as several applications, including video enhance-

ment and text/object recognition in surveillance and phone

videos, can benefit from it. Although effective strategies

have been proposed, VideoSR remains a difficult problem

for real-world natural image sequences.

Previous methods [17, 7, 18, 5, 6, 15, 14, 16, 12, 13] in

this area involve a few key components for pixel-level mo-

tion estimation on LR images, warping each LR image to

the HR space, and final deconvolution given the physical

LR generation process from HR images. They are similarly

important since any of them being the bottleneck could de-

grade system performance and lower the result quality.

Difficulties It has been observed for long time that mo-

tion estimation critically affects MFSR. Erroneous motion

inevitably distorts local structure and misleads final recon-

struction. Albeit essential, in natural video sequences, suf-

ficiently high quality motion estimation is not easy to ob-

tain even with state-of-the-art optical flow methods. On

the other hand, the reconstruction and point spread func-

tion (PSF) kernel estimation steps could introduce visual

artifacts given any errors produced in this process or the

low-resolution information is not enough locally.

These difficulties make methods finely modeling all con-

straints in e.g., [12], generatively involve the process with

sparse regularization for iteratively updating variables –

each step needs to solve a set of nonlinear functions. The

computation cost is high.

Our Non-iterative Framework Our idea is to reduce the

majority of the computation by employing a non-iterative

procedure. It is essentially different from other solutions

for VideoSR.

Our principled strategy is to decompose the overall pro-

cedure of VideoSR into only two components – unlike con-

ventional methods – based on an ensemble of SR drafts in

generation and discrimination respectively. SR draft is de-

fined as a HR image patch candidate before the final de-

convolution. Our first component in the framework thus is

draft-ensemble generation, which quickly produces a set of

SR drafts from the input LR sequence.

The second component, which is similarly important, is

to determine the optimal portfolio among the proposed SR

drafts. We propose a deep convolutional neural network

(CNN) for its learning. This SR draft-ensemble CNN also

integrates the function of deconvolution to form the final

HR image with minimal visual artifacts.

Our SR draft-ensemble CNN considers contextual in-

formation provided from external data for super-resolution.

Note in several previous methods, optimal states have to be

reached via iterative processing based on the image gener-

ation principle. Our method is along another line to pro-
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pose sufficiently many draft proposals in generation and

then find the optimal ones via deep learning, which utilizes

the strength of discriminative learning.

We experiment with many real-world natural video se-

quences to validate our new framework. Visually com-

pelling results with many structural details are produced

quickly. Moreover, it avoids parameter tuning in the test

phase and performs consistently well on both synthetic and

real-word data.

2. Related Work

We discuss the relationship and inherent difference be-

tween our SR draft ensemble method and existing represen-

tative reconstruction-based systems. Our method is related

to the fast feedforward maximum likelihood estimation [5],

3D kernel regression (3DKR) [16], and Bayesian adaptive

video super-resolution [12].

Our image generation pipeline is based on the feedfor-

ward maximum likelihood solution [5]. But rather than re-

lying on possibly erroneous motion estimation, our CNN

finds the best among multiple local HR structures provided

by the SR draft ensemble. This scheme also extends the

capability from handling pure translation [5] to complex

local motion. Besides, deconvolution is integrated in the

unified network rather than separate employment [9, 18, 5].

Thus during training, our method enlists the ability to adapt

deconvolution since all parameters are learned consistently

within the same optimization framework. Errors possibly

arising in separate steps can be largely reduced.

The 3DKR method [16] upsamples and roughly warps

the LR sequence and then adopts local data-driven 3D ker-

nel regression to estimate the HR image. Pixel-level corre-

spondence is still necessary. The 3D kernel is only deter-

mined by pixels in the local neighborhood, while our net-

work is learned from a large amount of external data.

As for the Bayesian adaptive method [12], it iteratively

estimates all operators in the maximum a posterior (MAP)

manner. It provides considerable HR details when opti-

cal flow estimate is accurate. To this end, parameters may

need to be tuned for the best performance. Differently, our

method has two parts for sufficient HR candidate genera-

tion and discriminative learning to naturally find suitable

estimates. It thus does not need complicated nonlinear op-

timization during testing and runs much faster. The result

quality is also high even for the challenging natural data.

3. SR Draft-Ensemble and Its Analysis

Our method contains two major components for SR

draft-ensemble generation and its discrimination. We de-

scribe the first component in this section along with its sta-

tistical analysis.

Algorithm 1 : SR Draft Generation

1: For all i except the reference frame

2: Compute warping F⊤

i from ST ILi to ST IL
0

3: Compute Yi = FT
i ST ILi

4: End

5: Compute Q =
T∑

i=−T

FT
i STSFi

6: Compute SR draft Z =
T∑

i=−T

Q−1Yi.

3.1. SR Draft Generation

In the problem of VideoSR, given an input sequence of

LR frames {IL
−T , · · · , IL

0
, · · · ,ILT }, our goal is to recover

the HR image I0 corresponding to the LR reference frame

IL
0

. Here T is the radius of the temporal neighborhood. The

image formation model shows that each observed LR frame

ILi is generated as

ILi = SKFiI0 + Vi, (1)

where S, K and Fi are decimation, PSF kernel and warp-

ing operators for the i-th frame respectively. Vi is the ad-

ditive noise. It is a complicated formation process since

these variables and our target I0 are all unknown in prior.

This makes many previous methods take heavy computa-

tion to alternately estimate them in iterations, especially for

the frame-wise motion operator Fi.

Our first component instead is to use simple methods to

directly estimate SR drafts Z = KI0. Because Fi involved

in this process could be complex even locally, instead of

producing one Z for each local window, we produce a set

of them by varying the motion estimation strategy.

For fast processing, we modify the feedforward method

[5] to generate a series of SR drafts for each window. As

this is not our main contribution, we simply outline the pro-

cess for each draft in Alg. 1. Here Yi is the zero-upsampled

and forward warped i-th frame and Q is diagonal. Thus in-

version is equivalent to pixel-wise division. As Q is mostly

singular in practice, we use bilinear interpolation in case of

division by zero. Z is the reconstructed SR draft. Note that

we omit the deconvolution step, which was included in the

original method [5].

3.2. SR DraftEnsemble and Its Visualization

The feedforward method in Alg. 1 runs quickly and has

been evaluated in prior work. It was found that this process

may not produce similarly good results as other methods

proposed later due to its heavy reliance on motion estima-

tion. It has no extra steps to update pixel correspondence

when local displacement information is wrong.

Instead of relying on feedforward, we enhance this

method by inputting more motion information. This pro-
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Figure 1. The 1st row shows the reconstructed blurred HR images by TV-ℓ1 flow, where from (a) to (d), α is set to 0.005, 0.02, 0.025, 0.05

respectively. The 2nd row shows the results of MDP flow, where λ is set to5, 8, 14, 20 respectively from (e) to (h).

cess makes it produce several SR Drafts D based on a set of

motion estimates. In our method, we experiment with two

robust optical flow algorithms. One is TV-ℓ1 flow that is to-

tal variation regularized with the L1-norm data term [2, 11].

It is a common choice now for robust optical flow to reject

outliers. The other is the motion detail preserving (MDP)

flow [20] that has incorporated invariant feature correspon-

dences and thus produces results different from TV-ℓ1.

These two algorithms can be adjusted respectively on the

weight of TV term α for TV-ℓ1 and weight of smoothness

term λ for MDP to produce motion estimates that are differ-

ently regularized. They yield a series of SR drafts Z after

feedforward reconstruction in Alg. 1.

A few results are shown in Fig. 1. The two optical

flow algorithms produce different results. For example, in

the first row for the results of TV-ℓ1, the zoom-in view of

the white car-window is the best with α = 0.05 while the

black window is visually compelling with α = 0.02 or

0.025. Similarly in the results of MDP in the second row,

the snowflake information is the best with λ = 5 and the

human face is good with λ = 20.

These results imply that regularization strength affects

motion estimates. It is inherently necessary to have different

motion estimation methods along with their various param-

eters to find the locally best estimates. By updating these

factors in the feedforward reconstruction, we overcame the

limitation that pixel correspondence cannot be updated in

the original framework and obtain a family of SR drafts –

each can be treated as an expert model for accurately esti-

mating some kind of motion. The set of SR drafts is thus

named SR draft-ensemble.

3.3. The Statistics of SR Draft Ensemble

To understand the statistical properties of our SR draft-

ensemble, we conduct the following experiments. We col-

lect 100 HR video sequences of resolution 800 × 1200
and generate the corresponding LR sequences following the

general image formation procedure. Specifically, we apply

a low-pass Gaussian filter with standard deviation σ = 1.5
to HR images and downsample them with a factor of 4. For

each sequence, we treat the middle frame as the reference

and compute all forward warping matrices based on TV-ℓ1
optical flow under 20 different values of α (specified in our

supplementary files), i.e., A = {αi|i = 1, ..., 20}. Then

we compute 20 corresponding SR drafts Z = {Zi|i =
1, ..., 20} according to Alg. 1.

We randomly sample 1000 locations from every Gaus-

sian filtered HR reference frame. The resultant ground-truth

blurred HR reference frame is denoted as P ∗. For each loca-

tion, we collect patches with size 100× 100 from the above

SR drafts, denoted as P = {Pi|i = 1, . . . , 20}. Then we

calculate the sum of squared difference (SSD) between P ∗

and Pi and find the minimal SSD value. Suppose Pm yields

the minimal SSD. We say the corresponding αm helps pro-

duce the best match for patch P ∗.

We conduct two experiments to demonstrate important

findings. The first experiment is to calculate the number

of best-matches with respect to each α and plot the mean

distribution in Fig. 2(e). This histogram shows all α are

possibly the best in motion estimation for different regions

in natural image sequences. Their distribution is not con-

centrated on only a few values, but instead rather uniform.

The second experiment is to validate that our set of α is

enough in general for constructing high-quality blurred HR
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Figure 2. Statistics by varying motion estimation methods. (a)

Ground truth blurred HR patch P ∗. (b) ∼ (d) Corresponding SR

drafts with α = 0.012, 0.08, 0.15 and SSD = 31.5, 55.9, 109.8.

(e) Histogram of the numbers of best-matches over 20 different α

values. (f) Mean and standard deviation of PSNRs w.r.t. size k of

the subset of A.

images. In this experiment, we construct a few subsets of A
containing the first k values of α in A. For each sequence,

with the given subset of A, we reconstruct the best SR draft

by picking up the best-match that yields the minimal SSD

with the ground-truth blurred HR patch P ∗ at each position.

Then we calculate the peak signal to noise ratio (PSNR)

between the best SR draft and corresponding P ∗. Fig. 2(f)

plots the mean and standard deviation of PSNRs w.r.t. the

size k of each subset.

This experiment manifests that results by applying these

20 values already contain SR drafts very close to the ground

truth data under high PSNRs. If the best SR draft can

be found for each location, the following reconstruction

process can be achieved nicely. More α candidates only

marginally increase the performance.

Now, the problem is how to find the optimal or near-

optimal SR drafts for final image reconstruction. We em-

ploy a discriminative learning algorithm to find suitable

candidates and accomplish the final reconstruction simul-

taneously.

4. Ensemble Learning via CNN

Our second main component in the system is SR draft en-

semble learning to infer suitable drafts in a data-driven man-

ner and apply the final deconvolution to reconstruct the HR

images. This component is accomplished suitably through

a deep convolutional neural network framework.

4.1. Motivation

With the multiple SR drafts – each can be regarded as

one channel for the corresponding image – our input to this

module is a multi-channel image. The goal to reduce this

multi-channel image back to one-channel by inferring suit-

able SR drafts is however very challenging.

One possible solution is to treat this process as labeling

where each patch is selected among a few using methods of

discrete optimization under Markov random fields (MRFs).

But this scheme needs to define appropriate potential func-

tions. Hand-crafted costs may not work well for general

natural videos because the process to compute the final SR

draft from many candidates may not be simple selection.

Instead highly nonlinear local operations could be involved.

Also, the solution through defining potential functions

and optimizing them does not guarantee that their HR re-

sults can be successfully deconvolved for final visually-

compelling reconstruction. An image that does not satisfy

the convolution model easily generates visual artifacts, such

as ringing, in the reconstructed HR image.

With these concerns, we resort to a CNN solution, which

is found surprisingly capable to deal with these challenges.

The advantages are threefold. First, the three-dimensional

filter of CNN plays a role of continuous weight combina-

tion of multiple local spatial regions, which is beneficial for

artifact removal. Second, our CNN framework is novel on

concatenating two modules for SR draft construction and fi-

nal reconstruction. The unified structure makes output SR

drafts optimal w.r.t. the final clear image. Finally, the share-

weight nature of CNN makes it effective in terms of repre-

sentativeness than many classical models, such as pairwise

MRF and run quickly during testing as the computation is

only on a few convolution operations.

4.2. Network Architecture

As aforementioned, the input to our network is the c-

channel image where each of the first c − 1 channels cor-

responds to one image produced with one optical flow

method. The last channel image is the bicubic-interpolated

LR reference frame to lower bound computation in cases

all employed optical flow algorithms fail due to extremely

large motion.

The architecture of our CNN is shown in Fig. 3 where

the output of the l-th layer is expressed recursively as

F l(X) = X l = 0

F l(X) = tanh(W l ∗ F l−1(X) +Bl) 1 ≤ l ≤ L− 1

F l(X) = W l ∗ F l−1(X) +Bl l = L (2)

Here the input sequence X is of size h × w × c, where h

and w are the height and width and c denotes the channel

number. W l is the concatenation of nl convolutional filters

in the l-th layer and is of size fl × fl × nl−1 × nl. Here fl
is the spatial size of the filter, nl−1 is the number of filters

in the last layer and Bl is the vector of bias with length nl.

The size of the output of the l-th layer is h×w×nl. We use

a tanh function as our nonlinear unit. In our network, the

number of hidden layers is L = 4. The filter sizes are set as
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256 channel

Stage 1 Stage 2

512 channelbicubic input

Z

Figure 3. The two-stage architecture of our CNN framework. The input is a multi-channel image containing the set of reconstructed blurred

HR images and the bicubic interpolated reference frame. The first and second stages aim at merging SR drafts and final deconvolution

respectively.

f1 = 11, f2 = 1, f3 = 3 and f4 = 25. And the numbers of

filters are n1 = 256, n2 = 512, n3 = 1 and n4 = 1.

To understand the design of our framework, we split the

network into two parts. The first part consists of three con-

volutional layers and is expected to merge HR details from

SR drafts in the region level. The architecture of this stage

is similar to that of [4]. After processing the input sequence

in the first a few layers, the output single-channel image is

fed to the next part to perform deconvolution [10] and re-

move visual artifacts. Instead of adopting a large network

as that in [10], we only use a 25 × 25 kernel, which is ini-

tialized by weights of an inverse kernel. We elaborate on

parameter setting in Sec. 5.3.

4.3. CNN Training

For our CNN training, rather than adopting the ℓ2 loss

function as [4, 3], we exploit the ℓ1 loss with total vari-

ation (TV) regularization, inspired by recent reconstruction

methods [6, 12] to reduce visual artifacts. Moreover, the TV

regularizer, which is imposed on the output of network, can

be nicely incorporated into the back-propagation scheme.

Denoting the function represented by the network as F ,

we minimize

L =
1

N

N∑

i=1

(‖F(Xi)− Ii‖1 + λ‖∇F(Xi)‖1) . (3)

Here the total number of training sequences is N . Ii is the

i-th ground truth HR reference frame. ‖∇F(Xi)‖1 is the

aforementioned total variation term and λ is the correspond-

ing regularization weight. To deal with the ℓ1 norm, we

use the Charbonnier penalty function Φ(x) = (x2 + ε2)1/2

for approximation. Here we empirically set λ = 0.01 and

ε = 0.001. Learning the network is achieved via stochastic

gradient descent with back-propagation.

5. Experiments

We build a VideoSR dataset1 by collecting 160 video se-

quences from 26 high-quality 1080p HD video clips, which

cover a wide variety of scenes and objects. These sequences

are with complex non-rigid motion and present occlusion

in different levels. For fair comparison with the method

of [12], each sequence is trimmed to contain 31 consecu-

tive frames where 15 forward and 15 backward neighboring

frames are used to update the central one.

We generate the LR frames by first applying the low-

pass Gaussian filter K to the HR frames for anti-aliasing

and then downsampling them with a factor of 4. The setting

of K is elaborated on in Sec. 5.1. In our dataset, we select

112 sequences for training and the remaining for testing.

Due to limited memory, one thousand 100 × 100 patches

are randomly sampled from SR drafts per sequence, thus

resulting in a total of 112,000 training inputs. Moreover, to

evaluate the generalization ability of our CNN model, we

collect 40 real-world natural video sequences captured by

cell phones and digital cameras with varying quality and

containing a set of objects of flower, text, barcode, etc.

5.1. Implementation

We use a PC with an Intel Core i5 CPU and a NVIDIA

K40 GPU. We implement our CNN based on the Caffe plat-

form [8]. We use the publicly available implementation of

TV-ℓ1 [11] and MDP [20] optical flow algorithms. The con-

volutional filter in the second stage of our network is initial-

ized by an inverse kernel, which has 25×25 spatial support,

smaller than the one adopted in [21, 10].

To perform data augmentation on PSF K, we enlarge

the training set by using multiple PSF kernels K to per-

form convolution. As suggested in [12], a PSF kernel for

upscaling factor of 4 can be approximated by a Gaussian

1For dataset, code and more details, please visit our website (link in the

front page).
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(a) (b) (c) (d)

Figure 4. Comparison of synthetic sequences at a magnification factor of 4. (a) Bicubic interpolation of the reference frame. (b) Results of

Bayesian Video SR [12]. (c) Our results. (d) Ground truth.

with standard deviation from 1.2 to 2.4. We thus adopt

K = 1.5, 1.8, 2.1 in our experiments. The learning rates

are 10−6 for the first convolutional layer and 10−7 for other

layers. Smaller learning rates for the last layers are impor-

tant for our CNN to converge. No weight decay is employed

during our experiments. We train our model for approxi-

mately 3×107 back-propagations. For RGB sequences, we

treat color channels separately during training and testing.

5.2. Validation of Our Network

We first validate our method on both generated and real-

world data. For generated LR data, we compare results with

state-of-the-art Bayesian adaptive video SR (BayesSR) [12]

in Fig. 4. More are contained in the project website. For the

example penguin shown in the first row of Fig. 4, the wing

part undergoes extremely large motion. While for the cases

of temple and city in bottom two rows, similar difficulties

occur in the adornment and facade respectively, easily lead-

ing to visual artifacts or erroneous reconstruction near the

boundary of moving objects.

Our results are more natural due to sufficient SR drafts

that are used and the nonlinear learning procedure by CNN

to further reduce visual artifacts. We calculate the PSNR

and SSIM [19] values and list them in Table 1. Our results

are reasonable under these quantitative measures. We note

BayesSR incorporates advanced optimization and sparse

Table 1. Comparison based on PSNR & SSIM.

PSNR BayesSR Ours SSIM BayesSR Ours

penguin 29.53 31.87 - 0.9451 0.9483

temple 29.01 30.23 - 0.9375 0.9504

city 25.49 24.89 - 0.7979 0.7610

models, and thus requires much more computation.

For the challenging real sequences, we compare

our method with commercial software Video Enhancer

(V1.9.10) [1], fast video upsampling [15], 3DKR [16] and

BayesSR. We show results of 4 sequences captured by us

with different image qualities in Fig. 5.

For example, for the building-window example in col-

umn (a), Our result contains many details. For the exam-

ples of euro in column (b), our result not only generates

sharp edges but also reconstructs a level of texture. In col-

umn (c), our result is with reduced artifacts. The last input

low-resolution poker image is a bit motion blurred. Our

method even deals with this problem and largely suppresses

the JPEG artifacts contained in the input videos.

We also compare our method with the single-image one

[3] and sharpened bicubic upsampling in Fig. 6. Our

method produces more details, manifesting that useful in-

formation indeed exists in multiple frames. The learning-

based method [3] could generate less structures than ours.

We apply our system to a low-quality surveillance video
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(a) (b) (c) (d)

Figure 5. Comparison on real natural sequences at a magnification factor of 4. The results from the first to the last rows are from bicubic

interpolation, 3DKR [16], BayseSR [12], Fast Video Upsampling [15], VideoEnhancer [1] and ours.

sequence, which is trimmed to 31 LR frames of resolution

288 × 352. The result with upscaling factor 4 is shown

in Fig. 7. Note that this video contains very strong JPEG

artifacts, which easily fail existing algorithms. Contrarily,

our system is free of tuning parameters in the testing phase.

Our result in (d) is with genuine higher resolution than input

frames from (a)-(c) and contains less artifacts. More results

with close-ups are contained in the project website.

5.3. More Analysis

We now evaluate importance of parameter setting and

initialization. We denote our method as “std” with the in-
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(a) Input (b) Sharpened Bicubic

(c) Results of [3] (d) Ours

Figure 6. Comparisons with single-image methods at a magnifica-

tion factor of 4.

(a) (b)

(c) (d)

Figure 7. Results of a surveillance video. (a)-(c) are the bicubic

upsampling results of frames 16, 20, and 30. (d) is our HR result

of the 16-th frame with upscaling factor 4.

Table 2. Comparison of different parameter setting.

penguin std. w/o inv. 5× 5 21× 21 ℓ2

PSNR 31.87 28.81 31.41 31.29 30.19

SSIM 0.9483 0.9428 0.9453 0.9521 0.9460

temple std. w/o inv. 5× 5 21× 21 ℓ2

PSNR 30.23 29.17 28.86 27.76 27.28

SSIM 0.9504 0.8860 0.9292 0.8934 0.8993

verse kernel initialization in the last layer, 11 × 11 kernel

size in the first layer and with the TV-ℓ1 loss function. First,

we show the effect of weight initialization in the last layer

by the inverse kernel. To rule out the effect of other factors,

we fix other-layer initialization and parameter values. The

results are listed in Table 2 (the 1st & 2nd columns), show-

ing that inverse kernel initialization generally improves re-

sults compared to not using such a scheme, denoted as “w/o

inv.”, in terms of PSNR and SSIM.

Then we evaluate different sizes of the convolutional ker-

nel in the first layer. Again, we fix other parameters and

only vary the kernel size. The results are reported in Table

2 (the 3rd & 4th columns for kernel sizes of 5×5 & 21×21).

Our “std.” system configuration is with the 11 × 11 kernel

size. It produces results comparable to using other settings,

showing that our system is not that sensitive to this parame-

ter. We note the computational cost of using 11×11 kernels

is much less than the choice of 21× 21.

Finally, we evaluate the loss function and compare the

TV-ℓ1 form included in our “std.” configuration with tradi-

tional ℓ2 loss under the same name in Table 2. TV-ℓ1 is

consistently better than the ℓ2 loss in terms of PSNR and

SSIM. This may be partly due to higher robustness of TV-

ℓ1 to outliers.

5.4. Running Time

Once our system is trained, it is very efficient to execute

in testing. We record the running time of our method on

an input LR sequence of 31 frames with size 120 × 180
under a magnification factor of 4. The overall time cost

of our method splits into two main parts. The first is for

computing the forward warping matrix by the TV-ℓ1 flow –

it is about 58s for one image. The other part is for the test

of our CNN, which is about 0.2s for each color channel. If

we sequentially compute multiple SR drafts, total time used

is 500s ≈ 8min, which is less than the 2-hour reported in

[12]. We further accelerate it to less than 60 seconds using

parallelization.

6. Conclusion

In this paper, we have proposed a SR draft-ensemble

framework, which exploits CNN to solve the VideoSR prob-

lem. We observe that SR drafts obtained through simple

feedforward reconstruction procedures by varying motion

estimation setting, contain generally sufficient information

for estimating the final HR image. Based on this finding,

we resort to CNN to integrate the reconstruction and decon-

volution steps. Our framework produces decent results on

many sequences. Future work will be to further enhance

the ability of this framework to handle even higher super-

resolution ratios and incorporate SR draft generation into

one unified network.
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