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Abstract

Attributes are mid-level semantic properties of objects.

Recent research has shown that visual attributes can ben-

efit many traditional learning problems in computer vision

community. However, attribute learning is still a challeng-

ing problem as the attributes may not always be predictable

directly from input images and the variation of visual at-

tributes is sometimes large across categories. In this pa-

per, we propose a unified multiplicative framework for at-

tribute learning, which tackles the key problems. Specif-

ically, images and category information are jointly pro-

jected into a shared feature space, where the latent fac-

tors are disentangled and multiplied for attribute predic-

tion. The resulting attribute classifier is category-specific

instead of being shared by all categories. Moreover, our

method can leverage auxiliary data to enhance the pre-

dictive ability of attribute classifiers, reducing the effort

of instance-level attribute annotation to some extent. Ex-

perimental results show that our method achieves superi-

or performance on both instance-level and category-level

attribute prediction. For zero-shot learning based on at-

tributes, our method significantly improves the state-of-the-

art performance on AwA dataset and achieves comparable

performance on CUB dataset.

1. Introduction

Attributes are namable properties of objects which are

observable from visual images. They can be annotated

in either instance-level or category-level (e.g. images be-

longs to the same category share common attribute anno-

tation). Beyond traditional object recognition, learning at-

tributes can provide fine-grained descriptions, such as the

holistic perception (e.g., color, shape, etc.) and presence or

absence of local parts for images. As a mid-level seman-

tic cue, they can bridge the gap between low-level features

and high-level categorization. Recent research has verified

that attributes can benefit many traditional learning prob-

lems (e.g., image search [15], object recognition [22] and

face verification [16]). Moreover, they provide a proper way

to address zero-shot classification [17] by transferring from

seen classes to unseen classes.

Direct attribute prediction methods [8, 17] train a group

of binary classifiers from image-attribute pairs, one indi-

vidually for each attribute. Fig. 1 (a) illustrates the direct

attribute learning method. During test stage, the learned

classifiers are applied to predict which subset of attributes

the input image may have. Though these methods achieve a

relatively good performance in predicting attribute and rec-

ognizing unseen categories, there are some obvious limita-

tions as following:

1. Correlation between attributes are ignored. Natural-

ly, attribute as properties of objects are correlated with

each other, therefore it is more appropriate to learn all

the attributes jointly, such as sharing attribute-specific

parameters or common semantic representations.

2. Some attributes are hard or even unable to predict

based on visual appearances. For example, it is im-

possible to infer color-relevant attribute from an gray

image input or predict whether an animal is fast or slow

based on an still image.

3. Negative attribute correlation between object and

scene. For weakly supervised attribute learning[17],

the input image contains both object and scene. It hap-

pens sometimes that the scene has some attributes that

are negatively related to object attributes. For exam-

ple, traditional attribute classifier may predict a polar

bear swimming in the ocean to have blue attribute.

4. Different visual attribute manifestations vary across

categories. For example, the same attribute concept

“fluffy” varies considerably between dog and towel[6].

Some methods have been proposed to tackle the above

problems to some extent. Lampert et al. [17] propose

a method to indirectly predict attributes by transferring
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Figure 1. Models for attribute learning. (a) direct attribute prediction model; (b) indirect attribute prediction model; (c) category-sensitive

attribute learning model; (d) our proposed multiplicative model. x,a and y denote image, attribute and label vectors respectively. W,U,V

are model parameters. Bold lines mean known relationship.

knowledge between classes which can infer some attributes

which are unable to detect directly. Fig. 1 (b) illustrates

the indirect attribute learning method. Jayaraman et al.

[12] and Chen et al. [6] formulate attribute learning in

regularization-based multi-task learning framework, where

each subtask corresponds to learning one attribute. Wang

et al. [21] use Bayesian network to enhance attribute pre-

diction by leveraging the statistical relationships between

attributes and objects. Huang et al. [10] model attribute

learning as a supervised hypergraph cut problem to learn

attributes jointly and exploiting class information.

In this paper, we propose a unified multiplicative multi-

task learning framework to address all the above problems.

Fig.1 (d) illustrates our model, where the image and catego-

ry vectors in the unified common space interact multiplica-

tively to predict the attributes. During the training stage,

all parameters are learned to automatically balance the in-

formation to be leveraged. In sum, the main advantages of

our proposed method are as follows: (1) By projecting input

images and categories into a latent common space, factors

correlated to all attributes are disentangled and multiplied

for attribute prediction. (2) Our method can leverage cat-

egory information to infer attribute when the latter is hard

or unable to be predicted. In addition, when negative corre-

lation exists, the scene used as context information is help-

ful to predict category. In this way, scene information can

be converted into positive cues for indirect attribute predic-

tion. (3) The attribute classifier in our method are instance-

specific and can be decomposed into a linear combination of

category-specific attribute classifiers. Thus, it gives a finer

attribute description than conventional attribute classifiers

and can be transferred to unseen class more easily. (4) Ex-

perimental results show that our method achieves superior

performance in not only attribute prediction but also zero-

shot learning.

The rest of this paper is organized as follows. We first

introduce some related works in the following section. In

Section 3, we present the unified multiplicative model in

detail. Experimental results are then shown in Section 4.1.

Finally, Section 5 concludes the paper.

2. Related Work

Semantic embedding. Our method can be viewed as

a unified semantic embedding for images, attributes, and

categories. Akata et al. [1, 2] use category-level attribute

vectors as class embedding and model the relationship be-

tween images and class embedding by a bilinear function.

Each column of the function parameters can be interpret-

ed as an attribute classifier which is shared by all the cat-

egories. Since visual attribute manifestations vary across

categories, the assumption of parameter sharing is not ap-

propriate, especially when the inter-class variation is large.

Hwang et al. [11] explicitly embed all semantic entities in-

cluding attributes and supercategories into the same space.

Then an object can be represented as linear combination of

the semantic entities. Without considering the variation of

visual attribute manifestations, the attribute embedding is

also shared across categories. In addition, they mainly learn

the unified semantic space for better multi-class classifica-

tion accuracy, while we focus on maximum likelihood es-

timation of logistic regression model for attribute predic-

tion. Fu et al. [9] propose a framework called transductive

multi-view embedding to tackle the projection domain shift

problem in zero-shot learning.

Multi-task learning. Our method is in the multi-task

learning framework, where each task corresponds to learn-

ing one semantic attribute. Jayraman et al. [12] propose to

decorrelate visual attributes by group lasso regularization

based on attribute group information. In this way, feature

sharing is encouraged in the same attribute group and fea-

ture competition is promoted across different groups. Chen

et al. [6] adopt a robust regularization scheme to detect out-

lier attribute and leverage correlations among attributes.

Multiplicative models. Multiplicative models are effec-

tive in relating separate underlying factors in data. [20]
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proposes a general framework of multiplicative multi-task

learning which decomposes the model parameters of each

task into a multiplication of two components, the cross-task

component and the task-specific one. Our method is dif-

ferent from this work as we use a multiplication of three

components to model the third-order relationship between

image, category and attribute. And the cross-task compo-

nent in our method is not under the assumption of being a

vector. [13] presents a multimodal neural language model

in a multiplicative form, where images are used for gating

word representations. In our method, the category-level in-

formation can be considered as the gate for attribute pre-

diction. Our formulation on the relationship between gated

inputs and attributes is different from that of [13], which

makes use a known language model. [14] also uses multi-

plicative models to learn the third-order relationship. How-

ever, in [14], attributes are provided to learn the conditional

word similarity, while our model predicts category-sensitive

attributes by leveraging category information from a classi-

fication model.

Usage of category information. Lampert et al. [17]

propose a method to indirectly predict attributes by trans-

ferring knowledge between classes. However, this method

can not predict instance-level attributes and totally ignores

the low-level visual cue. Wang et al. [21] propose a u-

nified probabilistic model to capture the class-dependent

and class-independent attribute relationships, which ben-

efit both attribute prediction and object recognition. [5]

models high-order relationship between attribute and cat-

egory to predict category-sensitive attributes and infer un-

seen category-attribute pairs by using tensor completion

based on a sparse set of category-specific attribute classi-

fiers. Fig. 1 (c) illustrates the method. Huang et al. [10]

propose to model the attribute learning as a supervised hy-

pergraph cut problem and consider it as a multi-graph cut

problem to incorporate category information.

3. Our Proposed Method

We begin by introducing some notations. Assume there

are T attributes to be predicted, each of them being con-

sidered as one task in the multi-task learning framework.

Suppose there are N labeled training images, {xi,ai}
N
i=1,

where xi ∈ R
D denotes the D-dimensional image feature

vector, and ai ∈ {0, 1}T indicates the absence or pres-

ence of all binary attributes. Each image xi has a class

label vector yi ∈ R
C , where C is the number of class-

es. The training images can be expressed in matrix form as

X = [x1,x2, . . . ,xN ] ∈ R
D×N , similarly for the attribute

matrix A ∈ R
T×N and class label matrix Y ∈ R

C×N .

3.1. Multiplicative Attribute Learning Model

We transform training images and their class labels into

a shared feature space, where the latent factors correlated

Figure 2. Illustration of our method for predicting attribute “blue”.

Category information helps to address the negative correlation

problem. 0.5 denotes the decision boundary for attribute predic-

tion.

to attributes are disentangled. Suppose linear mappings for

images X and labels Y from their original spaces to the

latent feature space, which are parameterized respectively

by W ∈ R
F×D and U ∈ R

F×C . F is the dimensionality of

the latent feature space. Then, Wxi and Uyi represent the

feature representations of image xi and its class information

in the latent space.

In multi-task learning framework, the tth (t = 1, . . . , T )
task corresponds to learning a binary classifier for the tth

attribute. Let vt ∈ R
F denotes the parameters of the tth

classifier in the latent space. Different from traditional at-

tribute learning methods, we relate all parameters using a

multiplication model for attribute classification. Formally,

the discriminant function of the tth attribute of the object in

image xi is defined as follows:

f(xi,yi, t) = (vt)
T ((Uyi)⊙ (Wxi)) (1)

= 〈vt,Uyi,Wxi〉, (2)

where the operator ⊙ denotes element-wise multiplication,

i.e., ((Uyi)⊙ (Wxi))k = (Uyi)k(Wxi)k, k = 1, . . . , F .

In the above equation, the discriminant function is a mul-

tiplication (inner product) of three components. The com-

ponent Wxi means to learn a better visual representation

for image xi to facilitate attribute classification. The com-

ponent Uyi is used as a gate for the attribute classifier vt

to transfer knowledge from category information. Actually,

the category-level information is an important factor for at-

tribute learning, as the visual appearances of attributes are

usually class-sensitive. Besides, for some attributes which

are hard to predict based on visual cues, we can infer them

from category information. Moreover, category-level infor-

mation may be helpful to address the negative correlation

problem, as illustrated in Figure 2. The model parameters

Φ = {W,U,V} are shared across all images and tasks.

During training stage, all the parameters will be learned to

automatically decide how to leverage image, attribute and

category information.

Based on the discriminant function defined above, we

can make use of logistic regression model to jointly learn

all attributes. The loss function is expressed as the negative

2508



log likelihood:

L(X,Y,A; Φ) =
1

N

T
∑

t=1

N
∑

i=1

[−atilog(g(f(xi,yi, t)))

−(1− ati)log(1− g(f(xi,yi, t)))],
(3)

where Φ is the set of parameters to be learned. ati indicates

the presence or absence of the tth attribute for image xi.

g(x) is a sigmoid function.

The final objective of our multiplicative model takes the

following form:

J = L(X,Y,A; Φ)+λ1Ω(W)+λ2Ω(U)+λ3Ω(V), (4)

where Ω(·) is a regularizer on the mapping matrices and

attribute classifier. The parameters λ1, λ2 and λ3 are used to

trade the relative influence of the three regularization terms.

In this paper, we choose the squared Frobenius norm as the

form of Ω(·).

3.1.1 Category-specific attribute classifier

The discriminant function for the tth attribute of xi, as ex-

pressed in Eqn. (1), can also be written as:

f(xi,yi, t) = ((Uyi)⊙ vt)
T (Wxi) (5)

=





C
∑

j=1

yji(uj ⊙ vt)





T

(Wxi). (6)

Here uj is the jth column of U, and yji is the binary cate-

gory label which indicates whether xi belongs to object cat-

egory j. (uj ⊙ vt) acts as the tth attribute classifier which

is specific for the object category j. In our method, each

input image xi is transformed (by W) into the latent fea-

ture space, and its attributes are predicted by the category-

specific attribute classifiers.

With the training samples, we train a softmax multi-class

object classifier by minimizing the following loss function:

LY (X,Y; Θ)

=
1

N

C
∑

j=1

N
∑

i=1

−1{yji = 1}
exp(θT

j xi)
∑C

k=1 exp(θ
T
k xi)

, (7)

where θj is the classifier parameter for object category j.

We use the given training set to learn the parameters with

a weight decay regularization. At test stage, the category

probabilities of a test image x can be estimated as follows:

ỹ =











ỹ1
ỹ2
...

ỹC











=
1

∑C

j=1
exp(θT

j x)











exp(θT
1 x)

exp(θT
2 x)

...

exp(θT
Cx)











. (8)

With the estimated category information, we can predict the

attributes of x by marginalizing the category labels as fol-

lows:

p(at = 1|x; Φ) =
C
∑

j=1

ỹjg(f(x, ej , t)), (9)

where ej denotes a vector with only one nonzero coordinate

of value 1 in jth position.

3.1.2 Instance-specific attribute classifier

Besides utilizing a separately trained model, we can also

jointly train the multi-class classification model (Eqn. 7)

and attribute classifiers. In that case, the objective of our

multiplicative framework can be re-expressed as:

J̃ = L(X, Ỹ,A; Φ) + βLY (X,Y; Θ) + λ1Ω(W)

+λ2Ω(U) + λ3Ω(V) + λ4Ω(Θ). (10)

Note that the softmax outputs of object categories replace

the binary category labels in the first loss term. After joint

training, we obtain instance-specific attribute classifiers for

xi:

(Uỹi)⊙ vt =

C
∑

j=1

ỹji(uj ⊙ vt). (11)

From the equation above, we can see that the classifier for

the tth attribute is dependent on not only the category but al-

so the input image itself. Actually, it is a linear combination

of all the category-specific attribute classifiers. We can em-

pirically prove that instance-specific classifiers are superior

to category-specific classifiers in attribute prediction.

For zero-shot learning, the instance-specific attribute

classifier for an image from an unseen category can be esti-

mated by the category-specific attribute classifiers of all the

seen categories.

3.2. Optimization

Traditional multiplicative models are optimized by al-

ternating optimization algorithms. It converts the original

problem into several subproblems with respect to each pa-

rameter and optimizes one parameter in a subproblem with

others being fixed. Such optimization process is alternated

until the model converges to a local minimum, as analyzed

in [3]. In our work, we also use alternate optimization to

minimize the objective function in Eqn. (4). The overall

algorithm is described in Algorithm 1.

As presented in the algorithm, instead of randomly ini-

tializing W and V, we initialize them with the SVD decom-

position of traditional logistic regression classifier parame-

ters. The derivative of the objective function with respect to
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Algorithm 1 Alternating optimization for UMF

Input: image feature X, category information Y, attribute la-

bels A, latent space dimension F , and balance parameters λ1,

λ2, λ3

Output: U,V,W

Train logistic regression classifiers for attribute learning and

get the parameter matrix E

Do SVD decomposition for E = PSQT

Initialize W0 = S
1

2

1:F,1:FP
T
:,1:F , V0 = S

1

2

1:F,1:FQ
T
:,1:F

and U0 with random value

Set t = 0
repeat

L-BFGS optimization for U∗ with fixed Wt,Vt

Update Ut+1 = U∗

L-BFGS optimization for W∗ with fixed Vt,Ut+1

Update Wt+1 = W∗

L-BFGS optimization for V∗ with fixed Ut+1,Wt+1

Update Vt+1 = V∗

t = t+ 1
until

∥

∥Wt
− Wt−1

∥

∥

2
+
∥

∥Ut
− Ut−1

∥

∥

2
+
∥

∥Vt
− Vt−1

∥

∥

2
< ǫ

the parameter matrices are as following:

∂J

∂U
= ((WX) ◦ (V(g(VT ((UY) ◦ (WX))−A))YT + λ1U

∂J

∂V
= ((WX) ◦ (UY))(g(VT ((UY) ◦ (WX))−A)T + λ2V

∂J

∂W
= ((UY) ◦ (V(g(VT ((UY) ◦ (WX))−A))XT + λ3W

(12)

Here, ◦ denotes the Hadamard product. With two of the

parameter matrices fixed, we need to estimate the optimal

value of the third matrix according to one of these equations

using L-BFGS algorithm.

3.3. Enhancing Category Information

As fine-grained semantic descriptions, attributes are usu-

ally hard to define and costly to acquire. Therefore, the

scale of labeled attribute dataset is relatively small com-

pared to those in large-scale visual learning tasks, such as

image classification and image search. To address the smal-

l scale training data problem, our method gives a way to

boost attribute learning by enhancing category information.

Assuming there are two types of training data X and

Xa. The former has both attribute labels and category labels

while the latter only has category labels Ya. The objective

function of our multiplicative framework can be written as:

J̃a = L(X, Ỹ,A; Φ) + βLY (X,Xa,Y,Ya; Θ) (13)

+λ1Ω(W) + λ2Ω(U) + λ3Ω(V) + λ4Ω(Θ).

With the enriched training data, we can obtain enhanced ob-

ject category information Ỹ, which benefits attribute learn-

ing.

4. Experiments

4.1. Datasets and Evaluations

To access the efficacy of our proposed multiplicative

framework, we conduct experiments on real-world datasets

for attribute prediction and zero-shot learning. Two types

of attribute definition are adopted in our experiments. For

category-level attribute definition, we use Animals with At-

tributes and Caltech-UCSD Birds. These two datasets are

widely used to verify the transferability of the learned at-

tribute classifiers. For instance-level attribute definition,

aPascal-aYahoo and ImageNet attributes are used to vali-

date the discriminative power of the proposed methods. The

detailed information of the above four datasets are as fol-

lows:

Animals with Attributes (AwA) [17]. The dataset is

collected by querying the image search engines with im-

ages from 50 animal categories. Outliers and duplicates are

further removed manually, and the number of the remain-

ing images is 30,475. The minimum and maximum number

of images from one category is 92 and 1,168 respectively.

Each category is annotated with 85 attribute labels.

aPascal-aYahoo (aPaY) [8]. The first part of this dataset

is called aPascal which contains 6430 training images and

6355 testing images from Pascal VOC 2008 challenge.

Each image comes from twenty object categories. The sec-

ond part is aYahoo dataset. There are 2644 images be-

longing to twelve categories which are disjoint with aPascal

dataset. Each image is annotated with 64 binary attribute

labels in these two datasets. In our experiment, we merge

them into one whole dataset.

Caltech-UCSD Birds (CUB) [19]. This dataset con-

tains 11,788 images of 200 bird classes. Each category is

annotated with 312 attributes. Since this dataset gives a

fine-grained category description, it seems harder to lever-

age categroy information to promote attribute learning than

AWA.

ImageNet Attributes (INA) [18]. ImageNet Attribute

dataset contains 9,600 images from 384 categories. Each

image is annotated with 25 attributes describing color, pat-

terns, shape and texture. 3-4 workers are asked to provide a

binary label indicating whether the object in the image con-

tains the attribute or not. When there is no consensus among

the workers, the attribute will be labeled as ambiguous for

this image.

For attribute prediction, we randomly split the datasets

into three subsets with equal size for training, validating and

testing. The dimension of latent space is set to the minimum

of the number of categories and attributes. Other parameters

are tuned on the validation set. We use the 4096-D DeCAF

features which are extracted by the Convolutional Neural

Networks (CNN) described in [7]. The performance of at-

tribute predictors are measured by mean area under ROC

2510



curve (mAUC) and mean classification accuracy (mACC).

For Zero-shot learning, we use the specified seen and

unseen class splits of AwA. The seen part contains 24,295

images of 40 classes and the remaining 6,180 images from

10 classes are used as unseen data. Considering the CUB

dataset does not provide the specific seen and unseen class

splits, we use 150 classes as seen classes and leave the re-

maining 50 classes as unseen. For AwA dataset, we use the

DeCAF features provided on the dataset website 1 . As for

CUB, we extract 4096-D DeCAF features using the method

in [7]. In these experiments, we randomly choose ten per-

cent of the seen data for validation to tune the parameters.

The dimension of latent space is set to the minimum of the

number of seen categories and attributes. The performance

of zero-shot learning are evaluated by normalized multi-

class accuracy.

4.2. Categorylevel Attribute Prediction

For category-level attribute prediction, we choose AwA

dataset to compare the propose method with some related

methods including:

1. Direct attribute prediction (DAP). We use linear SVMs

to train attribute classifiers separately. The Lagrangian

multipliers of SVMs are set to the same value for all

attribute classifiers without tuning elaborately.

2. Indirect attribute prediction (IAP). We train one-

versus-rest linear SVMs to do multi-class classifica-

tion. The probability of class prediction is acquired by

using LIBSVM package[4].

3. Multi-task attribute prediction (MTAP). Besides DAP

and IAP, we also compare our method with multi-task

attribute learning method [12]. Besides the conven-

tional lasso across attribute groups, they also apply the

ℓ21 regularizer for within-group sharing.

4. Direct concatenation method (Concat.). We simply

concatenates the image and class prediction, X and Ỹ,

as the input for attribute learning. This method is a

strong baseline, since it leverages the auxiliary infor-

mation in an additive way.

5. The proposed unified multiplicative framework(UMF-

IS) with instance-specific attribute classifiers.

In this experiment, the dimension of the latent common

space is set to 50. β is set to 0.5 and λ1, λ2, λ3, λ4 are all

set to 10−5.

From the results summarized in Table 1, we can see that

our UMF model achieves the highest mACC and compara-

tive mAUC with IAP. The reason why IAP achieves a high

mAUC but a relatively poor mACC is that the unbalance of

1http://attributes.kyb.tuebingen.mpg.de/

Table 1. Comparison of different attribute learning methods on

AwA dataset

Methods mAUC mACC(%) Aux. Info

DAP 0.899 86.3 No

IAP 0.927 86.9 Yes

MTAP 0.903 86.6 Yes

Concat. 0.913 87.3 Yes

UMF-IS 0.926 89.7 Yes

positive and negative samples of attribute labels does not af-

fect IAP model, which predicts attributes only from object

categories. The performance of MTAP is not as promis-

ing as being expected. From our perspective, the feature

we used is highly sparse because the rectified linear units

of CNN discard the negative part of the input. As a result,

the power of sparse regularization decreases tremendously.

In addition, the features extracted from a higher CNN layer

represent abstract visual patterns instead of low-level pat-

terns, such as color or shape.

4.3. Instancelevel Attribute Prediction

4.3.1 Enhancing Instance-level Attribute Prediction

In this experiment, we compare our method UMF-IS with

traditional instance-level attribute prediction method DAP

on INA dataset. For this purpose, we train our model by us-

ing images from the training set. The dimension of the la-

tent common space is set to 25 and β is set to 0.5. λ1, λ2, λ3

are all set to 10−4 and λ4 is set to 10−5. Then, we validate

the effectiveness of enhancing attribute prediction ability by

leveraging auxiliary category information (named as UMF-

IS-Aux). To this end, we fix the above parameters and use

Eqn. (14) to retrain the model by considering validation set

as auxiliary data. One thing to note is only category labels

of validation set are used.

Table 2. Instance-level attribute prediction on INA dataset

Methods mAUC mACC(%)

DAP 0.899 82.7

UMF-IS 0.918 83.2

UMF-IS-Aux 0.931 83.8

Figure 3. Attributes that are enhanced most with auxiliary data

The experimental results are shown in Table 2. Among

all the 25 attributes in INA dataset, the attribute prediction
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performance of 22 attribute are improved. For the left three

attributes white, wooden and yellow, the attribute prediction

performance is decreased slightly. We show six attribute

prediction which are enhanced most in Fig.3. Since the

annotation of instance-level attribute is costly, enhancing

attribute prediction by using auxiliary task such as object

recognition seems promising.

4.3.2 Category-Sensitive Attribute Prediction

In real-world application, some attributes have different vi-

sual appearances across categories. We call them category-

sensitive attributes. For example, the rectangular proper-

ty of a comb varies from that of a window based on vi-

sual information. Assuming we know the category infor-

mation of an image, we should predict the presence or

absence of attributes using its own category-specific at-

tribute classifiers. In this experiment, we compare our

category-specific (UMF-CS) and instance-specific (UMF-

IS) methods with related category-sensitive attribute classi-

fiers which are trained for each category-attribute pair. In

the experiments, only the category-attribute pair which has

both positive and negative image exemplars are valid for

training a classifier. The valid category-attribute pairs are

shown in Figure 4. We count the number of valid pairs and

report the statistical results in Table 3.

The methods involved in the comparative study include:

1. Universal attribute prediction (U). A linear SVM clas-

sifier is trained to predict one binary attribute univer-

sally. In such case, the positive images are irrelevant

to their categories.

2. Category-sensitive attribute prediction (CS). Instead

of learning attribute classifier without considering

category information, an importance-weighted linear

support vector machine is used to predict attribute

category-dependently. To train the tth attribute clas-

sifier for category j, the violating attribute label con-

straints for positive and negative samples from catego-

ry j are given a higher penalty, as suggested in [5].

During training, we train importance-weighted attribute

classifiers on 383 and 607 valid category-attribute pairs for

aPaY and INA respectively. For our methods, both the

category-sensitive and instance-sensitive attribute classifier-

s are trained jointly without considering the instance weight.

In INA dataset, some attribute labels are ambiguous, we

simply set them to 0.5 for joint training.

For test stage, we do attribute prediction for all the valid

category-attribute pairs in the test set. The category of the

test image is assumed to be known in this setting. At last,

we average the AUCs of all the valid category-attribute pairs

to show the effectiveness of the comparative methods.

Figure 4. Valid category-attribute pairs. The white entities denote

the category-attribtue pairs have both positive and negative exem-

plars.

As shown in Table 3, category-sensitive attribute clas-

sifier achieves much better performance than the universal

attribute classifier. However, the number of trained classi-

fiers are proportional to C×T . Therefore, when the dataset

has a large amount of attributes and categories, it is costly

to train all of them individually. Moreover, the relationship

between attribute and attribute is totally lost. For our meth-

ods, UMF-CS and UMF-IS both achieve better performance

than universal attribute classifiers and outperform category-

sensitive attribute classifier on INA dataset. At the same

time, the number of classifiers are C + T for UMF-CS and

UMF-IS. Therefore the scalability of our methods is guar-

anteed.

4.4. Zeroshot Learning Based on Attributes

Since different images may share common attributes,

we can recognize images from unseen classes based on

transferred attribute concepts, which is referred as as zero-

shot learning [17]. Traditional multi-class classifiers can

not tackle this task since no training data is available to

learn the parameters. We assume there are K seen class-

es {y1, y2, · · · , yK} and L unseen classes {z1, z2, · · · , zL}.

The attribute classifiers are learned based on the K seen

classes. During testing, the unseen category of an image x

is determined based on the posterior probability computed

by leveraging on the known attribute-category relations:

P (zl|x) =
p(zl)

p(azl)

T
∏

t=1

p(azlt |x), (14)

where azlt is the t-th attribute label of class zl. Based on

simple assumption, the class prior p(zl) is identical for all

the classes and p(azl) is assumed to be a factorial distribu-

tion p(azl) =
∏T

t=1 p(a
zl
t ).Based on the seen classes, the

attribute priors are defined as p(at) = 1
K

∑K

k=1 a
yk

t . For

our method, the attribute predictive probability has the fol-

lowing form:

p(azlt |x, ỹ) =
[[azlt = 1]]

1 + e−f(x,ỹ,t)
+

[[azlt = 0]]

1 + ef(x,ỹ,t)
(15)
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Table 3. Attribute prediction on category-attribute pairs

Dataset Info # Classifiers mean AUC

Categ attr U CS UMF U CS UMF-CS UMF-IS

aPascal-aYahoo 32 64 64 383 96 0.584 0.618 0.600 0.603

Imagenet 384 25 25 607 409 0.770 0.843 0.841 0.847

Figure 5. Confusion matrices between 10 unseen classes on AwA. The rows are the truths and the columns are the predictions.

Table 4. Comparison of different zero-shot learning methods. Fea-

ture type H, FV and D represent hand-crafted, fisher vector and

DeCAF. ‘*’ means our implementation. ‘−’ means no results.

Methods AWA CUB Fea Type

DAP 41.4[17]/45.3∗ −/16.9∗ H/D

IAP 42.2[17]/46.4∗ −/16.7∗ H/D

ALE 37.4[2]/45.7[1] 18.0[2]/20.2[1] FV/D

BN 43.4[21] − H

TMV-HLP 47.1[9] − H

HAP-H 45.0[10] 17.5[10] D

HAP-G 45.0[10] 17.5[10] D

UMF-IS w/o W 43.7 15.9 D

UMF-CS 47.1 17.7 D

UMF-IS 48.6 18.2 D

where [[·]] is the Iverson’s bracket notation. The form of

function f is defined in Eqn. (1).

In the experiments, we compare our methods with

DAP, IAP, Bayesian network (BN) [21], transductive multi-

view Bayesian label propagation (TMV-BLP) [9] and

Hypergraph-regularized Attribute Predictors (HAP) [10].

We also validate the influence of W by introduce a variant

of our method (UMF-IS w/o W) which means using mul-

tiplicative model on the original input feature space. The

dimension of the latent common space is set to 40 and 150

for AwA and CUB respectively.

As shown in Table 4, the performance of our method is

significantly better than the state-of-the-art approaches. In

addition, the accuracy of UMF w/o W is lower than UM-

F by about 5 percentage, showing that the latent common

space learned by W is essential for our multiplicative mod-

el to disentangle the factors and learn the intrinsic property

of attributes. From Fig. 5, we can also see the superiori-

ty of our method. Especially, our method can distinguish

“raccoon” from “rat” much more clearly than DAP.

5. Conclusions

We introduce a unified multiplicative framework for at-

tribute learning by leveraging category information. Unlike

the methods which predict attributes only based on the vi-

sual appearances, our model explicitly captures the relation-

ship among image, attribute and category in a multiplicative

way in the latent feature space. We perform experiments on

four widely used datasets for attribute prediction and zero-

shot learning. The empirical results show that our method

achieves better performance in attribute prediction on public

datasets with whether instance-level or category-level anno-

tation. In addition, the proposed model can be enhanced by

auxiliary data, which reduces the effort of instance-level at-

tribute annotation to some extent. Moreover, our method

significantly improves the accuracy of zero-shot learning,

verifying that the attribute classifiers learned by our method

have better generalization ability.
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