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Abstract

Video entity linking, which connects online videos to the

related entities in a semantic knowledge base, can enable

a wide variety of video based applications including video

retrieval and video recommendation. Most existing systems

for video entity linking rely on video metadata. In this pa-

per, we propose to exploit video visual content to improve

video entity linking. In the proposed framework, videos are

first linked to entity candidates using a text-based method.

Next, the entity candidates are verified and reranked ac-

cording to visual content. In order to properly handle large

variations in visual content matching, we propose to use

Multiple Instance Metric Learning to learn a “set to se-

quence” metric for this specific matching problem. To eval-

uate the proposed framework, we collect and annotate 1912

videos crawled from the YouTube open API. Experiment re-

sults have shown consistent gains by the proposed frame-

work over several strong baselines.

1. Introduction

Watching online video has become a part of many peo-

ple’s daily lives. For video hosting websites, it is at the

core of their business to increase user engagement. A key

problem is how to help people access what they want from

the massive amount of videos. Many systems have tried

to solve this problem from different angles, e.g., text-based

search, categorized video browsing, trending video high-

lights, related video suggestions, and personalized video

recommendation [3, 5, 25–27]. Accurate video content un-

derstanding is the key to achieve success for all these ap-

plications. Unlike texts and images, semantic video under-

standing is a more open problem for many reasons. In this

paper, we propose a vision-based method to solve a specific

video understanding problem: video entity linking.

Video entity linking is the task of connecting videos with

the entities in a given database, such as Wikipedia. A wide

variety of video-based applications can benefit from video

Figure 1: The overview of the proposed framework. Given

an online video, we first extract entity candidates by link-

ing its title with a knowledge graph. Based on a learned

matching metric, the entity candidates are then ranked and

verified by matching the video with the entity’s representa-

tive images.

entity linking given that the entities are associated with rich

attributes and connected together in a semantic graph. How-

ever, video entity linking is a very challenging problem.

The reasons are many folds. 1. The set of entities of in-

terests are very diverse, such as people, places, art works

and artifacts, and the vocabulary size and visual variations

make it infeasible to develop classification based models.

2. Visual content information is only part of the video. For

example, the information to link some entities may be con-
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Figure 2: An illustrative example for entity matching. The first row contains the key frames extracted from a YouTube

video1 entitled “Jason Taylor career highlights”. From the video title, “Jason Taylor” can be linked to either a football

player or a rugby player. The second row contains the representative images for the football player, and the third row

contains those for the rugby player. Images bordered by the same colors are visually similar according to the learned metric

defined in Eqn. (1). Based on the matched images, the football player is the right entity to link with, but it would be difficult to

tell only from the title. This example also shows that the entity occurrence (matched with any of the representative images) is

smooth over time, which is modeled by the Temporal Smoothness term in Eqn. (4). Furthermore, although the representative

images show different aspects of the entity, there is significant irrelevant information which is reduced by the Representative

Smoothness term in Eqn. (5).

tained only in the audio track. 3. Traditional video analysis

techniques are prohibitively expensive to scale up for online

applications.

Even with its limitations, visual content has it unique

merits in entity linking. First, there are many cases where

video entity linking is very difficult (requiring multi-hop in-

ference), if not impossible, without examining the visual

content, as shown by the example in Fig. 2. Second, com-

pared with other modalities, the rich and dynamic visual

content in videos convey accurate video watching intent, at

least for human brains. For a video, this means an entity ev-

idenced by the visual content is often more important than

the audio track and associated texts. For example, when

people search for the song Burn by Ellie Goulding, a music

video is usually of higher value and relevance than a video

that merely has the song as its background music. In this

case, the visual content represents the user searching intent

better than the sound track.

In this paper, we focus on developing effective models

to leverage visual content for video entity linking. In order

to validate and demonstrate the proposed models, we have

developed an automatic video discovery system to collect

candidate videos within various challenging domains.

The proposed framework is shown in Fig. 1. As in text

domain, there are two stages in video entity linking. First,

entity mentions, or surface forms, are detected using Named

Entity Recognition (NER). Second, supervised entity dis-

ambiguation methods are applied to rank potential entity

candidates for each surface form, based on various contexts.

We rely on a text-based method to identify surface forms

and produce entity candidates from the video metadata, e.g.,

title and description, thus largely reducing the searching

space of video entity linking. Consequently, the proposed

framework can be considered as incorporating a vision-

based bootstrap process to a text-based retrieval system. Im-

age search engine-based data scraping is then employed to

find representative images for the entity candidates, which

are matched with the video visual content. In consideration

of scalability and computational efficiency, we represent the

video content by multiple key frames, which can be treated

as an image sequence. In essence, video entity linking is

cast as matching an image set to an image sequence.

In this paper, we propose to solve this set to sequence

matching problem through metric learning, with which a

semantic distance between pairwise images is learned to

adaptively measure, for example, similar scenes or senor

layout. While the metric is learned for pairwise images,

the supervision labels are given for (set, sequence) pairs,

1http://www.youtube.com/watch/?v=vGItow0_0WM
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indicating whether an entity (represented by an image set)

matches with the video (represented by an image sequence).

Multiple Instance Metric Learning (MIML) is used to han-

dle the label ambiguities within this problem. We further

propose variants of MIML to capture the smoothness con-

straints observed in the visual entity spotting structure.

Video entity linking can be seen as an instance of “video

hyperlinking” [21], in which video segments are linked with

other relevant content, e.g., another video segments or a

Wikipedia page. While these existing systems employ a

limited number of concept detectors to link video segments

together [2], our objective is different in that we propose an

effective method to link videos explicitly with semantic en-

tities, which 1) are significantly more comprehensive and 2)

conforms to a rigorously defined semantic hierarchy. More-

over, our proposed entity linking method, based on metric

learning and exemplar matching, is fundamentally different

from the classification approach taken by the video concept

detectors, which have been predominately adopted by the

TRECVID community [24].

There are several contributions in this paper:

• We demonstrate how visual content can be used to

boost entity linking in the video domain;

• We propose MIML-Struct, a metric learning paradigm

for set to sequence matching, to solve the video entity

linking problem with structural smoothness;

• We propose a new open source dataset and a video dis-

covery framework for future video entity linking re-

search.

2. Related Work

Entity linking in text domain has attracted many Nat-

ural Language Processing research efforts to build accessi-

ble knowledge graphs based on free text [7]. Wikify! was

proposed in [22] to link documents with Wikipedia pages.

Others proposed to match contextual information between

Wikipedia pages and a target document to solve entity link-

ing in a principled way [22]. Kulkarni et al. proposed to

exploit inter-entity dependency to collectively annotate en-

tities in documents [20]. Milne et al. proposed to use feature

engineering and supervised learning to solve entity linking

[23]. Recent developments, such as DBPedia Spotlight [7],

have made entity linking with multilingual Wikipedia pages

accessible to non-experts and scalable to large scale corpus.

In contrast to traditional efforts in text domain, video

entity linking based on visual content, as proposed in this

paper, has a number of unique characteristics: (1) For

computers, video content is much more difficult to under-

stand than text. The visual appearance of an entity is often

much more diverse than its text surface forms. This mo-

tivates us to use a pool of representative images to model

the visual variations. (2) Entity occurrences inside a video

sequence usually exhibit temporal smoothness, which is dif-

ferent from free text. This motivates us to propose a struc-

tural model to leverage such smoothness. In addition, while

most of the previous algorithms work well for long texts in

which rich contexts are available, they are not effective for

short video titles.

Supervised Metric Learning aims to embed domain

knowledge into an adaptive Mahalanobis metric. There is

a wide range of applications for Metric Learning [31], e.g.,

k-NN classification [8, 28], clustering with side informa-

tion [30], and domain adaptation [10, 19]. Various Met-

ric Learning algorithms have been proposed from different

perspectives. In [30], a Semi-Definite Programming for-

mulation was proposed to learn a Mahalanobis metric to

draw similar data instances close while preserving distance

between dissimilar instances. Davis et al. proposed an in-

formation theoretic approach to push the distances between

similar instances under a bound and those between dissimi-

lar instances above a bound [8]. Weinberger et al. proposed

a max margin formulation to draw instances of the same

class together while keeping instances of different classes

apart with a margin [28]. In [11], LDML was proposed to

perform face verification, in which a logistic discriminant

is learnt to predict matches of instance pairs. In this pa-

per, the core of the proposed entity linking framework is an

image set to sequence matching problem. Since there are

large appearance variations and severe domain mismatches,

we propose a Supervised Metric Learning method to learn

an adaptive metric to measure the relevance between repre-

sentative images and video frames.

Multiple Instance Learning is a weakly supervised learn-

ing paradigm, first introduced in [9] to learn predictive mod-

els from bag-level labels. Since then, there are extensive

developments around the MIL scheme, among which two

directions are most relevant to this paper. MildML [12] was

proposed to perform face verification using automatic text

based annotation, in which the Multiple Instance Learning

paradigm is applied. From another perspective, a struc-

tured prediction model was proposed for interactive seg-

mentation [29]. This work represents an effort to explore

structures among instances [32] or within instances [4]. At

a high level, the proposed video entity linking model is a

combination of these two directions, i.e., Multiple Instance

Metric Learning with Structured constraints (we refer to it

as MIML-Struct). We differentiate from previous works

by formulating the video entity linking problem within the

MIML framework and exploring the unique structural in-

formation arising from this problem. The difference be-

tween [12] and our work is that we explore structural in-

formation in the Metric Learning process, and we also em-

ploy a smoother bag aggregation function to accelerate the

optimization process. The difference between [29] and our
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work is that we propose different structure regularization

specialized for the task of video entity linking. Moreover,

we apply Multiple Instance Learning to learn a semantic

metric, instead of a classifier.

3. Proposed Models

In this section, we formulate the video entity linking

problem within the Metric Learning framework. Image set

and sequence matching is the core problem in our video en-

tity linking framework. In the proposed framework, training

data is composed of annotated pairs of image set and frame

sequence, both of which are represented by a set of vectors,

often called a bag.

3.1. Problem Formulation

Let us denote a key frame sequence as FI =
(xd

1, x
d
2, . . . , x

d
Ī
), in which xd

i denotes the d dimensional

image features and the bar above Ī denotes length of the

sequence. Denote a representative image set as RJ =
{xd

1, x
d
2, . . . , x

d
J̄
} . While RJ is an unordered set, FI is

ordered in the temporal axis. In the training data, each pair

of FI and RJ is manually annotated as tIJ ∈ {0, 1}, indicat-

ing whether the entity represented by RJ can be identified

in the video represented by FI . Given labels tIJ, the goal of

the proposed model is to learn a Mahalanobis distance met-

ric between set-to-sequence pairs to perform video entity

linking. The matching process is illustrated in Fig. 2.

The Mahalanobis distance is defined by a symmetric

positive semidefinite matrix M ∈ Rd×d. In order to reduce

the number of parameters, it is beneficial to learn a low rank

M , and define M as M = LTL, in which L ∈ Rk×d, so

that rank of M is k. Similar to [12], the Mahalanobis dis-

tance is defined as follows using L,

dL(xi, xj) = (xi − xj)
TLTL(xi − xj) (1)

Given the training data (FI ,RJ , tIJ), the goal is to learn

a metric L to match new pairs. We first formulate the basic

MIML model and then extend to MIML-Struct to incorpo-

rate structural information encoded in the video key frame

sequence FI .

3.2. Multiple Instance Metric Learning

The challenge of MIML is that training labels are given

at the bag level, while distance is measured at the instance

level. We first define the bag level distance by averaging

the distances between top matched instance level pairs. For-

mally, we first define the set of top matched pairs sIJ by,

sIJ = {(i, j)|i ∈ I, j ∈ J, r(dij) ≤ κ},

in which r(dij) is the rank of dij in the ascending sorted list

of all pairwise distances DIJ , {dij |i ∈ I, j ∈ J}, and κ is

a fraction of the size of DIJ. With the definition of sIJ, we

define the bag level distance by,

dIJ =
1

|sIJ|

∑

(i,j)∈sIJ

dij

Similar to [12], we then map the bag level distance to a

matching probability by PIJ = σ(b − dIJ), in which σ(z)
is the sigmoid function σ(z) = 1/(1 + exp(−z)) and b
is a bias term. We maximize the matching probability for

positive bags IJ+ , {(I, J)|tIJ = 1} by L+,

L+ = −
1

| IJ+ |

∑

IJ+

log(PIJ) (2)

There are no ambiguities inside a negative bag, thus we

define the matching probability at the instance level as pij =
σ(b− dij), and minimize this matching probability by L−,

L− = −
1

| IJ− |

∑

IJ−

1

|I||J |

∑

i∈I,j∈J

log(1− pij) (3)

3.3. Structured Multiple Instance Metric Learning

In order to suppress noise introduced by the label am-

biguities and multiple representative images, we propose a

novel structured multiple instance metric learning to model

temporal and representative smoothness.

As shown in Fig. 2, the entity spotting structure exhibits

strong temporal structures, which is modeled through a reg-

ularization term to enforce temporal smoothness,

LTS =
1

2| IJ+ |

∑

IJ+

1

|I| − 1

∑

i∈I,i 6=1

(dJi − dJi−1)
2, (4)

where dJi is the aggregated distance between the key

frames xi ∈ FI and the pool of representative images RJ ,

defined similarly to dIJ. In particular, we first define the top

matched pairs siJ as,

siJ = {j|j ∈ J, r(dij) ≤ κ′},

where r(dij) and κ′ are defined as above. Then dJi is de-

fined as follows,

dJi =
1

|siJ|

∑

j∈siJ

dij

In order to model the diverse visual appearance of an en-

tity, we employ multiple representative images for an entity.

However, these entity representative images can also intro-

duce misleading information or noise as shown in Fig. 2.

In order to suppress such noise, we encourage the metric

to capture the shared semantics among the representative
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images by graph regularization. Formally, for a key frame

xi, all the distances with the representative images, i.e.,

{dij |j ∈ J} should be close to each other, as expressed

by the following regularization term,

LRS =
1

| IJ+ |

∑

IJ+

∑

i∈I,j∈J

∑
l∈J,j<l (dij − dil)

2

|I||J |(|J | − 1)
(5)

We refer to the regularization term defined in Eq. (4) as

Temporal Smoothness (TS), and the one defined in Eq. (5) as

Representative Smoothness (RS). Note that both constraints

are defined only for the positive bags.

3.4. Optimization

Combining the negative cross entropy objective term and

the regularization terms, the final objective is defined as

L(L, b) = L+ + L− + λ1LTS + λ2LRS, (6)

which is a smooth convex function that can be optimized us-

ing gradient descent algorithms, such as L-BFGS. See Ap-

pendix A for the gradients of each term.

4. Experiments

In this section, we first validate our MIML formulation

in a well-known face verification task. Second, we apply

MIML-Struct in the video entity linking problem and vali-

date the effectiveness of each model component by compar-

ison experiments.

4.1. Face Verification

The idea of Multiple Instance Metric Learning (non-

structrual variant) was first proposed in [12] for an auto-

matic face annotation setup. In this setup, each photo is

a bag of faces and names, but associations between faces

and names are unknown. In order to learn a semantic met-

ric for face verification, pairwise photos are assigned with

a label indicating whether they contain faces of the same

person. For example, in Fig. 3, there are two faces in each

photo, and the face set in Fig. 3a is matched with those in

Fig. 3b, but the face set in Fig. 3b is not matched with those

in Fig. 3c. As it is in our video entity linking problem, the

supervision is given only in bag/set level. However, there

are many differences between the face verification scenario

and our video entity linking task. For example, although

the representative images and key frames can be seen as

the counterpart of faces, there is no notion of names in our

video entity linking problem. In addition, the number of in-

stances in one bag is much larger in the video entity linking

than in the face verification, which worsen the label ambi-

guity problem and increase the level of noises. We apply

the unstructured version of MIML for the face verification

(a) A & B (b) A & C (c) D & E

Figure 3: Face verification examples. The actual names of

the faces are replaced with capitalized letters.

task, and compare the results with the original ones, in or-

der to validate our formulation. As in [12], Mean Average

Precision (mAP) is adopted to evaluate the face verification

task on the LFW dataset [15]. Using the original code, we

got 62.69% mAP, and we achieved 62.70% mAP, using our

own implementation of MIML. The results justify the pro-

posed MIML formulation in the face verification task. In

the next section, we will show the results of MIML in video

entity linking task, in which the proposed structured MIML

outperforms MIML with large margin.

4.2. Video Entity Linking

In this section, we present our experiment results for

video entity linking. We first describe how we collect data

for evaluation. Second, we explain the baselines used to val-

idate our assumptions and models, and the evaluation met-

rics for video entity linking. The comparison results are

reported at the end.

4.2.1 Data Collection

There are multiple phases in the data collection process,

and the goal is to discover videos that can potentially ben-

efit from the proposed visual entity linking framework. As

mentioned in the introduction, the proposed framework can

be seen as a bootstrap step for a text based system and given

that the text based system already performs well using vari-

ous context information, it is important to carefully choose a

subset of the entire video corpus to demonstrate the advan-

tages of using visual content. In addition, it is impossible

for us to scan through all YouTube videos, so we have to

rely on the YouTube video search API to discover videos,

which also forces us to design the data collection process

carefully. The main video discovery components are ex-

plained below. All data has been collected using the pub-

lic search API from Google2 and Bing3, and can be down-

loaded at 4.

DBPedia is a crowd-sourced knowledge base with

structured information extracted from Wikipedia. Each

2https://www.google.com/cse/all
3http://www.bing.com/developers/
4https://goo.gl/IemjVv
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Wikipedia page is mapped to a DBPedia entity and each en-

tity is associated with a subset of the 500+ categories under

DBPedia’s own ontology 5. DBPedia Spotlight is an open

source project [7] to link text with DBPedia entities, and we

adopt it to generate entity candidates from video titles.

Entity category targeting selects a subset of entities ac-

cording to its category, because we cannot handle all possi-

ble entities in the wild. There are several considerations in

selecting the entity categories: (1) Entities in the category

should be consistent with the visual content. For example,

if the Movie entity “Life of Pi” occurs in the title, the movie

content will show up in the video. However, this is not the

case for MovieDirector entity “Ang Lee” who has directed

many movies. (2) The category is popular on YouTube, oth-

erwise it is hard to get example videos by keyword search.

(3) The pool of categories should be large enough to cover

as many videos as possible. By manually screening through

all 500+ entity categories, we select 7 of them for our ex-

periments, including SportsTeam, Athlete, Film, Musical, Sin-

gle, TelevisionShow, and Automobile. The per category dataset

statistics are shown in Table 3.

Video search query selection is used to select queries

discover candidate videos from the video search engine.

The criteria to select query terms are: (1) The query should

carry some ambiguities, so that they can refer to multiple

entities. This is because we believe visual content will

perform better than text in the disambiguation task. Am-

biguous terms and what they may refer to can be found

on Wikipedia disambiguation page 6. (2) The query term

should refer to some entities in our selected categories.

(3) In order to highlight the benefits of visual based method,

we remove queries that have dominant entities in the experi-

ments. For example, although the term “apple” may refer to

“Apple Inc” or “Apple Tree”, the entity “Apple Inc” has dom-

inant popularity on YouTube. The entity popularity is ap-

proximated by the Google PageRank of the Wikipedia page

for this entity. Note that this constraint is enforced so that

the dominant entities do not overwhelm the “long-tail” or

less dominant entities. On the other hand, the dominant en-

tities will not suffer in practice due to their high popularity

priors. After the filtering, 1500 search terms are sampled for

further process. Examples are “The Outsiders”, “Tony Smith”,

“Soul Man”, “American Pie”, and “Just Like Heaven”.

Video harvesting and entity annotation occurs when

we use the selected terms to query Google video search,

generate candidate entities from video title and extract

about 30 key frames from each video [1]. By filtering out

videos that do not contain any entities from the selected cat-

egories, we collect 1912 videos in total. From the video

titles, we detect about 60K entity mentions using DBPe-

dia Spotlight, which are linked to about 13K unique entities

5http://wiki.dbpedia.org/Ontology
6Wikipedia:Apple_(disambiguation)

Agreement (%) Total Instances Percentage (%)

≥ 60 3585 95.55

≥ 80 2858 76.17

100 2331 62.13

Table 1: Agreement statistics in the AMT annotation. The

agreement is defined as the percentage votes of the majority

label, after removing spamming workers.

among which 2113 are in our selected categories. By con-

catenating the entity name and its category label, we for-

mulate an image search query to obtain the entity’s repre-

sentative images through the Bing image search API. Note

that in real use cases, this step (associating entity with rep-

resentative images) can be done offline using various tech-

niques, but that is out of scope of this paper. In order to

attain matching ground truth, we employ Amazon Mechan-

ical Turk (AMT) to recruit workers to annotate each entity

link. Along with detailed instructions, AMT workers are

asked the following question, “In the video, can you find

the entity represented by the given images?”. This is a well-

defined image matching question and easy for workers, so

we expect a high agreement among workers, which is ver-

ified in Table 1. We take the majority vote as the ground

truth label for the entity annotation.

Image visual features is used to characterize entity rep-

resentative images and video key frames. We adopt the fea-

tures learned from the Convolutional Deep Neural Nets for

the ImageNet challenge [18] and use the Caffe implementa-

tion in [16]. We use the fc7 layer in the default network ar-

chitecture as visual features (4096D). This feature is widely

used in the research community, because of its extraction ef-

ficiency, representation power and effectiveness for a wide

range of image based applications [17].

The number of videos and entities per category are

shown in Table 3. For the final dataset, the average number

of potential entities per video is 4.32, the average number

of ambiguous terms associated with a video is 2.24 and the

average number of potential entities per terms is 2.73.

4.2.2 Experimental Protocols and Metrics

Because the proposed video entity linking framework is

based on refining text based results, there are naturally two

experiment protocols, disambiguation and verification.

Disambiguation aims to use the learned Mahalanobis

metric to rerank the entity candidates generated from the

text based system. For this task, we use precision@1

(prec@1) and recall@1 as the evaluation metrics.

Verification aims to verify whether an entity candidate

generated from the text based system is actually related to

the video visual content. In contrast to the disambiguation

task, verification will attempt to reject the output from the
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%
Disambiguation Verification

% prec@1 recall@1 AP

L2 (4096D) 35.61 98.97 43.47

PCA (128D) 35.23 97.92 47.37

SRC [6] 35.61 98.97 28.28

SRC-PCA 35.61 98.97 30.65

MIML 35.23 97.92 53.77

MIML-TS 35.61 98.97 60.65

MIML-RS 35.23 97.92 61.22

MIML-Struct 35.61 97.92 64.95

GT 35.98 100 100

Table 2: Experiment Results. As explained in the main text,

the disambiguation task performance is bounded by a low

upper bound and different methods are about the same level,

which prove the importance of the verification task. The

verification task validates the effectiveness of the proposed

models.

text based method. We argue that each task has its own

significance and utility in practice. Disambiguation is more

conservative and it should perform at least as well as the text

based method, while because only part of the information is

observed by the vision based system, verification is riskier

and only proper in cases in which one cares more about the

visual information. These two protocols can be combined

in a real system, such that the verification module will first

try to reject some errors from the text based system, and

the disambiguation module will then pick the best entity

from the remaining candidates. The verification task can

be seen as a binary classification problem: classify a video-

entity pair as a match or non-match, so we employ Average

Precision (AP) as the evaluation metric.

We divide the dataset into separate parts for two proto-

cols. For all the videos queried from the video search engine

using the sampled 1500 ambiguous terms, we select a sub-

set of 564 videos from 500 terms for the verification task

and the rest of 1348 videos for the disambiguation task.

4.2.3 Approaches for Comparison

In order to validate the effectiveness of the proposed mod-

els, we consider the L2 distance in both the original fea-

ture space and PCA subspace, and a sparse reconstruction

based method as the baseline metrics to perform fair com-

parison. The sparse reconstruction based method assumes

that if a video-entity pair matches, the representative im-

ages RJ should reconstruct the key frames sparsely FI with

small errors, so the sparse reconstruction cost (SRC) can

be used to measure video-entity affinity. SRC is defined as

follows [6],

SRC , min
B

‖FI −RJB‖2 + λ|B|2,1, (7)

where B is the reconstruction coefficients. The l2,1 norm,

defined as the sum of L2 norm of rows, is widely used by

computer vision researchers to enforce group sparsity in the

parameter space. Here, l2,1 norm achieves sparse selection

of representative images to reconstruct the key frames. We

denote the baselines as L2, PCA and SRC, respectively. We

also devise several variants of the proposed models to eval-

uate its individual components, including

• MIML. Fixing both λ1 and λ2 to 0, we evaluate the

model without structural constraints.

• MIML-TS. Fixing λ2 to 0, we evaluate the Temporal

Smoothness constraints.

• MIML-RS. Fixing λ1 to 0, we evaluate the Representa-

tive Smoothness constraints.

• MIML-Struct. We tune both λ1 and λ2 to evaluate the

full model.

For L2, PCA and MIML-*, the matching score of a video-

entity pair is aggregated from all the pairs of key frames and

representative images. There are many different schemes

for this purpose in data mining, referred to as linkage func-

tions. For example, a single linkage is the shortest distance

between sets. The linkage functions we use include single,

complete, average, centroid and medoid. Detailed formulas

can be found in [13]. For each matching method, we report

the best results over all linkage functions.

In Table 2, there is another row “GT” showing the up-

per bound these methods can achieve. The disambiguation

task does not deal with the false alarms from the text-based

system (none of the candidates are correct matches), so the

upper bound is less than 100%. Note that the recall@1 can

be computed by dividing prec@1 by its upper bound.

4.2.4 Experiment Results

Comparison results are shown in Table 2. Models are

trained on 2/3 of the entire dataset and tested on the rest.

Hyperparamters λ1, λ2 as well as λ in SRC are tuned on 1/5
of the training samples. For other parameters in Eqn. (2) and

(4), we fix κ and κ′ as 5% of the length of the ranking list.

In the results, all of the visual based methods can per-

forms very closely to the upper bound in the disambigua-

tion task. However, the upper bound 35.89%, limited by

how well the text based system can do, is not acceptable,

which indicates that there are many mistakes made by the

text based detection system, and that the verification task is

very important to remove such false alarms. In the results

of the verification task, the proposed MIML based meth-

ods outperform the other methods. MIML based methods

outperform naive L2 and PCA methods significantly, in-

dicating the importance to learn an adaptive Mahalanobis
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AP(%) MIML MIML-TS MIML-RS MIML-Struct #Videos #Entities

Athlete 66.44 74.36 80.82 81.84 507 253

Automobile 50.28 63.40 36.52 49.34 45 39

Film 46.32 66.91 75.93 63.69 753 380

Musical 46.03 46.11 34.44 31.39 13 32

Single 44.34 66.09 62.91 72.78 277 369

SportsTeam 56.41 67.99 72.38 79.02 72 87

TelevisionShow 71.12 65.12 60.43 61.28 245 209

Overall 53.77 60.65 61.22 64.59 1912 1369

Table 3: Category wise performance of the verification task and the dataset statistics for each category. The overall AP is

calculated from the entire dataset, ignoring the categories, rather than the average of the category wise AP.

metric for this unique matching problem. Also, the effec-

tiveness of the structural constraints are shown by the fact

that both MIML-TS and MIML-RS outperform MIML by a

large margin. Furthermore, combining the two regulariza-

tion terms, MIML-Struct outperforms MIML dramatically,

showing that the proposed constraints help improve the per-

formance complementarily.

4.2.5 Category-wise Results

For the verification task, we also report the per-category re-

sult in the Table 3, which shows that the proposed MIML-

Struct method is more stable than the alternatives. Table

3 also shows large performance variations across different

categories. The performance largely depends on the sample

size and relevance of the visual background context. For ex-

ample, different matching fields help to recognize different

Athlete entities, while the settings help little to recognize

TelevisionShow entities. For the categories requiring deeper

understanding the video, the video entity linking is still very

challenging.

4.2.6 Run Time Complexity

The most time consuming part is the model training part.

The time complexity to compute gradient for L0 and L1

are O(d2FIRJ IJ), and for L2 is O(d2FIR
2
J IJ), which are

linear to the number of entity candidates. We implement

the optimization algorithm with MATLAB, and on average,

it takes 2 hours to learn a metric for the full MIML-Struct

model.

5. Conclusions

We have proposed a Multiple Instance Metric Learn-

ing framework to solve the challenging video entity link-

ing problem which is formulated as set-to-sequence image

matching. Structured constraints, i.e., Temporal Smooth-

ness and Representative Smoothness, are modeled as regu-

larization terms in the MIML formulation. The experiments

on a large annotated Youtube video set have demonstrated

the effectiveness of the proposed model. Both the video

entity linking problem and the proposed learning paradigm

MIML-Struct contribute to the structured learning research.

Our future investigation include (1) combining text, au-

dio and visual context to perform entity linking in videos;

(2) building entity augmented video applications, such as

recommendation and browsing.

Appendix A

Gradients of Eqn. (6)

To list the gradients, we first define Xij by

Xij = (xi − xj)(xi − xj)
T ∈ Rd×d,

then the gradients are computed as follows,

∂L+

∂L
=

2L

| IJ+ |

∑

IJ+

1− PIJ

|sIJ|

∑

sIJ

Xij

∂L+

∂b
=

−1

| IJ+ |

∑

IJ+

(1− PIJ)

∂L−

∂L
=

2L

| IJ− |

∑

IJ−

∑

i∈I,j∈J

−pijXij

|I||J |

∂L−

∂b
=

1

| IJ− |

∑

IJ−

∑

i∈I,j∈J

pij
|I||J |

∂LTS

∂L
=

2L

| IJ+ |

∑

IJ+

∑

i∈I

2di − di−1 − di+1

|siJ|(|I| − 1)

∑

j∈siJ

Xij

∂LRS

∂L
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4L

| IJ+ |

∑

IJ+

∑

i∈I,j∈J

Xij

∑
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view patterns to predict the popularity of youtube videos. In

WSDM. ACM, 2013.

[26] V. Simonet. Classifying youtube channels: a practical sys-

tem. In Proceedings of the 2nd International Workshop on

Web of Linked Entities, in WWW, 2013.

[27] S. Tan, Y.-G. Jiang, and C.-W. Ngo. Placing videos on a

semantic hierarchy for search result navigation. ACM Trans.

Multimedia Comput. Commun. Appl., July 2014.

[28] K. Q. Weinberger and L. K. Saul. Distance metric learning

for large margin nearest neighbor classification. J. Mach.

Learn. Res., 10:207–244, June 2009.

[29] J. Wu, Y. Zhao, J.-Y. Zhu, S. Luo, and Z. Tu. Milcut: A

sweeping line multiple instance learning paradigm for inter-

active image segmentation. In CVPR, IEEE, June 2014.

[30] E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell. Dis-

tance metric learning, with application to clustering with

side-information. In NIPS, 2002.

[31] L. Yang and R. Jin. Distance metric learning: A comprehen-

sive survey. Michigan State Universiy, 2, 2006.

[32] Z.-H. Zhou, Y.-Y. Sun, and Y.-F. Li. Multi-instance learning

by treating instances as non-iid samples. In ICML. ACM,

2009.

4623


