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Abstract

Existing approaches toward Image super-resolution (S-

R) is often either data-driven (e.g., based on internet-scale

matching and web image retrieval) or model-based (e.g.,

formulated as an Maximizing a Posterior (MAP) estimation

problem). The former is conceptually simple yet heuris-

tic; while the latter is constrained by the fundamental limit

of frequency aliasing. In this paper, we propose to devel-

op a hybrid approach toward SR by combining those two

lines of ideas. More specifically, the parameters underly-

ing sparse distributions of desirable HR image patches are

learned from a pair of LR image and retrieved HR images.

Our hybrid approach can be interpreted as the first attempt

of reconciling the difference between parametric and non-

parametric models for low-level vision tasks. Experimental

results show that the proposed hybrid SR method performs

much better than existing state-of-the-art methods in terms

of both subjective and objective image qualities.

1. Introduction

Image super resolution (SR) aiming to reconstructed a

high-resolution (HR) image from a single low-resolution

(LR) image is a classic ill-posed inverse problem. Prior

knowledge of the underlying HR image is required to com-

pensate the loss of the information. To incorporate the pri-

or knowledge, the image SR is commonly formulated as a

Maximum a Posterior estimation problem, where a posteri-

or probability is maximized to reconstruct a visually pleas-

ant HR image. To faithfully reconstruct the HR image, the

selection of the prior distribution of the underlying HR im-

age is of great importance.

The sparsity prior of natural images has been extensively

exploited in the literature. The gradient sparse prior is often

employed to suppress the noise and other visual artifacts

during the reconstruction [12, 8, 11]. However, fine im-

age details are also often removed. Recently, coupled with

dictionary learning, patch-based sparse coding approaches

have shown the popularity and effectiveness for image SR

[6, 5, 18, 17, 19]. The sparse codes of the desired HR image

patches are first inferred from the LR image patches, and

then used to reconstruct the HR image patches. Due to the

ill-posed nature of SR problem, the selection of an appro-

priate sparse regularizer is critical for the success of these

methods. Typically, parametric sparse models (e.g., the

Laplacian, Generalized Gaussian) are adopted. The mod-

el parameters can be either manually selected or estimated

from the input LR images [18, 6, 19]. Advanced sparse

methods considering the structural correlations between the

patches have also been proposed [19, 7]. However, due to

the lack of sufficient information, it is rather challenging to

accurately estimate the sparse models from the LR image,

especially for large scaling factors.

The learning-based methods have also attracted many

attentions. In [10, 14, 18], a large number of LR/HR

patch pairs are constructed and the high-frequency details

of the input LR patches are inferred from the training L-

R/HR pairs. Recent studies show that the learning-based

SR approaches can become more effective when the train-

ing images are more correlated with the given LR image

[20, 15]. In [20, 15], similar images are first retrieved from

a large image database, and then the high-frequency details

are learned from the retrieved images. Despite its effec-

tive for SR the HR images, visual artifacts can often be ob-

served due to the inconsistences between the learned high-

frequency details and the observed LR image.

To address the limitations of the sparsity-based and the

learning-based methods, we propose a novel image SR ap-

proach that combines the sparse coding and the image re-

trieval based learning into an unified SR framework. For a

given LR image, a set of HR images that are highly correlat-

ed with the desired HR image are retrieved from a database.

Instead of learning the high-frequency details, we propose

to learn the parametric sparse models for the desired HR

patches from both the retrieved HR image and the LR im-

age. Specifically, the Laplacian models with nonzero mean-

s are learned. With the learned sparse models, which are
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much accurate than those learned from a single LR image,

the sparse coding accuracy can be much improved, leading

to significant improvements of the SR performance. To the

best of our knowledge, this is the first time that the para-

metric nonzero-mean sparse models are learned from the

retrieved correlated images. Experimental results on natu-

ral images show that the proposed method outperforms the

current state-of-the-art image SR methods in terms of both

PSNR and visual quality.

2. Related works

We briefly review the image SR methods, i.e, the sparse

representation based methods and the learning-based meth-

ods, which are relevant and related to the proposed method.

Sparse representation based methods exploit the fac-

t that the desired HR images admit sparse expansions with

respect to a basis or dictionary. Given the observed the LR

image y = Hx + n, where H ∈ R
M×N is the blurring

and downsampling matrix and n ∈ R
N denotes the addi-

tive Gaussian noise, the sparsity-based SR problem can be

formulated as [6, 7]

(x,αi) = argmin
x,αi

∑

i

||Rix− Dαi||22 + λ
∑

i

ψ(αi)

s.t. ||y − Hx||22 ≤ σ2
n

(1)

where Ri denotes the matrix extracting the patch at position

i and D denotes the dictionary, ψ(·) denotes the sparse regu-

larization term, λ are the regularization parameters. A com-

mon selection of ψ(·) is the ℓ1 norm. Recent studies show

that structured sparse regularizer can lead to better results.

In [7], an effective nonlocally centralized sparse representa-

tion (NCSR) model has been proposed, where the nonlocal

structured sparsity is exploited. The NCSR method is very

effective for image SR for small magnification factors (s-

maller than 3). However, for large magnification factors, it

is rather challenging to obtain an accurate nonlocal estima-

tion of the sparse codes and the NCSR becomes much less

effective, as will be shown in the experimental results.

Learning-based methods propose to learn the high-

frequencies from large training datasets. Generally, a large

number of LR/HR patch pairs are built. Many efforts have

been made to learn the mapping functions from the LR

patches to the high-frequencies details of the HR patches

[10, 18, 16, 3]. More recently, Yue et al. [20] propose to

learn the fine image details from correlated HR images. A

set of similar HR images are first retrieved from a image

database. Then, a more correlated training set containing

LR/HR patch pairs are constructed, from which the high-

frequencies image details can be better learned. Despite

its effectiveness for hallucinating the fine image details of

the HR image, visual artifacts can also be often observed

in the SR results by the method of [20]. The key idea of

the proposed method is to learn more accurate sparse pri-

or distributions from both the correlated HR patches of the

retrieved image and the nonlocal similar patches of the LR

image. With the learned sparse prior, much better SR results

have been achieved.

3. Sparse representation with learned sparse

distributions

We first present the proposed sparse representation with

learned nonzero-mean sparse models and then introduce the

image retrieve and patch matching method for searching for

similar HR image patches from a image database.

3.1. Sparse representation with nonzero­mean s­
parse distributions

Let xi ∈ R
n denote a patch of size

√
n ×√

n extracted

from the image x at position i. The sparse representation of

xi under dictionary D ∈ R
n×K ,K ≥ n amounts to solving

the following optimization problem

αi = argmin
αi

||xi − Dαi||+ λψ(αi). (2)

where ψ(·) is a sparse regularizer. The sparse model of Eq.

(2) can be interpreted as a MAP estimator, i.e.,

αi = argmax
αi

{logP (xi|αi) + logP (αi)}, (3)

where the likelihood term logP (x|α) is characterized by

the Gaussian distribution with variance σ2
n

P (xi|αi) =
1√
2πσn

exp

(

− 1

2σ2
n

‖xi − Dαi‖22
)

. (4)

It is easy to verify that when P (αi) is chosen to be an IID

zero-mean Laplaican distribution, ψ(·) equals to the com-

mon ℓ1 norm. Instead of assuming the zero-mean, we use

the nonzero-mean IID Laplacian distribution, as

P (αi) =
∏

j

P (αi,j) ∝
∏

j

exp

(

−
√
2 |αi,j − βi,j |

θi,j

)

,

(5)

where βi,j and θi,j denotes the mean and standard deriva-

tion, respectively. By substituting Eqs. (4) and (5) into Eq.

(3), we obtain

αi = argmin
αi

‖xi −Dαi‖22 +2
√
2σ2

n

∑

j

1

θi,j
|αi,j −βi,j |.

(6)

The objective function of Eq.(6) is similar to the NCSR

model proposed in [7]. However, our sparse model is de-

veloped from the MAP estimator with nonzero-mean sparse

distributions.
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Considering the rich repetitive structures in natural im-

ages, we extend the sparse model of Eq.(6) to simultaneous

sparse coding. For each exemplar patch xi, we collect a set

of patches similar to xi via patch matching in a large win-

dow centered at i. Let Xi = [xi,1,xi,2, · · · ,xi,m] ∈ R
n×m

denote the grouped patch set, whose each column corre-

sponds to a patch (including xi itself). As each patch con-

tain similar structures, we assume that the sparse codes of

each patch can be characterized by the same parametric dis-

tribution P (αi). This leads to the following simultaneous

sparse coding

Ai = argmin
Ai

‖Xi−DAi‖2F +2
√
2σ2

n

m
∑

k=1

‖Λ(αi,k−βi)‖1

(7)

where Λ = diag( 1
θj
) and Ai = [αi,1,αi,2, · · · ,αi,m] ∈

R
K×m. Similar to [7], the dictionary D is chosen to be the

local PCAs learned from each patch clusters generated by

k-means clustering. Now the task is how to accurately esti-

mate the distribution parameters βi and θi. A natural way

is to iteratively estimate them from the set of similar patch-

es Xi. However, due to the lack of sufficient information, it

is difficult to accurately estimate them from the LR image

patches. In the next subsection, we will present the pro-

posed approach to estimate βi and θi from both the input

LR patches and the retrieved HR images.

3.2. Parametrical sparse distribution learning from
reference images

Given a LR image y, we retrieve a set of HR images from

a large image database. The retrieved HR images contain-

ing similar contents to the LR image can be used to learn the

sparse distributions of the desired HR patches. Specifically,

we propose to learn the parametrical Laplacian distribution-

s. This reduces to the learning of the means βi and vari-

ances θ2
i for P (αi). As the retrieved images may have d-

ifferent scales, illuminations and viewpoints. The retrieved

images are aligned to the LR image with global registra-

tions. After alignment, we search for similar HR patches

from the aligned HR images, denoted as {z}Rr=1. The ex-

emplar patches, denoted as x̂i are extracted from the initial-

ly interpolated HR image. For the expression conveniences,

we leave the details of the image retrieve, registrations and

patch matching in the next subsection.

Let {z̃i,l}Ll=1 denote the set of similar patches that are

within the L-th closest patches to x̂i grouped from the re-

trieved image {z}Rr=1. Then, the expectation of x̂i can be

estimated as

µi,1 =

L
∑

l=1

wi,lz̃i,l (8)

where wi,l is computed as wi,l = (1/c1) exp(−||z̃i,l −
x̂i||/h1), wherein c1 is the normalization constant and h1 is

a predefined constant. In addition to the external reference

patches, we can also obtain an estimate of the expectation

from the nonlocal similar patches, as

µi,2 =

m
∑

k=1

wi,kx̂i,k (9)

where wi,k = (1/c2) exp(−||x̂i,k− x̂i||/h2), wherein c2 is

the normalization constant and h2 is a predefined constant.

Then, a more accurate estimate of the expectation of βi can

be obtained by the combination of βi,1 and βi,2, as

βi = ∆βi,1 + (I −∆)βi,2, (10)

where βi,1 = D⊤µi,1 and βi,2 = D⊤µi,2 denotes the rep-

resentation coefficient vectors of µi,1 and µi,2 with respect

to D, respectively, and ∆ = γdiag(δj) ∈ R
K×K , where δj

are computed according to the energy ratio of βi,1(j) and

βi,2(j), i.e.,

δj =
r2j

r2j + 1/(r2j )
, rj = βi,1(j)/βi,2(j), (11)

where the sparse vector with more energy is encouraged to

take large weights. γ is defined as

γ =

{

1, dmin ≤ T
ǫ, otherwise

(12)

where dmin denotes the minimum distance between the

query patch and the candidate patches, T is a predefined

threshold, and ǫ is a small constant. With γ we can reduce

the contributions from the dissimilar patches.

With the two sets of similar patches, the standard deriva-

tions θi for each coefficients αi can also be estimated, as

θi = ∆θi,1 + (I −∆)θi,2, (13)

where θi,1 and θi,2 are the maximum likelihood estimates

of the standard derivations, computed as

θi,1 =
1

L

L
∑

l=1

(α̃i,l − βi,1)
2, θi,2 =

1

L

m
∑

k=1

(α̂i,k − βi,2)
2,

(14)

where α̃i,l = D⊤z̃i,l and α̂i,k = D⊤x̂i,k. In Fig. 1, we

show the coefficients distributions learned by the proposed

method and the NCSR, and the real distribution of the origi-

nal image. It can be clearly seen that the learned distribution

by the proposed method is more close to read distribution

than that of NCSR, verifying the effectiveness of the pro-

posed method.

3.3. Image retrieval and patch matching

The proposed framework of similar patches matching

from the database is shown in Fig.2, which consists of three
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Figure 1: Coefficients distributions comparison on similar

patches collected for exemplar patches of test image “a”.

Here, the coefficients distributions associated with the 4th

atom of the DCT dictionary is plotted. Similar observation

can be obtained for other coefficients of other atoms.

Figure 2: Framework of patch matching from database.

(a) (b)

Figure 3: Results of image retrieval. (a) The query image;

(b) The retrieved images.

steps, i.e., image retrieval, global registration and patch

matching.

For image retrieve, the LR image is first interpolated to

obtain an initial estimate of the original HR image, and then

an image retrieval method is applied. Specifically, the SUR-

F [2, 1] feature descriptors are used for image retrieval, and

the method of [13] is employed to retrieve the correlated

images. However, any existing image retrieval methods can

be used in this work. Please refer to [13] for the details of

the retrieval method. An example of image retrieval results

is shown in Fig.3.

As the retrieved correlated images may be with different

scales, illumination and viewpoints, they cannot be used for

patch matching directly. For better patch matching accura-

cy, the correlated images should be aligned to the LR image.

To register the retrieved image to the initially estimated HR

image, the correspondences between the feature points of

the initially recovered HR image and the correlated images

are first established. Similar to [20], the SIFT feature de-

scriptors are used to establish the correspondences. Then,

the registration homographic matrixes for each correlated

image are estimated using the Random Sample Consensus

(RANSAC) algorithm [9]. Finally, the retrieved HR images

are then aligned to the LR image with the estimated homo-

graphic matrixes.

The transformed images, denoted as zr are then used for

patch matching. For an exemplar patch x̂i extracted from

the initially interpolated HR image, we search for similar

patches in zr. As the exemplar patches x̂i are generally

very small (e.g., 7 × 7) and thus contain little structural

information of the original HR patches, the patch match-

ing with x̂i is not accurate. To ensure the patch contain-

ing sufficient structural information, large patches are used

for patch matching. Let p̂i ∈ R
r denote the patch of size√

q ×√
q (q > n) extracted from x̂ at position i. Consider-

ing the inconsistences between the interpolated HR image

and the retrieved high-quality HR images, we simulate the

interpolated HR images for each retrieved HR image by first

blurring and downsampling followed by interpolation. Let

ẑr denote the interpolated version of zr. Then, for a giv-

en query patch p̂i, we search for similar patches in each ẑr
within a large searching window centered at position i. For

robustness, the patch distance proposed in [20] is adopted,

i.e.,

d(p̂i, q̂i,l) = ||p̂i − q̂i,l||22 + ρ||∇p̂i −∇q̂i,l||22 (15)

where q̂i,l denote the patches of size
√
q × √

q extracted

within the searching windows of ẑr, ρ is a constant (ρ = 10
in our implementation) and ∇ denotes the operator extract-

ing the gradients. Note that before computing the patch

distance the DC components of the patches are removed.

Generally, the value of the minimum distance (denoted as

dmin) between the query patch and the candidate patches

indicates the quality of the patch matching. To better adapt

to the local image structures, we adaptively adjust the size

of the query patch p̂i according to dmin as in [20]

√
q =















21, dmin 6 1000
17, 1000 < dmin 6 1500
13, 1500 < dmin 6 2500
9, dmin > 2500

(16)

After patch matching, the patches that are within the first

L closest to p̂i are selected, denoted as q̂i,l, l = 1, 2, · · · , L.

Then, smaller patches of size
√
n ×√

n are extracted from

zr at the corresponding positions of qi,l. Finally, the

matched HR patches are obtained as z̃i,l = zi,l − ẑi,l + x̂i.

The grouped similar patches are then used to learn the s-

parse distributions, as described in the previous section. A

much better estimate of the original HR image can then be

obtained with learned sparse distributions, as will be de-

scribed in the next section.

When a better estimate of the HR image is obtained, we

directly use the patch x̂i to search for similar patches in the
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retrieved images zr, using the Euclidean distance. After

patch matching, the DC components of the grouped similar

patches are set as that of x̂i.

4. Image super-resolution with learned sparse

distribution

The image SR problem with the learned sparse model

can be formulated as

(x,Ai) = argmin
x,Ai

||y − Hx||22 + η
∑

i

{||R̃ix− DAi||2F

+ 2
√
2σ2

n

m
∑

k=1

||Λi(αi,k − βi)||1},

(17)

where R̃ix
.
= [Ri,1x,Ri,2x, · · · ,Ri,mx] ∈ R

n×m denotes

the data matrix formed by the similar patches. A standard

approach for solving Eq.(17) is to adopt alternative opti-

mization.

4.1. Solving for Ai

For a fixed x, Eq.(17) reduces to a sequences of simulta-

neous sparse coding problems, as

Ai = argmin
Ai

||R̃ix−DAi||2F+2
√
2
σ2
n

η

m
∑

k=1

||Λi(αi,k−βi)||1,

(18)

which is equivalent to solving a sequences of sparse coding

problem, i.e.,

αi,k = argmin
αi,k

||Ri,kx−Dαi,k||22+2
√
2
σ2
n

η
||Λi(αi,k−βi)||1.

(19)

With fixed βi and Λi, the sparse coding problem of Eq.(19)

is convex and can be iteratively solved by the surrogate

based algorithm [4].

α
(t+1)
i,k = Sτ (v

(t)
i,k − βi) + βi, (20)

where v
(t)
i,k = D⊤(Ri,kx − Dα

(t)
i,k)/c + α

(t)
i,k, Sτ (·) de-

notes the soft-thresholding operator with threshold τ =
(2
√
2σ2

n)/(cηθi), and c is a constant to guarantee the con-

vexity of the surrogate function. Specifically, the sparse

coding problem of Eq. (19) can be solved in just one step

when the dictionary is orthogonal. In this work, the orthog-

onal local PCA dictionaries are used. Please refer to [6] for

the details of local PCA dictionaries.

4.2. Solving for the whole image x

Withe fixed Ai, the whole image can be reconstructed by

solving

x = argmin
x

||y − Hx||22 + η
∑

i

‖R̃ix− DAi‖2F (21)

Algorithm 1 Image SR with Learned Distributions

Initialization:

(a) Initialize x̂ by bicubic interpolation and set η and σn;

(b) Compute the local PCA dictionaries via k-means and

PCA;

(c) Retrieve correlated images {zr} and align them to x̂;

Outer loop: Iteration on t = 1, 2, . . . , Tmax

(a) Group a set of similar patches Xi for each x̂i from the

current estimate of x;

(b) Search for similar patches {z̃i,l} to x̂ from the re-

trieved images as described in sec.3.3

(c) Learn the nonzero expectations βi and standard deriva-

tions θi from both Xi and {z̃i,l};

(d) Inner loop (solve Eq.(17)): iteration on J =
1, 2, · · · , J ;

(I) Update sparse codes A
(j+1)
i by solving Eq.(18);

(II) Update the whole image x̂(j+1) by computing E-

q.(22);

(III) Set x(t+1) = x(j+1) if j = Jmax End for

(e) If mod(t, t0) = 0, update the PCA dictionaries D us-

ing x(t+1);

End for

Output: x(t+1).

which admits a closed-form solution as

x = (H⊤H+η
∑

i

R̃
⊤

i R̃i)
−1(H⊤y+η

∑

i

R̃
⊤

i DAi), (22)

and R̃
⊤

l R̃l =
∑m

k=1 R⊤

k Rk, R̃
⊤

i DAi =
∑m

k=1 R⊤

k Dαi,k.

The matrix to be inverted in Eq.(22) is very large, we use

the conjugate gradient algorithm to solve Eq.(22). The pro-

posed SR algorithm is summarized in Algorithm 1. The

local PCA dictionaries are updated in every t0 iterations to

save computational complexity.

5. Experimental results

Seven images from the Oxford Building dataset 1 shown

in Fig.4 are used as the test images. The other remaining

images of Oxford building database are served as training

images. The LR images are generated by first blurring the

HR images with a 7×7 Gaussian kernel with standard devi-

ation of 1.6, then down-sampling with factors of 3, 4 and 6.

For color images, we only apply the proposed method to the

illumination channel and use bi-cubic interpolator for the

chromatic channels. The main parameters of the proposed

algorithm are set as follows: R = 4 correlated images are

retrieved, the number of similar patches from retrieved im-

ages and the initially reconstructed HR images are L = 10

1http://www.robots.ox.ac.uk/∼vgg/data/oxbuildings/
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Figure 4: The test images. From left to right, the images are named as “a” to “g”

and m = 10, respectively, Tmax = 10 and J = 10. The

proposed method is compared with three recently SR meth-

ods, i.e., the dictionary learning based SR method (denot-

ed as DL-SR) [18], the image retrieved based SR method

(denoted as IR-SR) [20] and the NCSR method [7]. Nothe

that the NCSR is the current state-of-the-art reconstruction

based method. For a fair comparison, we use the retrieved

images to train the LR/HR dictionaries pair that will be used

in the DL-SR method [18].

The PSNR and SSIM results of the test methods are re-

ported in Table 1. It can be seen that the proposed method

performs much better than the NCSR method [7]. The P-

SNR gain over NCSR can be up to 2.72dB. This verify the

effectiveness of the proposed method. When compared to

the IR-SR method [20], the average PSNR gain is around

1dB.

Parts of the reconstructed images by the test methods are

shown in Figs.5-6. We can see that the NCSR method [7] is

very effective in recovering the large scale edges. However

it fails to recover fine image details, especially for large s-

caling factors. The IR-SR method can better recover the fine

image details. However, visual artifacts can be observed in

the reconstructed image. The proposed method takes both

advantages of the effective nonlocal sparse models and the

retrieved-based methods. It can not only well reconstruct

large edges but also well recover fine image details.

6. Discussions

In this paper, we proposed a novel image SR method that

learns the sparse distributions from correlated images. For

a given LR image, a set of high-quality images that sim-

ilar to the LR image are first retrieved from a large im-

age database. Then, the parametric sparse distributions are

learned from both the LR image and the retrieved images.

Specifically, the expectations and the standard derivations

of the sparse codes are learned. With the learned sparse dis-

tributions, more accurate sparse regularization terms can be

built. Experimental results show that the proposed method

outperforms the current state-of-the-art image SR methods

in terms both PSNR and visual quality.

Limitations. Despite the effectiveness in reconstructing

HR images, the proposed method has some limitations for

the general images, for which the image retrieval method

cannot find correlated images. In Fig. 7, we show the

SR results on two general images Lena and Helicopter.

We can see that both the PSNRs of the proposed method

are comparable to those of NCSR. For this case, the pro-

posed method reduces to the conventional sparsity-based S-

R method, where the sparse models are learned using the

LR images only.
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Figure 5: SR results of scaling factor 3.(a) Parts of the original images of “b” and “c” and “f”; (b) LR images; (c)

DL-SR [18] (PSNR=25.20dB,27.52dB,28.24dB); (c) NCSR [7] (PSNR=26.83dB,29.22dB,30.17dB); (d) IR-SR [20] (P-

SNR=26.78dB,30.38dB,30.29dB); (e) Proposed method (PSNR=27.80dB,31.24dB,31.25dB)
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