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Abstract

Obtaining an appropriate dictionary is the key point

when sparse representation is applied to computer vision

or image processing problems such as image restoration.

It is expected that preserving data structure during sparse

coding and dictionary learning can enhance the recovery

performance. However, many existing dictionary learning

methods handle training samples individually, while miss-

ing relationships between samples, which result in dictio-

naries with redundant atoms but poor representation ability.

In this paper, we propose a novel sparse representation

approach called conformal and low-rank sparse represen-

tation (CLRSR) for image restoration problems. To achieve

a more compact and representative dictionary, conformal

property is introduced by preserving the angles of local

geometry formed by neighboring samples in the feature

space. Furthermore, imposing low-rank constraint on the

coefficient matrix can lead more faithful subspaces and

capture the global structure of data. We apply our CLRSR

model to several image restoration tasks to demonstrate the

effectiveness.

1. Introduction

Sparse representation has been proven to be a promis-

ing model for image restoration, such as image super-

resolution [33] and image denoising [9]. The sparse model

is an emerging and powerful method to describe signals

based on the sparsity and redundancy of their represen-

tations [9, 21]. The model suggests that there exists a

dictionary which can reconstruct the signals. Each signal

can be represented by a sparse linear combination of atoms

in the dictionary.

In earlier sparsity-based image restoration methods, dic-

tionaries are analytically predefined (e.g., wavelets [22]).

After that, the emergence of new methods [9, 21] approves

that the learned dictionary from training samples have better

performance in image restoration. Therefore, the quality
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of the learned dictionary becomes the key point for image

restoration problem.

Many approaches have been devoted to learning appro-

priate dictionaries. Some early dictionary learning methods,

such as K-SVD algorithm [1], focus on reconstruction

power of the dictionary, and have been applied to image

restoration [9]. But these methods are dependent on a large

training dataset. Besides, the dictionary size is fixed, which

may result in dictionary redundancy, making it difficult

to do the signal decompositions. Some other dictionary

learning methods add discrimination constraints to make the

dictionary smaller [36, 34]. However, these methods only

train samples individually or consider the discrimination

between classes, while ignoring local relationships between

samples or structure of the data manifold, which may result

in redundant dictionaries with poor representation ability.

All these problems may lead to bad restoration results due

to the bad dictionary.

Some sparsity-based image restoration methods imply

that preserving the data structure during sparse coding by

building relationships of samples can enhance the recovery

performance [19]. The relationships between samples can

be analyzed from two aspects. From local perspective, local

samples have similar features and form a local subspace,

reflecting the affinities between each other. From global

perspective, samples with similar features are linearly re-

lated, and thus they lie on a low-dimensional latent space.

Therefore, the key problem for dictionary based image

restoration is how to embed these two relationships into

dictionary learning and sparse representation.

In this paper, we propose a conformal and low-rank

sparse representation (CLRSR) approach for image restora-

tion. The work from Wright et al. [31] implies that the

images (or their features) lying on a high dimensional

manifold exhibit degenerate structure and form its own

inner structure. This inner structure indeed is a kind of

local relationships. Some researches [16, 10] suggest that

the data inner structures can be better modelled through

Conformal Eigenmaps [27], which projects data from a high

dimensional space to a low dimensional manifold while p-

reserving the angles formed by neighboring samples. These
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angle relationships computed by Conformal Eigenmaps

model the inner structures of data, which are called as the

conformal property. By considering the conformal property

in dictionary learning, the local geometric relationships in

the samples can be preserved. As a result, all the samples

can find their corresponding embeddings in the dictionary

space with similar local structures, yielding a representative

dictionary. Moreover, locally neighboring samples are able

to use the same dictionary atoms for their decompositions.

Thus the redundancy of the dictionary can be eliminated by

deleting these unnecessary atoms, resulting in a compact

dictionary.

To involve the global structure of data, we enforce the

coefficient matrix to be low-rank. The samples extracted

from image/video are relevant to each other, thus these

samples lie on low-rank subspaces. With the representa-

tive dictionary, samples having similar features will have

similar sparse representations, resulting in similar coding

coefficients. Therefore, the coefficient matrix A is expected

to be low-rank, too. Imposing low-rank constraint on the co-

efficient matrix can lead more faithful subspace and capture

the global structure of data [17]. Finally, introducing global

structure can complement the local structure by conformal

property and contribute to dictionary learning.

The contributions of this paper include: 1) a novel

conformal and low-rank sparse representation approach

is proposed to involve the local and global structure in-

formation of data to obtain a compact and representa-

tive dictionary; 2) our approach can be applied to image

restoration tasks including image super-resolution and im-

age denoising, and extended to image editing problems

such as image/video recoloring. Various experiments and

comparisons demonstrate that our approach can learn a

better dictionary with competitive performance compared

to the previous methods.

2. Related Work

Sparse representation and dictionary learning have been

developed rapidly and received much attention in recent

years. Here we briefly review the techniques most related

to our work.

Many classic sparse representation methods have been

proposed to learn a good dictionary. The K-SVD algo-

rithm [1] is a representative dictionary learning method

applied to image processing. It focuses on efficiently

learning an over-complete dictionary which can maximize

the reconstruction power. In [14], Lee et al. sped up

the sparse coding algorithm by solving the optimization

function in a new way. Mairal et al. [20] proposed an

online dictionary learning method based on stochastic ap-

proximations to handle large datasets efficiently. These

methods most focus on the original sparse coding problems

and improve efficiency of the learning algorithm.

Learning a compact and representative dictionary is very

important for sparse representation. Qiu et al. [23] adopted

the rule of maximization of mutual information to learn a

compact and discriminative dictionary for action attributes.

Siyahjani et al. [28] learned a context aware dictionary to

improve the recognition and localization of multiple objects

in images. Other methods improve the dictionary perfor-

mance by separating the particularity and commonality [13]

and adding discrimination constraints [36, 34]. Most of

these methods consider the discrimination between classes,

while seldom involving relationships between samples or

the local information in the data space.

Due to the power of the sparse representation technique

and good effectiveness of the ℓ1 norm minimization al-

gorithm, sparse representation has been applied to many

computer vision and image processing tasks such as image

restoration [21, 8]. Elad et al. [9] used the K-SVD algo-

rithm to learn a dictionary to reconstruct the noisy images.

Mairal et al. [21] extended the sparsity-based restoration

model to color images. Yang et al. [33] proposed a

sparse representation based image super-resolution method

by jointly learning two dictionaries for the low and high

resolution images. Semi-coupled dictionary learning [30]

and double sparsity regularized manifold learning [19] are

also proposed to achieve good performance in image super-

resolution. Chen et al. [6] introduced the sparse repre-

sentation technique to the edit propagation task. Sparse

representation and dictionary learning can also be applied

to face recognition [32] and classification [35].

3. Conformal and Low-Rank Constraints on

Sparse Representation

Sha and Saul [27] proposed a spectral method for non-

linear dimensionality reduction through conformal trans-

formations. Specifically, a d-dimensional embedding is

first computed from m bottom eigenvectors by LLE with

m > d; then the conformal mapping is applied to these

embeddings via optimizing the degree of neighborhood

similarity. The solution to the optimization yields the un-

derlying manifold dimensions. Essentially, the conformal

transformations constrain that the local angles formed by

neighboring samples maintain unchanged during dimen-

sional reduction. With this constraint, this method could

reveal a more faithful subspace which nonlinearly embed-

ded in high dimensional space. Sparse representation can

be regarded as a member of the manifold learning family.

In fact, sparse representation is to build dictionaries of

atoms or subspaces that provide efficient representations of

classes of signals [29]. Therefore, the conformal constraint

for manifold learning holds for sparse representation too.

Moreover, in sparse representation, training data lying on

a high dimensional manifold exhibits degenerate structure

and forms its own inner structure [31]. This inner structure
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Figure 1. An illustration of the principle of conformal and

low-rank sparse representation. (a) is the input data set, (b)

shows the coefficients distribution in the dictionary space without

the conformal and low-rank constraints, and (c) shows the

corresponding relationship between dictionary and coefficients,

while (e) and (f) are the coefficients distribution and relationship

with the conformal and low-rank constraints, respectively. (d) is

the input data with the computed conformal structure.

can be treated as one of local geometric structures which

can be described by conformal constraints. Thus preserving

the conformal constraints in sparse representation brings

more local information than traditional sparse coding. For

example, as shown in Fig. 1(d, e), the local structure

(xi, xj , xk) in input dataset is preserved for the correspond-

ing coding coefficients (αi, αj , αk).

Low-rank property has achieved excellent results in

matrix completion [5, 11] and been applied to many image

processing problems [18, 7]. The basic observation of

these works is that similar patches extracted from images

lie on a very low-dimensional subspace. The low-rank

subspace constraint can capture the underlying structure

of the patches. We enforce low-rank constraint on the

coefficient matrix to acquire global structure of the coding

coefficients and enable more robust dictionary learning.

The conformal and low-rank constraints can make the

learned dictionary more compact. Let M be the high

dimensional data manifold, and N be the space of coding

coefficients. The sparse coding algorithm is a mapping

process from M to N , as shown in Fig. 1. The samples

(xi, xj , xk) ∈ M are mapped to (αi, αj , αk) ∈ N . In

the space N , the dictionary atoms di can be seen as the

(orthogonal) axes, and the sparse coding coefficients α are

the coordinate values in the dictionary space, as shown

in Fig. 1(b, e). If the conformal constraints are added into

sparse representation, the coding coefficients can preserve

the local geometric properties, as shown in Fig. 1(e).

On the other hand, in the global perspective, low-rank

constraint on the coefficient matrix makes more faithful

geometric structure in dictionary space, making a sparser

Figure 2. The reconstruction results of image “Barbara”. (a) is

the source image, (b) and (c) are the reconstruction results without

and with conformal and low-rank constraints, respectively.

representation. Therefore samples in a local subspace will

share some atoms, leading to a compact dictionary, as

shown in Fig. 1(f). In contrast, coding coefficients are

scattered without such constraints (Fig. 1(b)), resulting in

a redundant dictionary (Fig. 1(c)).

The conformal and low-rank constraints could improve

the representation ability of the learned dictionary. The con-

formal property describes the local geometric relationships

of a sample with its K-nearest neighbors. The work [27]

shows that the conformal constraints contribute to reveal a

more faithful subspace. Furthermore, due to the low-rank

property of the coefficient matrix, low-rank constraint can

help with optimizing subspaces in a global view. Conse-

quently, preserving the conformal and low-rank constraints

in sparse representation will contribute to build dictionaries

which provide more efficient representations. As shown

in Fig. 2, (b) and (c) are the reconstruction results without

and with conformal and low-rank constraints, respectively.

The dictionary learned from the source image is only with

16 atoms. Under the same settings, the dictionary with

conformal and low-rank constraints can reconstruct the

input data (a) better than that without such constraints,

showing a better representation ability. The small size also

reveals the compactness of the learned dictionary.

The conformal constraint is better than other local ge-

ometric descriptors such as the classic proximity relations

used by LLE [25] and Laplacian eigenmaps [3]. As pointed

out by [27], the proximity relationships can hardly capture

precise geometric properties, thus these relationships can-

not reflect the underlying subspace. Besides, the proximity

relationships are somewhat unpredictably dependent on

parameters such as the number of nearest neighbors and

boundary conditions. Therefore, the corresponding dictio-

naries learnt with the constraints of proximity relationships

are less representative in sparse representation. In contrast,

conformal constraints can maximally preserve the local

geometric properties. With low-rank constraint capturing

the global structure property, we can achieve more faithful

dictionaries. We demonstrate the effectiveness of conformal

and low-rank constraints through comparing with proximity

relationships [19] for sparse representation.
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4. The CLRSR Approach

Given an input sample set X = [x1, x2, ..., xN ], the

over-complete dictionary D = [d1, d2, ..., dm] and sparse

decomposition coefficients A = [α1, α2, ..., αN ] can be

learnt by solving the sparse representation problem

min
D,α

∑

i

‖xi −Dαi‖
2
2 + λ

∑

i

‖αi‖1, (1)

where λ is a scalar constant. However, the traditional sparse

representation cannot capture the structure of the data X .

To achieve this goal, we consider the conformal constraint

and low-rank constraint to preserve the local and global

structure of the data.

4.1. Conformal Constraint

We involve the local geometric information of the data

X by adding a conformal term f(α) into (1), leading to

min
D,α

∑

i

‖xi −Dαi‖
2
2 + λ1

∑

i

‖αi‖1 + λ2f(α). (2)

Inspired by conformal eigenmaps [27], let g : zi = g(xi)
be a mapping between two discrete point sets X and Z.

Suppose that the point xi and two of its K-nearest neighbors

xj and xk were sampled from input data, as well as their

corresponding mapping points zi, zj and zk from the final

embedding space. To achieve the conformal mapping, the

triangle formed by x points should be similar to that formed

by z points. Thus we have

‖xi − xj‖
2

‖zi − zj‖2
=

‖xi − xk‖
2

‖zi − zk‖2
=

‖xj − xk‖
2

‖zj − zk‖2
= si, (3)

where si represents the scale ratio of these triangles from

original manifold to embedding.

In order to find maximally angle-preserving embedding,

the z points can be solved by minimizing the cost function

∑

j,k∈Ni

(

‖xj − xk‖
2 − si‖zj − zk‖

2
)2

, (4)

where Ni involves the neighbors of xi, including xi itself.

This means that every two points in the same neighborhood

set are connected, forming a locally complete graph.

We have the observation that sparse coding is a mapping

process from samples in feature space to the coding coef-

ficients in dictionary manifold. Specifically, each sample

xi in dense feature space has its embedding αi in sparse

dictionary space due to sparse coding technique. We

introduce the conformal property into sparse representation

to preserve the local structure information of the input data

and consequently, problem (4) turns to our conformal term

as

f(αi) =
∑

j,k∈Ni

(

‖xj − xk‖
2 − si‖αj − αk‖

2
)2

. (5)

By substituting (5) into (2), we obtain the conformal sparse

representation cost function

min
D,α,S

∑

i

‖xi −Dαi‖
2
2 + λ1

∑

i

‖αi‖1

+λ2

∑

i

∑

j,k∈Ni

(

‖xj − xk‖
2 − si‖αj − αk‖

2
)2

,
(6)

where S = [s1, s2, ..., sN ] represents all the scales.

4.2. Low­Rank Constraint

The samples extracted from the same scene are similar to

each other and lie on a very low-dimensional subspace. The

neighboring samples are combined into a data matrix, and

this matrix can be approximated by a matrix with a very low

rank [18]. This low-rank property is also preserved in the

coefficient matrix. Thus we introduce rank(A), the low-

rank constraint of coefficient matrix, to capture the global

structure of data. However, minimizing rank(A) is a NP-

hard problem. As a common practice, it can be converted

to minimizing ‖A‖∗, where ‖ · ‖∗ means the nuclear norm

of the matrix (sum of the singular values) [5]. We add the

low-rank constraint to (6), and get the final CLRSR problem

min
D,A,S

∑

i

‖xi −Dαi‖
2
2 + λ1

∑

i

‖αi‖1 + λ3 ‖A‖∗

+λ2

∑

i

∑

j,k∈Ni

(

‖xj − xk‖
2 − si‖αj − αk‖

2
)2

.
(7)

4.3. Optimization

We first convert problem (7) to the following equivalent

problem by introducing an auxiliary variable P :

min
D,A,S,P

∑

i

‖xi −Dαi‖
2
2 + λ1

∑

i

‖αi‖1 + λ3 ‖P‖∗

+λ2

∑

i

∑

j,k∈Ni

(

‖xj − xk‖
2 − si‖αj − αk‖

2
)2

,

s.t. A = P.

(8)

This problem can be solved by augmented Lagrange mul-

tiplier (ALM) method [15], which minimizes the following

augmented Lagrange function:

min
D,A,S,P

∑

i

‖xi −Dαi‖
2
2 + λ1

∑

i

‖αi‖1 + λ3 ‖P‖∗

+λ2

∑

i

∑

j,k∈Ni

(

‖xj − xk‖
2 − si‖αj − αk‖

2
)2

+tr[Y (A− P )] +
µ

2
‖A− P‖2F ,

(9)

where Y is Lagrange multiplier, and µ > 0 is a penalty pa-

rameter. Observe that there are four variables (D,A, S, P )

to be solved in (9). We separate the objective function
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Algorithm 1 Optimization of CLRSR problem (7).

Input: Data X , parameters λ1, λ2 and λ3.

Initialize: D = random(d,m), A = P = 0, Y =
0, S = 1, µ = 10−6.

while not converged do

1. Fix the others and update sparse coefficients A by

A = argmin
α

∑

i

‖xi −Dαi‖
2
2 + λ1

∑

i

‖αi‖1

+ λ2

∑

i

∑

j,k∈Ni

(

‖xj − xk‖
2 − si‖αj − αk‖

2)2

+
µ

2
‖A− (P − Y/µ)‖2

F
.

2. Fix the others and update P by

P = argmin
P

λ3

µ
‖P‖∗ +

1

2
‖P − (A+ Y/µ)‖2F .

3. Fix the others and update D by

D = argmin
D

∑

i

‖xi −Dαi‖
2
2 .

4. Fix the others and update si one by one through

si =

∑

j,k∈Ni
‖xj − xk‖

2 · ‖αj − αk‖
2

∑

j,k∈Ni
(‖αj − αk‖2)

2 .

5. Update the multiplier Y by

Y = Y + µ ∗ (A− P ).

6. Update µ by µ = min(1.1µ, 1010).
7. Check the convergence condition: A− P → 0.

end while

return D.

into four subproblems. In each subproblem, only one

variable is tackled while the others fixed. The program runs

through these steps iteratively until converging. The details

is outlined in Algorithm 1.

In the first step, we use the Iterative Projection Method

(IPM) [24] to solve the problem. We rewrite the equation as

A = argmin
α

F (α) + 2τ
∑

i

‖αi‖1, (10)

where

F (α) =
∑

i

‖xi −Dαi‖
2
2 +

µ

2
‖A− (P − Y/µ)‖2F

+ λ2

∑

i

∑

j,k∈Ni

(

‖xj − xk‖
2 − si‖αj − αk‖

2
)2

and τ = λ1/2. Let Ã = vec(A) denote the vector obtained

by concatenating all αi in A, i.e., Ã =
[

αT
1 , α

T
2 , ..., α

T
N

]T
.

Algorithm 2 Sparse coding using IPM.

Require: σ, τ > 0
Initialize: Ã(1) = 0, t = 1.

while not converged do
t = t+ 1,

Ã(t) = S τ

σ

(

Ã(t−1) −
1

2σ
∇F

(

Ã(t−1)
)

)

,

where ∇F
(

Ã(t−1)
)

is the derivative of F (A) w.r.t.

Ã(t−1), that is

∇F (A) = 2(DTDA−DTX) + µ(A− (P − Y/µ))

+ 4λ2

∑

i

∑

j,k∈Ni

si(αk − αj)
(

‖xj − xk‖
2 − si‖αj − αk‖

2)2 ,

and Sτ/σ is a soft-thresholding operator defined as

S τ

σ
(α) = sign(α) ·max{(|α| − τ/σ), 0}.

end while

return Ã(t).

Figure 3. The dictionaries learned from the image “Barbara” with

noise level σ = 20 using K-SVD and our approach. The initial

size of dictionary is 256. Our approach learns a smaller dictionary

(155 atoms) by removing the redundant atoms, and has a better

representation with less noise.

The memory usage of Ã depends on the dictionary size

and the number of training samples. For dictionary size of

1024 and 100k samples, the memory cost is about 390MB.

Following IPM described in [24], the problem (10) can be

solved by Algorithm 2.

Step 2 can be solved by the singular value thresholding

operator [4]. In step 3, we require that each column of

the dictionary is a unit vector, i.e., dTj dj = 1 for all

j. It is a quadratic programming problem which can be

solved by using a one-by-one update algorithm [35]. In

this step, if one atom in the dictionary was not used by any

sample for decomposition during sparse coding, it will be

deleted from the dictionary. This appears when there exist

similar dictionary atoms which can replace each other. Thus

deleting the similar atoms can make the dictionary more

compact and representative.
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Table 1. PSNR(dB) and SSIM values of the super-resolution results (scaling factor = 2)

Image Yel. Butt. Foreman Hat Hexagon House Leaves Parrot Red Butt. Starfish Average

Bicubic[12]
27.47 36.73 31.75 23.45 34.11 27.46 31.39 24.62 30.25 29.69

0.9156 0.9527 0.8942 0.8166 0.9125 0.9222 0.9394 0.8689 0.9092 0.9035

SCDL[30]
29.21 37.07 32.71 21.31 32.80 28.35 32.05 24.65 30.50 29.85

0.8528 0.7631 0.6897 0.6672 0.6028 0.8857 0.7398 0.8182 0.8408 0.7622

DSRML[19]
30.05 38.80 33.46 24.58 35.47 30.42 33.47 26.53 32.32 31.68

0.9457 0.9651 0.9228 0.8428 0.9268 0.9579 0.9566 0.9058 0.9389 0.9292

Ours
30.72 39.15 33.81 24.85 35.74 30.76 33.67 26.97 32.51 32.02

0.9526 0.9665 0.9260 0.8566 0.9284 0.9613 0.9579 0.9117 0.9406 0.9335

Figure 4. Image super-resolution results of “Red Butterfly” (scaling factor: 2). From left to right: low resolution image, high resolution

ground-truth, reconstructed results by Bicubic [12], SCDL [30], DSRML [19] and our approach.

4.4. The Learned Dictionary

The incoherence of the dictionary can indicate its rep-

resentation power. We use the correlation coefficients R

between dictionary atoms to measure the incoherence of the

dictionary [36]. The correlation coefficient R is defined as

R(di, dj) =
cov(di, dj)

√

cov(di, di) ∗ cov(dj , dj)
, (11)

where cov(di, dj) represents the covariance of atoms di, dj
in the dictionary. Smaller correlation coefficient R indicates

larger incoherence. We compute the largest R of all the

atom pairs to represent the incoherence of the dictionary,

i.e., RD = maxi 6=jR(di, dj), di, dj ∈ D. We compare

the correlation incoherence between the approaches with

and without the conformal and low-rank constraints. We

learn the dictionary with size 64 × 256 from ten different

natural images. The value RD of the dictionary learned

by the proposed approach is 0.8219, while without the

conformal and low-rank constraints the value RD is 0.8721.

This shows that the proposed approach learns a more

representative dictionary.

The proposed approach can remove the redundant atoms

in the dictionary, and the size of the final dictionary may be

smaller than the initial one. Figure 3 shows an example

of learned dictionaries from K-SVD and the proposed

approach. The initial size of dictionary is 256, while it

reduces to 155 after training by the proposed approach. We

can see that our approach gets a more compact dictionary

with better representation and less noise.

5. Applications and Comparisons

We apply our conformal and low-rank sparse represen-

tation approach to image restoration problems including

image super-resolution and image denoising. It is also ex-

tended to image editing problems such as video recoloring.

It’s important to select appropriate parameters for different

applications. In the proposed approach, there are four

main parameters K,λ1, λ2 and λ3. Like most methods, we

build a validation set for parameter selection. We optimize

each parameter while fixing others, until all parameters

achieve the optimal values. The specific values of each

application in this paper will be given below. In general, the

time complexity of our approach is lower than SCDL [30]

method, comparable to DSRML [19] method, and a little

higher than K-SVD [9] method.

5.1. Image Super­resolution

Image super-resolution aims to reconstruct a high res-

olution (HR) image from its corresponding low resolution

(LR) image. We follow the super-resolution framework

of Yang et al. [33] to do our experiments. The dictionary

consists of two coupled dictionaries of HR images and LR

images. The two dictionaries are trained together so that the

sparse representation for each pair of patches are the same.

Our CLRSR approach brings the structure information

in the data space to make the coupled dictionaries more

compact and representative. As a result, for image super-

resolution, the coupled dictionaries can better represent

the local and global structure of the HR and LR patches

respectively, constructing better HR images.

As same as previous super-resolution methods [30, 19],

we transform the images to YCbCr color space and only

perform on the luminance component. The size of the

dictionary is 1024. The patch size is set to 5 × 5. The

parameters K,λ1, λ2, λ3 are set to be 5, 2, 0.005, 0.005, re-

spectively. The training images are selected from [33]. We
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Table 2. PSNR(dB) and SSIM values of the super-resolution results (scaling factor = 3)

Image Yel. Butt. Foreman Hat Hexagon House Leaves Parrot Red Butt. Starfish Average

Bicubic[12]
24.12 33.84 29.30 21.33 31.27 23.49 28.17 21.64 27.09 26.69

0.8208 0.9158 0.8262 0.6572 0.8651 0.8009 0.8898 0.7513 0.8175 0.8161

SCDL[30]
24.32 33.21 28.98 18.77 29.17 22.53 27.55 21.06 26.18 25.75

0.7125 0.6413 0.4863 0.4060 0.4395 0.7366 0.5904 0.6415 0.6789 0.5926

DSRML[19]
25.44 35.42 30.33 21.73 32.44 25.18 29.40 22.85 28.12 27.88

0.8505 0.9308 0.8526 0.6450 0.8806 0.8580 0.9101 0.7957 0.8515 0.8416

Ours
26.07 35.79 30.62 21.83 32.67 25.32 29.64 23.26 28.19 28.16

0.8717 0.9337 0.8575 0.6994 0.8844 0.8649 0.9136 0.8074 0.8542 0.8541

Figure 5. Image super-resolution results of “Hexagon” (scaling factor: 3). From left to right: low resolution image, high resolution

ground-truth, reconstructed results by Bicubic [12], SCDL [30], DSRML [19] and our approach.

make comparisons with the existing image super-resolution

approaches, including bicubic [12], SCDL [30] and DSRM-

L [19]. The test images are from [19] and [30], and some

are from internet.

As most of previous methods did, we first do the image

super-resolution with scaling factor 2. The Peak Signal

to Noise Ratio (PSNR) and Structural SIMilarity (SSIM)

results are listed in Table 1. The values shown in the table

are calculated only on the luminance channel. From this

table we can see that the proposed approach outperforms

other methods. The PSNR is about 0.34dB higher than D-

SRML [19] in average. Fig. 4 shows one example of super-

resolution results by these methods. From the example we

can notice that SCDL method smoothed the edges well, but

sometimes generated artifacts on some spots. The DSRML

method generated blurred result. In contrast, our approach

can well preserve these local structures to some extent.

We also do image super-resolution with scaling factor 3.

The results are shown in Table 2. Our CLRSR approach

outperforms other methods in terms of PSNR and SSIM

values. A texture example in Fig. 5 shows the advan-

tage of our approach in preserving the structure of image.

While the SCDL method cannot preserve the structure of

the hexagons, and the DSRML method generated small

hexagon shadows in it. Figure 6 illustrates the comparisons

in different dictionary sizes. Our approach achieves better

results even with small dictionary size. It means that our

learned dictionary has a higher compactness.

We also validate the contributions of each constraint

towards the final results by setting each λ value to zero.

Here we test with scaling factor 2. With all constraints

working, the average PSNR of the test images is 32.02.

By turning off conformal constraint, the average PSNR

decreases to 31.83. By turning off low-rank constraint, the

Figure 6. Comparison of image super-resolution with different

dictionary sizes using different methods. The PSNR is the mean

value of all the test images used in the paper.

average PSNR becomes 31.58. We can see that low-rank

constraint contributes more than conformal constraint.

5.2. Image Denoising

We also evaluate our approach on image denoising with

different noise levels. Many researchers have reported

that sparse representations are very effective toward image

denoising [1]. The dictionary is first learnt on the patches

set sampled from the noisy image. Then we employ the

OMP method [26] to compute the coding coefficients to

reconstruct the image. During dictionary learning process,

we set λ1 = 0.03σ as the sparsity factor for all experiments,

where σ is the standard deviation of Gaussian noise. Other

parameters K,λ2, λ3 are set to be 5, 0.001, 0.001, respec-

tively. The patch size is set to 8 × 8. The dictionary is

initialized to DCT basis with dimension of 256. We make

comparisons with K-SVD denoising method [9] and Bao’s

proximal method [2] in different noise levels. The test

images are selected from these compared methods. Table 3
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Table 3. PSNR(dB) values of the denoised results.

Image Boat Fingerprint Hill

σ 10 15 20 25 10 15 20 25 10 15 20 25

K-SVD [9] 33.65 31.63 30.28 29.09 32.34 30.04 28.42 27.16 33.35 31.35 30.01 29.11

Proximal [2] 33.57 31.62 30.20 29.16 32.35 29.97 28.28 27.03 33.31 31.29 30.02 29.06

Ours 33.68 31.81 30.44 29.34 32.40 30.11 28.49 27.34 33.40 31.47 30.22 29.23

Image Lena Man Peppers

σ 10 15 20 25 10 15 20 25 10 15 20 25

K-SVD [9] 35.49 33.62 32.26 31.18 33.59 31.48 30.04 28.97 34.76 33.25 32.10 31.24

Proximal [2] 35.41 33.57 32.25 31.19 33.47 31.43 30.02 29.00 34.64 33.22 32.14 31.18

Ours 35.56 33.72 32.42 31.37 33.66 31.60 30.22 29.22 34.83 33.41 32.39 31.52

Figure 7. Denoising comparison of image “man” with K-SVD [9]

and proximal method [2] in noise level σ = 25.

shows PSNR values of the results. Figure 7 shows one

example of the comparison images. From the table we can

see that our approach is better than others, especially in

higher noise levels.

5.3. Video Recoloring

Our approach can also be applied to image editing tasks

such as video recoloring. We have the observation that

editing problem can be regarded as reconstruction problem.

According to some requirements, some content of the image

is modified to reconstruct a new one. Here we use the

learned dictionary to achieve the editing and reconstruction.

Taking image/video recoloring as an example, users can

change object’s color by drawing strokes with desired

colors, or editing the color palettes of the video or image.

Firstly, we learn a dictionary in RGB color space from the

original image. When a user makes some color edits, the

corresponding dictionary atoms will be changed and the

final recolored image is reconstructed by the new dictionary.

Please refer to [6] for more details.

In this experiment, the parameters K,λ1, λ2, λ3 are set

to be 5, 0.05, 0.001, 0.001, respectively. The dictionary size

is initialized to 300. Our recoloring results are compared

to Chen’s method [6] for visual effect. As shown in Fig. 8,

the user would like to change the color of the blue car by

drawing green strokes on it. Our approach achieves good

reconstruction results, while artifacts appear on the results

of Chen et al. [6], which you can see that some areas of the

Figure 8. Comparison results on video recoloring. From top to

bottom: input video, recoloring results from [6] and our approach.

car still remain blue. This indicates that our approach can

get a more representative dictionary, which can cover all the

input data and get better image reconstruction.

6. Conclusions

In this paper, we proposed a novel conformal and low-

rank sparse representation approach for image restoration.

By considering conformal property, the local structure of

data can be preserved. In the meanwhile, low-rank con-

straint on the coefficient matrix can reveal more faithful

subspaces during sparse representation. With these con-

straints, our approach can get a more representative and

compact dictionary. It was applied to various applications

such as image super-resolution, image denoising and video

recoloring. We evaluated our approach by comparing to

many related methods on various datasets. Our approach

runs not very fast due to the additional computation for con-

formal relationships, especially for large dataset. However,

our program is far from optimizing and we will develop our

program in parallel for more efficiency.
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