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Abstract

One of the most popular approaches to multi-target

tracking is tracking-by-detection. Current min-cost flow

algorithms which solve the data association problem op-

timally have three main drawbacks: they are computation-

ally expensive, they assume that the whole video is given

as a batch, and they scale badly in memory and computa-

tion with the length of the video sequence. In this paper,

we address each of these issues, resulting in a computation-

ally and memory-bounded solution. First, we introduce a

dynamic version of the successive shortest-path algorithm

which solves the data association problem optimally while

reusing computation, resulting in faster inference than stan-

dard solvers. Second, we address the optimal solution to the

data association problem when dealing with an incoming

stream of data (i.e., online setting). Finally, we present our

main contribution which is an approximate online solution

with bounded memory and computation which is capable of

handling videos of arbitrary length while performing track-

ing in real time. We demonstrate the effectiveness of our

algorithms on the KITTI and PETS2009 benchmarks and

show state-of-the-art performance, while being significantly

faster than existing solvers.

1. Introduction

In recent years the performance of object detectors has

improved substantially, reaching levels which nowadays

make them applicable to real-world problems. A notable

example is face recognition where algorithms that employ

deep learning features have attained human performance

[39]. Many aspects have been key for the success of ob-

ject recognition. The creation of benchmarks such as PAS-

CAL [18] and ImageNet [36] made experimentation more

rigorous and stimulated the development of key algorithms

such as the deformable part-based model (DPM) [19] and

more recently deep learning approaches based on convolu-

tional nets such as [26] and R-CNN [23].

With the success of object detection came also the suc-

cess of tracking-by-detection approaches [2, 10, 11, 32, 35,

43, 46] which track an unknown number of objects over

time. The idea is to first detect objects independently in

each frame, followed by an association step linking individ-

ual detections to form trajectories. The association prob-

lem is difficult due to the presence of occlusions, noisy

detections as well as false negatives. The simplest ap-

proach is to independently establish associations between

all pairs of consecutive frames, a problem which can be

solved optimally in polynomial time using the Hungarian

method. However, in challenging situations ambiguities are

hard to resolve using local information alone and early er-

rors cannot be corrected at later frames leading to globally

inconsistent tracks. More recently, sophisticated discrete-

continuous optimization schemes have been proposed [2],

which alternate between optimizing trajectories and per-

forming data association over the whole sequence by as-

signing detections to the set of trajectory hypotheses. Un-

fortunately, the resulting problems are highly non-convex,

hard to optimize and provide no guarantees of optimality.

In their seminal work, Zhang et al. [46] showed how

multi-frame data association can be cast as a network flow

problem. The optimal solution can be found by a min-cost

flow algorithm, solving simultaneously for the number of

objects and their trajectories according to a cost-function

which incorporates the likelihood of a detection as well as

pairwise relationships between detections for all consecu-

tive frames. Recent extensions [3, 6, 11, 35] demonstrate

speedups by using more elaborate graph solvers, and show

how higher-order motion models can be incorporated into

the formulation at the cost of giving up global optimality.

In this paper we are interested in making min-cost flow

solutions applicable to real-world scenarios such as au-

tonomous driving. Towards this goal two main problems

need to be addressed: (i) current approaches assume a batch

setting, where all detections must be available a priori, and

(ii) their memory and computation requirements grow un-

bounded with the size of the input video. As a conse-

quence existing min-cost flow techniques cannot be em-
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ployed in robotics applications where tracking algorithms

are required to run non-stop in an online setting while com-

peting with other processes for a limited computation and

memory budget. In this paper we develop practical tracking

by detection solutions that

• perform computations only when necessary,

• handle an online stream of data, and

• are bounded in memory and computation.

In particular, we show that the first two properties can be

achieved while maintaining optimality, and an approximate

solution is possible for the latter which still performs very

well in practice. We demonstrate the effectiveness of the

proposed solvers on the KITTI [22] and PETS 2009 [20]

tracking benchmarks. As evidenced by our experiments,

our approach is significantly more efficient than existing

min-cost flow algorithms. Furthermore, a near-optimal so-

lution is retrieved when bounding the memory and compu-

tation to as little as 20kB and 10ms. We make our code,

dataset and supplementary material available on our project

website 1

2. Related Work

Multi-target tracking approaches can be divided into

two main categories: filtering-based approaches and batch

methods. Filtering-based methods [10,17,33,34] are based

on the Markov assumption, i.e., the current state depends

only on the previous states. While they are fast and applica-

ble in real-time applications, they typically suffer from their

inability to recover from early errors.

Recent efforts focus primarily on batch methods, where

object hypothesis are typically obtained using an object de-

tector (tracking-by-detection) and tracking is formulated as

an optimization problem over the whole sequence. This

mitigates the aforementioned problems and allows for the

integration of higher-level cues such as social group behav-

ior in the case of pedestrian tracking [25, 27, 37]. Discrete-

continuous optimization techniques have been proposed

[2, 32], where discrete (data association) and continuous

(trajectory fitting) optimization problems are solved in an

alternating way until converging to a hopefully better lo-

cal minimum. In [9, 13, 14, 44], approximate Markov chain

Monte Carlo techniques are employed for solving the data

association problem. In order to increase the discriminative

power of appearance and dynamical models, online learning

approaches have been suggested [28, 29, 43, 45]. In [5, 6],

the problem is cast as optimization on a grid using a linear

program while assuming that the observing camera is static.

The problem of tracking through occlusions has been tack-

led in [4,12,16,30] by using context from outside the object

region or by building strong statistical motion models.

1http://www.cs.toronto.edu/∼boundTracking

While most of the aforementioned formulations resort

to approximate optimization without optimality guarantees,

Zhang et al. [46] showed how data association with pair-

wise energies can be formulated as a network flow problem

such that standard graph solvers can be leveraged to retrieve

the global optimum. Their formulation solves for the glob-

ally optimal trajectories including their number, and hence

implicitly solves the model selection problem. To reduce

the computational complexity of min-cost flow algorithms,

[6, 35] proposed to use the successive shortest-path (SSP)

algorithm as solver. Further speed-ups have been achieved

in [35] using a greedy dynamic programming (DP) approxi-

mation. The min-cost flow idea has been extended in [3,11]

to include higher-order terms at the price of loosing opti-

mality. More recently, Wang et al. [41] proposed to jointly

model the appearance of interacting objects by integrating

linear flow constraints into the framework.

While all of the existing min-cost flow formulations as-

sume a batch setting, in this paper we propose a compu-

tationally and memory-bounded version of this algorithm,

which is able to process video sequences frame-by-frame

while reusing computation via efficient caching strategies.

Furthermore, our scheduling strategy performs computa-

tions only when neccessary which also speeds up traditional

batch solvers.

3. Review on Optimal Tracking-by-Detection

One of the most popular approaches to multi-target

tracking is tracking-by-detection, where a set of detections

are computed for each frame and trajectories are formed

by linking these detections. In this section, we briefly re-

view the necessary preliminaries to our contributions in

Section 4. In particular, we review how to formulate multi-

target tracking as a min-cost flow problem and how to solve

it using the successive shortest path algorithm.

3.1. Tracking as Min­Cost Flow

Following the tracking-by-detection paradigm, we as-

sume that a set of detections X = {xi} is available as in-

put. Let xi = (xi, ti, si, ai, di) denote a detection, with xi

the position of the bounding box, ti the time step (frame

index), si the size of the bounding box, ai the appear-

ance, and di the detector score. We define a trajectory

as a sequence of observations Tk = (o1, o2, . . . , olk) with

o ∈ {1, . . . , |X |} the detection index of temporally adjacent

detections toi+1
= toi + 1.

The full association hypothesis is then given by a set of

trajectories T = {Tk}, and the data association problem

can be formulated as a Markov random field (MRF). More

specifically, we aim at maximizing the posterior probability
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of trajectories:

p(T |X ) = p(T )
∏

i

p(xi|T ) (1)

The observation model is given by

p(xi|T ) =

{

Pi if ∃Tk ∈ T ∧ i ∈ Tk

1− Pi otherwise
(2)

where Pi denotes the probability of xi being a true detec-

tion. The prior over trajectories decomposes into a product

of unary and pairwise factors

p(T ) ∝
∏

T∈T

Ψ(T )
∏

T,T ′∈T

[T ∩ T ′ = ∅] (3)

where the pairwise term ensures that trajectories are dis-

joint. The unary factors are given by

Ψ(T ) = Ψen(xo1)Ψex(xol)

l−1
∏

i=1

Ψli(xoi ,xoi+1
) (4)

where Ψen(xo1), Ψex(xol) and Ψli(xoi ,xoi+1
) model the

likelihood of entering a trajectory, exiting a trajectory and

linking temporally adjacent detections within a trajectory.

Taking the negative logarithm of (Eq. 1), the maximiza-

tion can be transformed into an equivalent minimization

problem over flow variables [46] as follows

f
∗ = argmin

f

∑

i

Cen
i fen

i +
∑

i

Cex
i fex

i

+
∑

i,j

Cli
i,jf

li
i,j +

∑

i

Cdet
i fdet

i

s.t. fen
i +

∑

j

f li
j,i = fdet

i = fex
i +

∑

j

f li
i,j ∀i (5)

where Cen
i = − logΨen(xi) is the cost of creating a new

trajectory at xi and Cex
i = − logΨex(xi) is the cost of ex-

iting a trajectory at xi. The cost of linking two consecutive

detections xi and xj is denoted Cli
i,j = − logΨli(xi,xj)

and Cdet
i encodes the cost of xi being a true detection or

a false positive (data term). Furthermore, the binary flow

variables fen
i or fex

i take value 1 if the solution contains a

trajectory such that xi is the first frame or last frame, re-

spectively. fdet
i = 1 encodes the fact that xi is part of a

trajectory and f li
i,j = 1 if a tracklet exists which contains

both detections xi and xj in two consecutive frames.

In their seminal work, Zhang and Nevatia [46] showed

how to map the problem in Eq. 5 into a min-cost flow net-

work problem. Fig. 1 illustrates one such network graph,

where for each observation two nodes ui and vi are created

(summarized as one node for clarity of illustration) with an

edge between them with cost c(ui, vi) = Cdet
i and flow

Figure 1: The original problem (top) is mapped into a min-

cost flow network (bottom). Ground truth trajectories are

shown in black. Colored nodes encode detections and cor-

respond to two nodes in the min-cost flow network G. For

clarity of illustration, edges from the source and to the sink

have been ommitted.

f(ui, vi) = fdet
i . For entering, edges are introduced be-

tween the source s and the first node of each detection with

cost c(s, ui) = Cen
i and flow fen

i . For exiting, edges are

introduced between the last node of each detection and the

sink with cost c(vi, t) = Cex
i and flow fex

i . Finally, edges

between consecutive detections (vi, uj) encode pairwise as-

sociation scores with cost c(vi, uj) = Cli
i,j and flow f li

i,j .

While we assume that only detections in consecutive frames

can be linked, this can be easily generalized by allowing

transitions between detections in non-consecutive frames

resulting in additional edges.

To find the optimal solution, Zhang et al. [46] start with

flow zero, and augment the flow one unit at a time, applying

the push relabeling algorithm [24] to retrieve the shortest

path at each iteration. The algorithm terminates if the cost

of the currently retrieved shortest path is greater or equal to

zero. For efficiency, the bisection method can be applied on

the number of flow units, reducing time complexity from

linear to logarithmic with respect to the number of trajecto-

ries. The total complexity is then O((mn2 log2(n))), with

n the number of nodes and m the number of edges.

3.2. Successive Shortest­Path (SSP)

Recently, [6, 35] proposed to replace the costly push re-

labeling algorithm by the successive shortest-path (SSP) al-

gorithm [1, p. 104]. This reduces the computational com-

plexity to O(K(n log(n) + m)) where n is the number of

nodes, m is the number of edges and K denotes the num-

ber of trajectories which is upper bounded by the number of

nodes n. This section gives a brief introduction to the SSP

algorithm as it forms the foundation for our contributions.

We refer the reader to the supplementary material for tech-

nical details in greater depth and an illustrative example.
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The SSP algorithm works as follows: it first computes

the shortest path between source and target (i.e., path with

the lowest negative cost). It then iterates between revers-

ing the edges of the previously found shortest path to form

the residual graph Gr, and computing the shortest path in

this new residual graph. This process is iterated until no

trajectory with negative cost can be found. Finally, trajecto-

ries are extracted by backtracking connected, inverted edges

starting at the target node.

In the first iteration the shortest path from the source

to the target is efficiently retrieved using dynamic pro-

gramming [15, p. 655] as the input graph is directed and

acyclic. In the following iterations, Dijkstra’s algorithm can

be leveraged after converting the graph such that all costs

are positive. This conversion is achieved by simply replac-

ing the current cost Cu,v between nodes (u, v) linked by

a directed edge, with C ′
u,v = Cu,v + d(u) − d(v), where

d(u) and d(v) are the distance on the shortest path from the

source to nodes u and v (c.f . supplementary material). Im-

portantly, for u and v on the shortest path we have C ′
u,v = 0

after conversion. Note that for graphs with positive costs

and unit flow capacity, the SSP algorithm is similar to the

k-shortest paths (“KSP”) algorithm [38].Furthermore, one

could use other algorithms such as Bellman-Ford to replace

Dijkstra and handle negative costs directly. However, this

would result in worst complexity, i.e., O(K(n2)) .

4. Dynamic Online and Bounded Tracking

In this section we present new algorithms that have the

necessary properties for tracking-by-detection to be appli-

cable to real-world scenarios: dynamic computation, han-

dling online data, and bounded memory and computation.

We start by proposing a distributed optimal SSP algorithm

which leverages a dynamic priority cue, saving computa-

tion when compared to the original SSP algorithm. We then

extend this algorithm to handle an online data stream. Fi-

nally, we proposed our main contribution, a memory and

computation bounded online SSP algorithm.

4.1. Optimal Dynamic Min­Cost Flow (dSSP)

In this section we propose a novel dynamic algorithm

which performs computations only when necessary. Di-

jkstra’s algorithm is based on the principle of relaxation,

in which an upper bound of the correct distance is grad-

ually replaced by tighter bounds (by computing the prede-

cessor and its distance) until the optimal solution is reached.

Nodes are held in a priority queue, guaranteeing that the

most promising node is relaxed in each iteration 2. This pri-

ority queue is initialized to hold only the source node, and

upon convergence all nodes have been visited.

The key intuition behind our dynamic computation is

2This is guaranteed as all costs are positive.

that calling Dijkstra at each iteration of the SSP algorithm is

suboptimal in terms of runtime as from one iteration to the

next only a small part of the graph has changed (i.e., only

the reversed edges are different). Inspired by the distributed

Bellman-Ford algorithm [8, 40], we propose to reuse com-

putation and only update the predecessors when needed.

This can be easily implemented within Dijkstra by using

a dynamic priority queue, which contains only nodes that

have changed. Initially, this queue comprises the changes

introduced by reducing edges after finding the previous

shortest path in order to handle positive costs as in KSP.

The queue is then dynamically updated depending on which

successors require changes. We refer the reader to Algo. 1

for a summary of our dynamic algorithm.

We illustrate our dynamic algorithm within the compu-

tation of a single iteration of SSP in Fig. 2 for an example

containing four frames with three detections each. Given

the shortest path found in the previous iteration, we revert

its edges to form the residual graph in Fig. 2(a). Note that

the corresponding predecessor maps have to be updated as

the direction of these edges has changed. We start by up-

dating all predecessors for nodes belonging to the most re-

cent trajectory (blue path in Fig. 2(a)) in a forward sweep

(relaxed edges are marked in red). Next, all nodes with a

new predecessor propagate their cost along their respective

shortest path to their successors when taken from the prior-

ity queue. All successors which receive an update, i.e., for

which the predecessor has changed, are themselves added to

the priority queue (indicated by the red edges in Fig. 2(b)).

Note that those nodes are not necessarily part of the previ-

ous shortest path but can be retrieved efficiently as the suc-

cessors of the nodes in the current queue. This way, our al-

gorithm recursively updates all required nodes and ensures

global optimality. The algorithm (one iteration of SSP)

terminates when the queue is empty as all shortest paths

have been updated. Note that this dynamic computation

is employed at each iteration of SSP, and SSP terminates

when no new shortest path with negative cost can be found

(Fig. 2(c)). The final trajectories are extracted by collect-

ing all backward pointing edges of Gr, starting at the target

node (Fig. 2(d)). In contrast to Dijkstra’s original algorithm,

our dynamic broadcasting scheme relaxes only parts of the

graph for typical tracking networks as illustrated in Fig. 2(e)

and demonstrated later in our experimental evaluation.

4.2. Optimal Online Solution (odSSP)

Next, we extend the dynamic min-cost flow formulation

introduced in the previous section to the online setting. Our

intuition is that every time a new observation arrives (i.e.,

set of detections at time t), we would like to reuse com-

putation from the shortest paths and trajectories computed

in the previous time step which involve all detections up to

time t− 1. This is possible as in the online setting, the new
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(a) Update Nodes (b) Priority Queue (c) Shortest Path (d) Final Trajectories (e) Dijkstra (SSP)

Figure 2: Dynamic Message Broadcasting (dSSP): For a given residual graph (shortest path in blue), (a) nodes with invalid

predecessors which require an update (red) are detected and queued. (b) The queue is processed by successively taking

nodes from the queue and relaxing their outgoing edges. Successors with updated predecessors (red) are added to the queue.

Exploiting Dijkstra’s algorithm, the priority queue is processed until no nodes are left. The algorithm terminates with the

solution for the current residual graph (c)+(d). Trajectories are encoded by backward pointing edges (green and blue). While

our dynamic broadcasting scheme exploits the intrinsic properties of the tracking problem and updates only deprecated

predecessor maps (indicated by the red nodes in (a) and (b)), Dijkstra’s original algorithm requires the full predecessor map

and broadcasts messages to all nodes (indicated by the red nodes in (e)).

network contains the previous network and some additional

edges/nodes. It is important to note that a naı̈ve extension

of trajectories would violate optimality if the new evidence

(i.e., detections at time t) changes the optimal trajectories

for detections in previous time steps (1, · · · , t− 1).

We illustrate our dynamic online algorithm with an ex-

ample in Fig. 3. Consider the network specified in Fig. 3(a)

where the most recent time step is t = 3 and the optimal set

of trajectories and predecessor maps have been computed.

Fig. 3(b) illustrates the shortest paths as well as the two op-

timal trajectories (in blue and green respectively) computed

at time t = 3. As a new frame arrives, new nodes (de-

picted in cyan in Fig. 3(c) are added, extending the graph to

the next time step. The first trajectory can be computed by

applying dynamic programing only to the edges involving

the new nodes, as in a DAG the predecessors do not change

from previous time steps. For successive trajectories (next

iterations of the SSP algorithm), the predecessor maps from

the previous time steps can be reused only if the trajecto-

ries under consideration are currently in the same order as

when applying SSP to the previous time frame t − 1 (i.e.,

before we received the new observation). This will not be

the case when we have competing trajectories with similar

costs, as given the new evidence (new frame) the ordering

of these trajectories is likely to change. To handle this case,

we utilize a caching strategy which keeps all predecessor

maps for a cache of |C| frames in memory. Similar to the

offline strategy, the online version implements a dynamic

priority queue. Initially, this queue comprises the changes

introduced by the added nodes and edges for the most recent

time step. The queue is then dynamically updated depend-

ing on which successors require changes.

Coming back to our example, the optimal solution for

the first iteration of SSP is found in Fig. 3(d). The prede-

cessor maps for the new nodes (orange nodes in Fig. 3(e))

have to be re-estimated only if they were part of the shortest

path. Towards this goal, we employ our dynamic broad-

casting strategy where only the node in cyan in Fig. 3(f) is

put into the initial priority queue. As in this example the

optimal trajectories are consistent with the ones from the

previous time instant (see Fig. 3(b) and Fig. 3(g)), the opti-

mal trajectories can be computed very efficiently, resulting

in massive computational gains.

4.3. Memory­Bounded Solution (mbodSSP)

While the odSSP algorithm handles the online setting,

it does not scale to very large problems since messages

might broadcast back to very early frames in order to guar-

antee optimality. Furthermore, memory requirements still

grow unbounded with the length of the sequence. Thus,

these algorithms are not applicable to autonomous driving

or surveillance scenarios.

In this section we propose a memory and computation-

ally bounded approximation which we call “mbodSSP”.

The key intuition is that given some computation and mem-

ory budget, we can safely neglect most of the past, and only

retain the interesting information, i.e., the trajectories that

were optimal. We refer the reader to Algo. 2 for a depic-

tion of the algorithm, and focus on explaining it through

an example. Consider the case where we assume a budget

of τ = 4 frames, and the solution from the previous time

step is given in Fig. 3(g). Before adding new nodes to the

graph for the next time step t+1, we remove the oldest time

step t− τ from the graph as illustrated in Fig. 3(h) to main-

tain the memory/computation constraints. Simply deleting

edges from the graph is suboptimal as it completely discards

computations from previous time steps (before the new ob-

servation arrives). In order to “remember” known paths, for

each trajectory we sum the cost of the predecessor node at

time t− τ to the corresponding successor at time t− τ +1.
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(a) Original Network, t = 3 (b) Solution, t = 3 (c) Nodes added for t = 4 (d) Solution in DAG

(e) Merge Solution+Cache (f) Broadcast Changes (g) Decoded Trajectories (h) Clip Graph (mbodSSP)

Figure 3: Online (a)-(g) and Memory Bounded (h) Algorithm: Assume that for the original network at t = 3 (a), the

solution (b) is already known (shortest paths in blue and green). A new set of detections (cyan nodes) for t = 4 arrives and is

connected to the graph (c) resulting in a DAG for which the shortest path can be found by applying one step of the DAG-SP

algorithm (d). The predecessor maps from the previous (magenta nodes) and current time step (orange nodes) are merged

(e). The queue initially contains nodes with outdated predecessors from the last shortest path (cyan). The priority queue is

processed until convergence (Fig. 2) and the predecessors are updated (f). In this example, the algorithm terminates after

one iteration and the optimal solution is found (g). For the mbodSSP algorithm, paths which pass through nodes outside the

history window are merged with the entry costs of the next time step (h).

This strategy allows us to use the cache and remember pre-

viously found paths. In the rare event that a trajectory which

is not represented in the current cache is found, we resort to

odSSP on window [t − τ + 1, t + 1], guaranteeing a valid

cache for the current SSP iteration. The cached predecessor

maps are clipped using the same strategy. While optimal-

ity is violated as no changes can be applied to paths be-

yond t− τ + 1, our experiments demonstrate that for many

cases of practical interest small windows are sufficient to

obtain near-optimal solutions. In particular, our memory

bounded approximation is able to maintain track ids over

periods much longer than the window itself. In contrast,

when splitting the sequence into batches and applying the

min-cost flow network algorithm separately to each batch,

ad-hoc heuristics are required to resolve this problem.

5. Experimental Evaluation

We evaluate our algorithms on the challenging KITTI

[22] and PETS 2009 [20] tracking benchmarks. For PETS

we use the object detections provided by Andriyenko et

al. [2]. For KITTI we compare the DPM reference detec-

tions [19] provided on the KITTI website3 with the recently

proposed Regionlet detections [42] provided to us by the

authors.

3http://www.cvlibs.net/datasets/kitti/eval tracking.php

We convert the detection score of each bounding box

di into a unary cost value Ci using logistic regression

Ci = 1/(1 + eβdi) on the training set. To encode asso-

ciation costs, we use six different pairwise similarity fea-

tures s = {sl}: bounding box overlap, orientation simi-

larity, color histogram similarity, cross-correlation, location

similarity, and optical flow overlap. Similar to the detection

scores we pass the association features through a logistic

function using logistic regression yielding s ∈ [0, 1]6. The

detection/association cost for each edge (u, v) is then de-

fined as Cu,v = ((1 − s) + o)⊤w, where o denotes an

offset and w the scale. Note that the offset is required to

allow for negative as well as positive costs. All parameters

(o,w) have been obtained using block coordinate descent

on the respective training sets and kept fix during all our

experiments. We refer the reader to the supplementary ma-

terial for further details on the parameter setting, additional

results, and videos.

Comparison to State-of-the-art on KITTI: We first

compare the proposed dSSP and mbodSSP algorithms

against four state-of-the-art baselines [2, 21, 31, 35] as well

as the pairwise optimal Hungarian method (“HM”) on the

challenging KITTI dataset using the DPM reference detec-

tions [19]. The metrics we use are described in [7, 29]. As

shown in Table 1 (left part), the optimal algorithm (“SSP”)

outperforms all other methods. Note that all discussed opti-
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Algorithm 1: dSSP

Input: Set of Detections X = {xi}
Output: Set of trajectory hypotheses T = {Tk}

1 G(V,E,C, f)← ConstructGraph(X , s, t)
2 f(G)← 0 // initialize flow to 0

3 γ0, π0 ← DAG-SP(G(f)) // shortest path in DAG

4 G
(0)
r (f)← ConvertEdgeCosts(G(f), γ0, π0) G

(1)
r (f)←

ComputeResidualGraph(G
(0)
r (f), π(0))

5 q ← ∅ // q is maintained for every iteration k

6 while 1 do // find shortest paths for k ≥ 1
7 k ← k + 1

8 π(k) ← π(k−1)

9 q ← γ(k−1)

// process queue in time direction

10 foreach node u ∈ q do

// check predecessor from past

11 π(k) ← Update(π(k), u)

12 if updated then

13 q ← AddSuccessors(q, u, G
(k)
r (f))

// process queue

14 while ¬ empty(q) do

15 u← NodeWithMinDistance(q) // pop node

16 q ← q \ u

17 foreach node v ∈ Successors(G
(k)
r (f),u) do

// Check predecessor of v

18 π(k)(v)← Relax(u,v,c)

19 if d(v) > d(u) + c(u, v) then

20 d(v)← d(u) + c(u, v)
21 q ← AddNode(q, v)

22 G
(k)
r (f)← ConvertEdgeCost(G

(k)
r (f), π(k))

23 G
(k+1)
r (f)← ResidualGraph(G

(k)
r (f), γ(k))

// evaluate converted costs

24 if
∑k

i=1 cost(γ
(i)) > | cost(γ(0))| then

25 break

26 return T

mal batch solvers obtain identical tracking results, but with

different run time thus we only state results for SSP. In our

experiments, we made use of a relatively low threshold di =
−0.3 for the object detector to avoid early pruning and eval-

uate each method with respect to outlier rejection perfor-

mance. Note that our method attains the best performance

with respect to mostly tracked trajectories (“MT”) while

only exhibiting a slightly higher false alarm rate (“FAR”)

than the other methods. The method of [2] struggled with

the presence of outliers and di = 0.0 was used to obtain

meaningful results. Also note the little loss in performance

when running mbodSSP for a window length of τ = 10 as

a good trade-off between runtime and performance (Fig. 3).

Compared to the non-optimal DP solution [35], mbodSSP

achieves higher performance, especially in terms of identity

switches and fragmentations. We provide additional quali-

Algorithm 2: mbodSSP

Input: Current Detections X t = {xt},
Graph G(V,E,C, f, s, t), Cache C

Output: Set of trajectory hypotheses T = {Tk}
1 if memorybounded then

2 foreach node u ∈ [t− τ ] do

//remember predecessor by updating cen,i

3 G(f)← UpdateEntryEdge(G(f), u)

4 G(f)← RemoveObservation(G(f), u)

5 G(f)←AddObservations(G(f),X t) //still a DAG

6 π(0) ← C(0)(t− 1)

// run DAG-SP for edges (u, v) ∈ [t− 1, t]

7 γ(0), π(0) ← DAG-SP(Gr(f), t− 1)

8 G
(0)
r (f)←ConvertEdgeCosts(G(f), γ(0), π(0), t− 1)

9 G
(1)
r (f)←ComputeResidualGraph(G

(0)
r (f), π(0))

10 q ← ∅, k ← 0
11 while 1 do

12 k ← k + 1

// γ
(k−1)
t−δi

= γ
(k−1)
t , δi ∈ {0, . . . , |C|}

13 δi ←MostRecentCache(C, γ(l) ∀ l = 0, . . . , k − 1)

14 π(k) ← C(δi, k) // update predecessor map πk

15 q ← {γ
(k−1)
t , (u, v) ∈ [t− δi, t]}

// Algo. 1, line 10

16 G
(k+1)
r (f), γ(k) ← ProcessQueue(q, π(k), G

(k)
r (f))

17 return T

HM [2] [31] [35] [21] mbodSSP SSP mbodSSP* SSP*

MOTA 0.42 0.35 0.48 0.44 0.52 0.52 0.54 0.67 0.67

MOTP 0.78 0.75 0.77 0.78 0.78 0.78 0.78 0.79 0.79

F1 0.60 0.61 0.67 0.62 0.69 0.70 0.71 0.83 0.83

FAR 0.048 0.46 0.18 0.053 0.083 0.14 0.11 0.34 0.40

MT 0.077 0.11 0.14 0.11 0.14 0.15 0.21 0.34 0.41

ML 0.42 0.34 0.34 0.39 0.35 0.30 0.27 0.10 0.090

IDS 12 223 125 2738 33 0 7 117 194

Frag. 578 624 401 3241 540 708 717 894 977

Table 1: Comparison of our proposed methods to four state

of the art methods and a HM baseline implementation on

KITTI-Car using the DPM reference detections and Region-

let detections (marked with a star).

[2] EKF [31] [31] mbodSSP SSP

MOTA 0.96 0.68 0.91 0.89 0.91

MOTP 0.79 0.77 0.80 0.87 0.87

MT 0.96 0.39 0.91 0.89 0.89

ML 0.0 0.04 0.04 0.0 0.0

ID-switches 10 25 11 7 23

Fragmentations 8 30 6 100 100

Table 2: Comparison of our proposed method to three base-

lines on PETS 2009 sequence “S2.L1”.

tative results in the supplementary material.We also exper-

iment with the detector of [42], which yields better results

particularly for occluded objects. The increasing tracking

performance indicates that with a good enough detector our

approach could be used in practical applications.

Comparison to State-of-the-art on PETS2009: We ad-

ditionally evaluate our methods on the commonly used
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Figure 4: Run Time and Memory Comparison. We compare computational performance of all solvers using one long

sequence without ground truth annotations. This figure shows the mean runtime (a) and idealized memory consumption (b)

for every solver. Additionally, we show the impact of different values for the history length τ (c).

τ 5 10 15 20 50 100

MOTA 0.50 0.52 0.48 0.49 0.51 0.52

MOTP 0.78 0.78 0.78 0.78 0.78 0.78

F1 0.69 0.70 0.68 0.69 0.70 0.71

FAR 0.15 0.14 0.14 0.14 0.14 0.14

MT 0.14 0.15 0.16 0.17 0.18 0.15

ML 0.30 0.30 0.34 0.33 0.30 0.26

IDS 2 0 0 0 4 5

Frag. 703 708 690 701 710 712

Table 3: Variation of the approximation parameter τ .

PETS2009 dataset for sequence “S2.L1”. We used the de-

tections and ground truth provided by the authors of [2,31].

Both, the optimal algorithms and the memory-bounded ap-

proximation perform on par with current state-of-the-art. In

particular performance for precision-based measures is no-

tably good. Note that we used the same parameters as for

the results presented on KITTI.

Comparing Min Cost Flow Solutions: We compare our

globally optimal methods (dSSP, odSSP) as well as our ap-

proximate mbodSSP algorithm for window size τ = 10
against a regular SSP implementation using Dijkstra’s algo-

rithm (as described in [15]) as well as the non-optimal DP

solution of [35] in terms of run time and memory consump-

tion. For a fair comparison, we implement all our solvers in

Python using the same data structures. Fig. 4 (a)-(b) depict

execution time and memory consumption as a function of

the number of frames for a very long sequence on KITTI.

Note that our globally optimal dynamic solver (dSSP) out-

performs the regular Dijkstra implementation (SSP) by a

factor of 3 on average. To verify the correctness of our

implementation against the optimal solution, we have used

thousands of random graphs. Importantly, our experiments

validate that the time complexity of mbodSSP is indepen-

dent of the sequence length. Thus, it outperforms DP [35]

in memory, computation as well as accuracy (see Table 1).

A run time evaluation for KITTI including a comparison for

the different training scenarios is discussed in greater depth

in the supplementary material.

Sliding Window Size of mbodSSP: We evaluate the

tracking performance of mbodSSP for different values of τ
on KITTI. As shown in Fig. 4(c), for a value of τ = 10, our

non-optimized Python implementation of mbodDijkstra re-

quires less than 10ms which is sufficient for many real-time

online applications.

6. Conclusions

In this paper we have proposed solutions to make the use
of min-cost flow tracking by detection possible in real world
scenarios. Towards this goal we have designed algorithms
that are dynamic, can handle an online data stream and are
bounded in memory and computation. We have demon-
strated the performance of our algorithms in challenging
autonomous driving and surveillance scenarios. In future
work we plan to extend our approach to handle long-term
occlusions and to incorporate additional features, e.g., map
information.
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