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Abstract

Realistic videos of human actions exhibit rich spatiotem-

poral structures at multiple levels of granularity: an action

can always be decomposed into multiple finer-grained ele-

ments in both space and time. To capture this intuition, we

propose to represent videos by a hierarchy of mid-level ac-

tion elements (MAEs), where each MAE corresponds to an

action-related spatiotemporal segment in the video. We in-

troduce an unsupervised method to generate this represen-

tation from videos. Our method is capable of distinguish-

ing action-related segments from background segments and

representing actions at multiple spatiotemporal resolutions.

Given a set of spatiotemporal segments generated from the

training data, we introduce a discriminative clustering al-

gorithm that automatically discovers MAEs at multiple lev-

els of granularity. We develop a structured model that cap-

tures a rich set of spatial, temporal and hierarchical rela-

tions among the segments, where the action label and multi-

ple levels of MAE labels are jointly inferred. The proposed

model achieves state-of-the-art performance in multiple ac-

tion recognition benchmarks. Moreover, we demonstrate

the effectiveness of our model in real-world applications

such as action recognition in large-scale untrimmed videos

and action parsing.

1. Introduction

In this paper we address the problem of learning mod-

els of human actions and using these models for recogniz-

ing and parsing human actions from videos. This is a very

challenging problem. Most of the human actions are com-

plex spatiotemporal hierarchical processes. Consider, for

instance, the action in Fig. 1. It is composed of a collection

of spatiotemporal processes ranging from the entire action

sequence, “taking food from fridge” to simple elementary

actions such as “stretching arm” or “grasping a tomato”.

Each of these actions is often characterized by a complex

distribution of motion segments (e.g. open and close), ob-

jects (e.g. fridge and food), body parts (e.g. arm) along with

their interactions (e.g. grasp a tomato). Thus, in order to

∗indicates equal contribution

Figure 1. A representation of hierarchical spatiotemporal seg-

ments for action. Our method automatically discovers representa-

tive and discriminative mid-level action elements for a given action

class. These elements are encoded in the spatiotemporal segments

which usually cover different aspects of an action at different lev-

els of granularity, ranging from an entire action sequence, which

comprises the actor along with the objects the actor interacts with

(the first row of the hierarchy), to the action elements such as fine-

grained body part movements and objects (the last row).

achieve a full understanding of the action that takes place in

a scene, one must recognize and parse this complex struc-

ture of mid-level action elements (MAEs) at different levels

of semantic and spatiotemporal resolution.

Most of the existing methods cannot do this. A large

body of work focuses on associating the entire video clip

with a single class label from a pre-defined set of action cat-

egories (e.g., “take food from fridge” versus “cook food”)

(Fig. 1) [22, 21, 41] – essentially, a video classification

problem. Methods such as [12, 26] do propose methodolo-

gies for temporally segmenting or parsing the action (e.g.,

“take food from fridge”) into a sequence of sub-action la-

bels (e.g., open fridge, grasp food, close fridge) but can-

not organize these sub-actions into hierarchical structures

of MAEs such as the one in Fig. 1. Critically, most of these

methods assume that the fine-grained action labels or their

temporal structures are pre-defined or hand-specified by an

expert as opposed to being automatically inferred from the

videos in a data-driven fashion. This assumption prevents

such methods from scaling up to a large number of com-

plex actions. Finally, a portion of previous research focuses
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on modeling an action by just capturing the spatiotemporal

characteristics of the actor [9, 37, 20, 33] whereby neither

the objects nor the background the actor interacts with are

used to better contextualize the classification process. Other

methods [16, 41, 17, 36] do propose a holistic representa-

tion for activities which inherently captures some degree of

background context in the video, but are unable to spatially

localize or segment the actors or relevant objects.

In this work, we propose a model that is capable of

modeling complex actions as a collection of mid-level ac-

tion elements (MAEs) that are organized in a hierarchi-

cal way. Compared to previous approaches, our frame-

work enables: 1) Multi-resolution reasoning – videos can

be decomposed into a hierarchical structure of spatiotem-

poral MAEs at multiple scales; 2) Parsing capabilities –

actions can be described (parsed) as a rich collection of

spatiotemporal MAEs that capture different characteristics

of the action ranging from small body motions, objects to

large pieces of volumes containing person-object interac-

tions. These MAEs can be spatially and temporally local-

ized in the video sequence; 3) Data-driven learning – the

hierarchical structure of MAEs as well as the their labels

do not have to be manually specified, but are learnt and

automatically discovered using a newly proposed weakly-

supervised agglomerative clustering procedure. Note that

some of the MAEs might have clear semantic meanings (see

Fig. 1), while others might correspond to arbitrary but dis-

criminative spatiotemporal segments. In fact, these MAEs

are learnt so as to establish correspondences between videos

from the same action class while maximizing their discrim-

inative power for different action classes. Our model has

achieved state-of-the-art results on multiple action recogni-

tion benchmarks and is capable of recognizing actions from

large-scale untrimmed video sequences.

2. Related Work

The literature on human action recognition is immense.

we refer the readers to a recent survey [2]. In the following,

we only review the closely related work to our work.

Space-time segment representation: Representing ac-

tions as 2D+t tubes is a common strategy for action recog-

nition [3, 5, 24]. Recently, there are works that use hier-

archical spatiotemporal segments to capture the multi-scale

characteristics of actions [5, 24]. Our representation differs

in that we can discriminatively discover the mid-level action

elements (MAEs) from a pool of region proposals.

Temporal action localization: While most action

recognition approaches focus on classifying trimmed video

clips [21, 9, 36], there are works that attempt to localize ac-

tion instances from long video sequences [8, 12, 22, 4, 31].

In [31], a grammar model is developed for localizing action

and (latent) sub-action instances in the video. Our work

considers a more detailed parsing at both space and time,

and at different semantic resolutions.

Hierarchical structure: Hierarchical structured mod-

els are popular in action recognition due to its capabil-

ity in capturing the multi-level granularity of human ac-

tions [39, 19, 18, 33]. We follow a similar spirit by rep-

resenting an action as a hierarchy of MAEs. However, most

previous works focus on classifying single-action video

clips where they treat these MAEs as latent variables. Our

method localizes MAEs at both spatial and temporal extent.

Data-driven action primitives: Action primitives are

discriminative parts that capture the appearance and motion

variations of the action [26, 42, 13, 18]. Previous repre-

sentations of action primitives such as interest points [42],

spatiotemporal patches [13] and video snippets [26] typi-

cally lack multiple levels of granularity and structures. In

this work, we represent action primitives as MAEs, which

are capable of capturing different aspects of actions rang-

ing from the fine-grained body part segments to the large

chunks of human-object interactions. A rich set of spatial,

temporal and hierarchical relations between the MAEs are

also encoded. Both the MAE labels and the structures of

MAEs are discovered in a data-driven manner.

Before diving into details, we first give an overview of

our method. 1) Hierarchical spatiotemporal segmentation.

Given a video, we first develop an algorithm to automati-

cally parse the video into a hierarchy of spatiotemporal seg-

ments (see Fig. 2). We run this algorithm for each video

independently, and in this way, each video is represented as

a spatiotemporal segmentation tree (Section 3). 2) Learn-

ing. Given a set of spatiotemporal segmentation trees (one

tree per video) in training, we propose a graphical model

that captures the hierarchical dependencies of MAE labels

at different levels of granularity. We consider a weakly su-

pervised setting, where only the action label is provided

for each training video, while the MAE labels are discrim-

inatively discovered by clustering the spatiotemporal seg-

ments. The structure of the model is defined by the spa-

tiotemporal segmentation tree where inference can be car-

ried out efficiently (Section 4). 3) Recognition and parsing.

A new video is represented by the spatiotemporal segmen-

tation tree. We run our learned models on the tree for recog-

nizing the actions and parsing the videos into MAE labels

at different spatial, temporal and semantic resolutions.

3. Action Proposals: Hierarchical Spatiotem-

poral Segments

In this section, we describe our method for generating

a hierarchy of action-related spatiotemporal segments from

a video. Our method is unsupervised, i.e. during train-

ing, the spatial locations of the persons and objects are

not annotated. Thus, it is important that our method can

automatically extract the action-related spatiotemporal seg-

ments such as actors, body parts and objects from the video.
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Figure 2. Constructing the spatiotemporal segment hierarchy.

(a) Given a video, we first generate action-related region proposals

for each frame. (b) Then, we cluster these proposals to produce a

pool of spatiotemporal segments. (c) The last step is to agglomer-

atively cluster the spatiotemporal segments into a hierarchy.

An overview of the method is shown in Fig. 2.

Our method for generating action proposals includes

three major steps. A. Generating action-related spatial

segments. We initially generate a diverse set of region pro-

posals using the method of [10]. This method works on a

single frame of video, and returns a large number of seg-

mentation masks that are likely to contain objects or ob-

ject parts. We then score each region proposal using both

appearance and motion cues, and we look for regions that

have generic object-like appearance and distinct motion pat-

terns relative to their surroundings. We further prune the

background region proposals by training an SVM using the

top scored region proposals as positive examples along with

patches randomly sampled from the background as negative

examples. The region proposals with scores above a thresh-

old (−1) are considered as action-related spatial segments.

B. Obtaining the spatiotemporal segment pool. Given

the action-related spatial segments for each frame, we seek

to compute “tracklets” of these segments over time to con-

struct the spatiotemporal segments. We perform spectral

clustering based on the color, shape and space-time distance

between pairs of spatial segments to produce a pool of spa-

tiotemporal segments. In order to maintain the purity of

each spatiotemporal segment, we set the number of clusters

to a reasonably large number. The pool of spatiotemporal

segments correspond to the action proposals at the finest

scale (bottom of Fig. 1). C. Constructing the hierarchy.

Starting from the initial set of fine-grained spatiotemporal

segments, we agglomeratively cluster the most similar spa-

tiotemporal segments into super-spatiotemporal segments

until a single super-spatiotemporal segment is left. In this

way, we produce a hierarchy of spatiotemporal segments for

each video. The nodes in the hierarchy are action proposals

at different levels of granularity. Due to space constraints,

we refer the details of the method to Sec. S1 in the supple-

mentary material [1].

Figure 3. Graphical illustration of the model. In this example,

we adopt the spatiotemporal hierarchy in Fig. 2 (c). The MAE

labels are the red circles. The green circles are the features of each

spatiotemporal segment, and the the blue circle is the action label.

4. Hierarchical Models for Action Recognition

and Parsing

So far we have explained how to parse a video into a tree

of spatiotemporal segments. We run this algorithm for each

video independently, and in this way, each video is repre-

sented as a tree of spatiotemporal segments. Our goal is

to assign each of these segments to a label so as to form

a mid-level action element (MAE). We consider a weakly

supervised setting. During training, only the action label is

provided for each video. We discover the MAE labels in an

unsupervised way by introducing a discriminative cluster-

ing algorithm that assigns each spatiotemporal segment to

an MAE label (Section 4.1). In Section 4.2, we introduce

our models for action recognition and parsing, which are

able to capture the hierarchical dependencies of the MAE

labels at different levels of granularity.

We start by describing the notations. Given a video Vn,

we first parse it into a hierarchy of spatiotemporal seg-

ments, denoted by Vn = {vi : i = 1, . . . ,Mn} follow-

ing the procedure introduced in Section 3. We extract fea-

tures Xn from these spatiotemporal segments in the form

of Xn = {xi : i = 0, 1, . . . ,Mn}, where x0 is the root

feature vector, computed by aggregating the feature de-

scriptors of all spatiotemporal segments in the video, and

xi (i = 1, . . . ,Mn) is the feature vector extracted from the

spatiotemporal segment vi (see Fig. 3).

During training, each video Vn is annotated with an ac-

tion label Yn ∈ Y and Y is the set of all possible ac-

tion labels. We denote the MAE labels in the video as

Hn = {hi : i = 1, . . . ,Mn}, where hi ∈ H is the MAE la-

bel of the spatiotemporal segment vi and H is the set of

all possible MAE labels (see Fig. 3). For each training

video, the MAE labels Hn are automatically assigned to

clusters of spatiotemporal segments by our discriminative

clustering algorithm (Section 4.1). The hierarchical struc-

ture above can be compactly described using the notation
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Gn = (Vn, En), where a vertex vi ∈ Vn denotes a spa-

tiotemporal segment, and an edge (vi, vj) ∈ En represents

the interaction between a pair of spatiotemporal segments.

In the next section, we describe how to automatically assign

MAE labels to clusters of spatiotemporal segments.

4.1. Discovering Midlevel Action Elements (MAEs)

Given a set of training videos with action labels, our goal

is to discover the MAE labels H by assigning the clusters

of spatiotemporal segments (Section 3) to the correspond-

ing cluster indices. Consider the example in Fig. 1. The in-

put video is annotated with an action label “take food from

fridge” in training, and the MAEs should describe the ac-

tion at different resolutions ranging from the fine-grained

action and object segments (e.g. fridge, tomato, grab) to the

higher-level human-object interactions (e.g. open fridge,

close fridge). These MAE labels are not provided in train-

ing, but are automatically discovered by a discriminative

clustering algorithm on a per-category basis. That means

the MAEs are discovered by clustering the spatiotemporal

segments from all the training videos within each action

class. The MAEs should satisfy two key requirements: 1)

inclusivity - MAEs should cover all, or at least most, varia-

tions in the appearance and motion of the spatiotemporal

segments in an action class; 2) discriminability - MAEs

should be useful to distinguish an action class from others.

Inspired by the recent success of discriminative clus-

tering in generating mid-level concepts [38], we develop

a two-step discriminative clustering algorithm to discover

the MAEs. 1) Initialization: we perform an initial clus-

tering to partition the spatiotemporal segments into a large

number of homogeneous clusters, where each cluster con-

tains segments that are highly similar in appearance and

shape. 2) Discriminative algorithm: a discriminative clas-

sifier is trained for each cluster independently. Based on the

discriminatively-learned similarity, the visually consistent

clusters will then be merged into mid-level visual patterns

(i.e. MAEs). The discriminative step will make sure that

each MAE pattern is different enough from the rest. The

two-step algorithm is explained in details below.

Initialization. We run standard spectral clustering on

the feature space of the spatiotemporal segments to obtain

the initial clusters. We define a similarity between every

pair of spatiotemporal segments vi and vj extracted from

all of the training videos of the same class: K(vi, vj) =
exp(−dbow(vi, vj)−dspatial(vi, vj)), where dbow is the his-

togram intersection distance on the BoW representations of

the dense trajectory features [41]; and dspatial denotes the

Euclidean distance between the averaged bounding boxes of

spatiotemporal segments vi and vj in terms of four cues: x-

y locations, height and width. In order to keep the purity of

each cluster, we set the number of clusters quite high, pro-

ducing around 50 clusters per action. We remove clusters

M
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Figure 4. Visualization of Mid-level Action Elements (MAEs).

The figure shows two clusters (i.e. two MAEs) from the action cat-

egory “take out from oven”. Each image shows the first frame of

a spatiotemporal segment and we only visualize five examples in

each MAE. The two clusters capture two different temporal stages

of “take out from oven”. More visualizations are available in the

supplementary video [1].

with less than 5 spatiotemporal segments.

Discriminative Algorithm. Given an initial set of clus-

ters, we train a linear SVM classifier for each cluster on the

BoW feature space. We use all spatiotemporal segments in

the cluster as positive examples. Negative examples are spa-

tiotemporal segments from other action classes. For each

cluster, we run the classifier on all other clusters in the same

action class. We consider the top K scoring detections of

each classifier. We define the affinity between the initial

clusters ci and cj as the frequency that classifier i and j fire

on same cluster.

For each action class, we compute the pairwise affini-

ties between all initial clusters, to obtain the affinity matrix.

Next we perform spectral clustering on the affinity matrix

of each action independently to produce the MAE labels. In

this way, the spatiotemporal segments in the training set are

automatically grouped into clusters in a discriminative way,

where the index of each cluster corresponds to an MAE la-

bel hi ∈ H, where H denotes the set of all possible MAE

labels. We visualize the example MAE clusters in Fig. 4.

4.2. Model Formulation

For each video, we have a different tree structure

Gn obtained from the spatiotemporal segmentation algo-

rithm (Section 3). Our goal is to jointly model the com-

patibility between the input feature vectors Xn, the action

label Yn and MAE labels Hn, as well as the dependencies

between pairs of MAE labels. We achieve this by using the

following potential function:

SVn
(Xn, Yn, Hn) =

∑

i∈Vn

α⊤
hi
xi +

∑

i∈Vn

bYn,hi
+

∑

(i,j)∈En

b′hi,hj

+
∑

(i,j)∈E

β⊤
hi,hj

dij + η⊤Yn
x0 (1)

MAE Model α⊤
hi
xi: This potential captures the compat-

ibility between the MAE hi and the feature vector xi of the

i-th spatiotemporal segment. In our implementation, rather
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than using the raw feature [41], we use the output of the

MAE classifier on the feature vector of spatiotemporal seg-

ment i. In order to learn biases between different MAEs,

we append a constant 1 to make xi 2-dimensional.

Co-occurrence Model bYn,hi
, b′hi,hj

: This potential

captures the co-occurrence constraints between pairs of

MAE labels. Since the MAEs are discovered on a per-action

basis, thus we restrict the co-occurrence model to allow for

only action-consistent types: bYn,hi
= 0 if the MAE hj

is generated from the action class Yn, and −∞ otherwise.

Similarly, b′hi,hj
= 0 if the pair of MAEs hi and hj are

generated from the same action class, and −∞ otherwise.

Spatial-Temporal Model β⊤
hi,hj

dij : This potential cap-

tures the spatiotemporal relations between a pair of MAEs

hi and hj . In our experiments, we explore a simplified ver-

sion of the spatiotemporal model with a reduced set of struc-

tures: β⊤
hi,hj

dij = β⊤
hi
bins(i) + β⊤

hi
bint(i, j). The simpli-

fication states that the relative spatial and temporal relation

of a spatiotemporal segment i with respect to its parent j is

dependent on the segment type hi, but not its parent type hj .

To compute the spatial feature bins, we divide a video frame

into 5 × 5 cells, and bins(i) = 1 if the i-th spatiotemporal

segment falls into the m-th cell, otherwise 0. bint(i, j) is

a temporal feature that bins the relative temporal location

of spatiotemporal segment i and j into one of three canon-

ical relations including before, co-occur, and after. Hence

bint(i, j) is a sparse vector of all zeros with a single one for

the bin occupied by the temporal relation between i and j.

Root Model η⊤Yn
x0: This potential function captures the

compatibility between the global feature x0 of the video Vn

and the action class Yn. In our experiment, the global fea-

ture x0 is computed as the aggregation of feature descriptors

of all spatiotemporal segments in the video.

4.3. Inference

The goal of inference is to predict the hierarchical la-

beling for a video, including the action label for the whole

video as well as the MAE labels for spatiotemporal seg-

ments at multiple scales. For a video Vn, our inference

corresponds to solving the following optimization prob-

lem: (Y ∗
n , H

∗
n) = argmaxYn,Hn

SVn
(Xn, Yn, Hn). For

the video Vn, we jointly infer the action label Yn of the

video and the MAE labels Hn of the spatiotemporal seg-

ments. The inference on the tree structure is exact; and we

solve it using belief propagation. We emphasize that our

inference returns a parsing of videos including the action

label and the MAE labels at multiple levels of granularity.

4.4. Learning

Given a collection of training examples in the form of

{Xn, Hn, Yn}, we adopt a structured SVM formulation to

learn the model parameters w. In the following, we develop

two learning frameworks for action recognition and parsing

respectively.

Action Recognition. We consider a weakly supervised

setting. For a training video Vn, only the action label Yn is

provided. The MAE labels Hn are automatically discovered

using our discriminative clustering algorithm. We formulate

it as follows:

min
w,ξ≥0

1

2
||w||2 + C

∑

n

ξn

SVn
(Xn, Hn, Y n)− SVn

(Xn, H∗, Y ∗)

≥ ∆0/1 (Y
n, Y ∗)− ξn, ∀n, (2)

where the loss function ∆0/1 (Y n, Y ∗) is a standard 0-1
loss that measures the difference between the ground-truth

action label Y n and the predicted action Y ∗ for the n-th

video. We use the bundle optimization solver in [7] to solve

the learning problem.

Action Parsing. In the real world, a video sequence

is usually not bounded for a single action, but may con-

tain multiple actions at different levels of granularity: some

actions occur in a sequential order; some actions could be

composed of finer-grained MAEs. See Fig. 7 for examples.

The proposed model can naturally be extended for ac-

tion parsing. Similar to our action recognition framework,

the first step of action parsing is to construct the spatiotem-

poral segment hierarchy for an input video sequence Vn,

as shown in Fig. 2. The only difference is that the input

video is not a short video clip, but a long video sequence

composed of multiple action and MAE instances. In train-

ing, we first associate each automatically discovered spa-

tiotemporal segment with a ground truth action (or MAE)

label. If the spatiotemporal segment contains more than

one ground truth label, we choose the label with the max-

imum temporal overlap. We use Zn to denote the ground

truth action and MAE labels associated with the video Vn:

Zn = {zi : i = 1, . . . ,Mn}, where zi ∈ Z is the ground

truth action (or MAE) label of the spatiotemporal segment

vi, and Mn is the total number of spatiotemporal segments

discovered from the video. The goal of training is to learn

a model that can parse the input video into a label hierarchy

similar to the ground truth annotation Zn. We formulate it

as follows:

min
w,ξ≥0

1

2
||w||2 + C

∑

n

ξn

SVn
(Xn, Zn)− SVn

(Xn, Z∗) ≥ ∆ (Zn, Z∗)− ξn, ∀n,
(3)

where ∆ (Zn, Z∗) is a loss function for action

parsing, which we define as: ∆ (Zn, Z∗) =
1

Mn

∑
i∈Vn

∆0/1 (zni , z
∗
i ), where Zn is the ground

truth label hierarchy, Z∗ is the predicted label hierarchy

and Mn is the total number of spatiotemporal segments.
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Note that the learning framework of action parsing is

similar to Eq. (2), and the only difference lies in the loss

function: we penalize incorrect predictions for every node

of the spatiotemporal segments hierarchy.

5. Experiments

We conduct experiments on both action recognition and

parsing. We first describe the datasets and experimental set-

tings. We then present our results and compare with the

state-of-the-art results on these datasets.

5.1. Experimental Settings and Baselines

We validate our methods on four challenging benchmark

datasets, ranging from fine-grained actions (MPI Cooking),

realistic actions in sports (UCF Sports) and movies (Holly-

wood2) to untrimmed action videos (THUMOS challenge).

In the following, we briefly describe the datasets, experi-

mental settings and baselines.

MPI Cooking dataset [35] is a large-scale dataset of

65 fine-grained actions in cooking. It contains in total 44
video sequences (or equally 5609 video clips, and 881, 755
frames), continuously recorded in kitchen. The dataset is

very challenging in terms of distinguishing between actions

of small inter-class variations, e.g. cut slices and cut dice.

We split the dataset by taking one third of the videos to form

the test set and the rest of the videos are used for training.

UCF-Sports dataset [34] consists of 150 video clips ex-

tracted from sports broadcasts. Compared to MPI Cooking,

the scale of UCF-Sports is small and the durations of the

video clips it contains are short. However, the dataset poses

many challenges due to large intra-class variations and cam-

era motion. For evaluation, we apply the same train-test

split as recommended by the authors of [20].

Hollywood2 dataset [25] is composed of 1,707 video

clips (823 for training and 884 for testing) with 12 classes

of human actions. These clips are collected from 69 Holly-

wood movies, divided into 33 training movies and 36 test-

ing movies. In these clips, actions are performed in realistic

settings with camera motion and great variations.

THUMOS challenge 2014 [15] contains over 254 hours

of temporally untrimmed videos and 25 million frames. We

follow the settings of the action detection challenge. We

use 200 untrimmed videos for training and 211 untrimmed

videos for testing. These videos contain 20 action classes

and are a subset of the entire THUMOS dataset. We

consider a weakly supervised setting: in training, each

untrimmed video is only labeled with the action class that

the video contains, neither spatial nor temporal annotations

are provided. Our goal is to evaluate the ability of our model

in automatically extracting useful mid-level action elements

(MAEs) and structures from large-scale untrimmed data.

Baselines. In order to comprehensively evaluate the per-

formance of our method, we use the following baseline

MPI Cooking Per-Class

DTF [35, 41] 38.5

root model (ours) 43.2

full model (ours) 48.4

Table 1. Comparison of action recognition accuracies of different

methods on the MPI Cooking dataset.

UCF-Sports Per-Class Hollywood2 mAP

Lan et al. [20] 73.1 Gaidon et al. [11] 54.4

Tian et al. [40] 75.2 Oneata et al. [28] 62.4

Raptis et al. [32] 79.4 Jain et al. [13] 62.5

Ma et al. [24] 81.7 Wang et al. [41] 64.3

IDTF [41] 79.2 IDTF [41] 63.0

root model (ours) 80.8 root model (ours) 64.9

full model (ours) 83.6 full model (ours) 66.3

Table 2. Comparison of our results to the state-of-the-art methods

on UCF-Sports and Hollywood2 datasets. Among all of the meth-

ods, [32], [24], [11] and our full model use hierarchical structures.

THUMOS (untrimmed) mAP

IDTF [41] 63.0

sliding window 63.8

INRIA (temporally supervised) [29] 66.3

full model (ours) 65.4

Table 3. Comparison of action recognition accuracies of different

methods on the THUMOS challenge (untrimmed videos).

methods. 1) DTF: the first baseline is the dense trajectory

method [41], which has produced the state-of-the-art perfor-

mance in multiple action recognition benchmarks. 2) IDTF:

the second baseline is the improved dense trajectory feature

proposed in [41], which uses fisher vectors (FV) [30] to en-

code the dense trajectory features. FV encoding [41, 27]

has been shown an improved performance over traditional

Bag-of-Features encoding. 3) root model: the third baseline

is equivalent to our model without the hierarchical struc-

ture, which only uses the IDTF features that fall into the

spatiotemporal segments discovered by our method, while

ignoring those in the background. 4) sliding window: the

fourth baseline runs sliding windows of different lengths

and step sizes on an input video sequence, and performs

non-maximum suppression to find the correct intervals of

an action. This baseline is only applied to action recogni-

tion of untrimmed videos and action parsing.

5.2. Experimental Results

We summarize the action recognition results on multiple

benchmark datasets in Table 1, 2 and 3 respectively.

Action recognition. Most existing action recognition

benchmarks are composed of video clips that have been

trimmed according to the action of interest. On all three

benchmarks (i.e. UCF-Sports, Hollywood2 and MPI), our

full model with rich hierarchical structures significantly
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outperforms our own baseline root model (i.e. our model

without hierarchical structures), which only considers the

dense trajectories extracted from the spatiotemporal seg-

ments discovered by our method. We can also observe that

the root model consistently improves dense trajectories [41]

on all three datasets. This demonstrates that our automat-

ically discovered MAEs fire on the action-related regions

and thus remove the irrelevant background trajectories.

We also compare our method with the most recent results

reported in the literature for UCF-Sports and Hollywood2.

On UCF-Sports, all presented results follow the same train-

test split [20]. The baseline IDTF [24] is among the top

performance. Ma et al. [24] reported 81.7% by using a bag

of hierarchical space-time segments representation. We fur-

ther improve their results by around 2%. On Hollywood2,

our method also achieves state-of-the-art performance. The

previous best result is from [41]. We improve it further

by 2%. Compared to the previous methods, our method is

weakly supervised and does not require expensive bound-

ing box annotations in training (e.g. [20, 40, 32]) or human

detection as input (e.g. [41]).

On THUMOS challenge that is composed of realistic

untrimmed videos (Table 3), our method outperforms both

IDTF and the sliding window baseline. Given the scale of

the dataset, we skip the time-consuming spatial region pro-

posals and represent action as a hierarchy of temporal seg-

ments, i.e. each frame is regarded as a “spatial segment”.

Our method automatically identifies the temporal segments

that are both representative and discriminative for each ac-

tion class without any temporal annotation of actions in

training. We also compare our methods with the best sub-

mission (INRIA [29]) of the temporal action localization

challenge in THUMOS 2014. INRIA [29] uses a mixture of

IDTF [41], SIFT [23], color features [6] and the CNN fea-

tures [14]. Also, their model [29] is temporally supervised,

which uses temporal annotations (the start and end frames

of actions in untrimmed videos) and additional background

videos in training. Our method achieves a competitive per-

formance (within 1%) using only IDTF [41] and doesn’t

require any temporal supervision. We provide the average

precisions (AP) of all the 20 action classes in Fig. 5. Our

method outperforms [29] in 10 out of the 20 classes, espe-

cially Diving and CleanAndJerk, which contain rich struc-

tures and significant intra-class variations.

Action parsing. Given a video sequence that contains

multiple action and MAE instances, our goal is to localize

each one of them. Thus during training, we assume that all

of the action and MAE labels as well as their temporal ex-

tent are provided. This is different from action recognition

where all of the MAEs are unsupervised. We evaluate the

ability of our method to perform action parsing by measur-

ing the accuracy in temporally localizing all of the action

and MAE instances. An action (or MAE) segment is con-
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Figure 5. Average precisions of the 20 action classes of untrimmed

videos from the temporal localization challenge in THUMOS.

Figure 6. Action parsing performance. We report mean Average

precision (mAP) of our method and the sliding window baseline

on MPI Cooking with respect to different overlapping thresholds

that determine whether an action (or MAE) segment is correctly

localized.

sidered as true positive if it overlaps with the ground truth

segment beyond a pre-defined threshold. We evaluate the

mean Average Precision (mAP) with the overlap threshold

varying from 0.1 to 0.5.

We use the original fine-grained action labels provided

in the MPI Cooking dataset as the MAEs at the bottom

level of the hierarchy, and automatically generate a set of

higher-level labels by composing the fine-grained action la-

bels. The detailed setups are explained in Sec. S2 of the

supplementary material [1]. Examples of higher-level ac-

tion labels are: “cut apart - put in bowl”, “screw open -

spice - screw close”. We only consider labels with length

ranging from 1 to 4, and occur in the training set for more

than 10 times. In this way, we have in total 120 action and

MAE labels for parsing evaluation.

We compare our result with the sliding window baseline.

The curves are shown in Fig. 6. Our method shows consis-
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(a) A test video containing “take out from fridge” and “take out from drawer” actions.

(b) A test video containing “spice”, “screw close” and “put in spice holder” actions.

Figure 7. Action parsing. This figure shows the output of our action parser for two test videos. For each video, we visualize the inferred

fine-grained action labels (shown on top of each image), the MAE segments (the red masks in each image) and the parent-child relations

(the orange line). As we can see, our action parser is able to parse long video sequences into representative action patterns (i.e. MAEs) at

multiple scales. Note that the figure only includes a few representative nodes of the entire tree obtained by our parser, we provide more

visualizations in the supplementary video [1].

tent improvement over the baseline using different overlap

threshold. If we consider an action segment is correctly lo-

calized based on “intersection-over-union” score larger than

0.5 (the PASCAL VOC criterion), our method outperforms

the baseline by 8.5%. The mean performance gap (averaged

over all different overlap threshold) between our method

and the baseline is 8.6%. Some visualizations of action

parsing results are shown in Fig. 7. As we can see, the story

of human actions is more than just the actor: as shown in

the figure, the automatically discovered MAEs cover dif-

ferent aspects of an action, ranging from human body and

parts to spatiotemporal segments that are not directly re-

lated to humans but carry significant discriminative power

(e.g. a piece of fridge segment for the action “take out from

fridge”). This diverse set of mid-level visual patterns are

then organized in a hierarchical way to explain the complex

store of the video at different levels of granularity.

6. Conclusion

We have presented a hierarchical mid-level action ele-

ment (MAE) representation for action recognition and pars-

ing in videos. We consider a weakly supervised setting,

where only the action labels are provided in training. Our

method automatically parses an input video into a hierarchy

of MAEs at multiple scales, where each MAE defines an

action-related spatiotemporal segment in the video. We de-

velop structured models to capture the rich semantic mean-

ings carried by these MAEs, as well as the spatial, tem-

poral and hierarchical relations among them. In this way,

the action and MAE labels at different levels of granularity

are jointly inferred. Our experimental results demonstrate

encouraging performance over a number of standard base-

line approaches as well as other reported results on several

benchmark datasets.
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