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Abstract

We present a method for intrinsic image decomposition,

which aims to decompose images into reflectance and shad-

ing layers. Our input is a sequence of images with varying

illumination acquired by a static camera, e.g. an indoor

scene with a moving light source or an outdoor timelapse.

We leverage the local color variations observed over time to

infer constraints on the reflectance and solve the ill-posed

image decomposition problem. In particular, we derive an

adaptive local energy from the observations of each local

neighborhood over time, and integrate distant pairwise con-

straints to enforce coherent decomposition across all sur-

faces with consistent shading changes. Our method is solely

based on multiple observations of a Lambertian scene un-

der varying illumination and does not require user interac-

tion, scene geometry, or an explicit lighting model. We com-

pare our results with several intrinsic decomposition meth-

ods on a number of synthetic and captured datasets.

1. Introduction

Intrinsic image decomposition aims to express an im-

age of a Lambertian scene as the per-pixel product of re-

flectance and shading layers [3]. The reflectance compo-

nent, also called albedo, represents how a diffuse surface

reflects light (i.e., the material color), while the shading

component represents the lighting effects such as shadows

and indirect lighting. This decomposition is useful for sev-

eral image editing applications such as recolorization [25],

re-texturing [7], and relighting [20], among many others.

Intrinsic image decomposition is ill-posed because an

infinite number of reflectance-shading combinations could

produce the observed image color. Recent methods have

successfully tackled this problem by incorporating priors on

local shading [22, 33], enforcing sparse reflectance [10, 5],

propagating user-specified constraints [7], leveraging re-

constructed scene geometry [19, 1], or inferring constraints

from multiple images with varying lighting [34, 12]. Like

these latter approaches, we leverage multiple observations

of the scene to constrain the decomposition.

In this paper, we describe a new method for intrinsic im-

age decomposition, where the input is an image sequence of

a static scene with fixed viewpoint under varying illumina-

tion. We show that the observation of temporal variations in

local neighborhoods provides us with all the necessary in-

formation to relate the reflectance of multiple pixels, both at

the local level and across pairs of distant pixels. This allows

us to solve the decomposition problem and obtain intrinsic

layers without the need of geometry, user interaction, an

explicit lighting model, or assumptions on light color and

reflectance sparsity.

We formulate the intrinsic decomposition as an opti-

mization problem where our energies are derived directly

from the Lambertian image formation model. Specifically,

we make the following contributions:

• we derive a local energy that relates reflectance val-

ues within each neighborhood by analyzing the local

color variations observed over time. This term is lo-

cally adaptive as it enforces smooth shading only on

the relevant pixels, and automatically detects regions

with sudden shading changes due to shadows or nor-

mal/depth discontinuities (Sec. 4);

• we infer pairwise constraints on the reflectance of dis-

tant pixels that are oriented consistently and have sim-

ilar shading over time. We propose a robust approach

for establishing reliable pairwise constraints without

prior knowledge of the lighting or geometry (Sec. 5);

• we extend a synthetic benchmark for intrinsic image

decomposition and conduct an extensive comparison

with several recent methods (Sec. 6.2).

2. Related work

Intrinsic image decomposition is an ill-posed problem,

and can only be solved by imposing constraints on the de-

composition.

Constraints on the decomposition. Several assumptions

on the shading or reflectance have been proposed. This pa-

per does not attempt to exhaustively describe all the pub-

lished methods, and we refer the reader to the work by

Barron et al. [2] for a comprehensive review. Many meth-

ods share some common assumptions, e.g., smooth shad-
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Figure 1. Top: given an input image sequence with fixed viewpoint and varying illumination, our method recovers the reflectance layer

and a shading layer for each input frame. Despite specular effects, complex geometry and texture, our method properly recovers details in

the reflectance layer while preserving smooth shading or hard shadows when required. Bottom: we ran our method on timelapses captured

outdoors [21, 30], indoors [20], sequences from the MIT benchmark [11], and on the extended synthetic St. Basil dataset that we introduce

in Section 6.2.

ing [22], sparse or piecewise-constant reflectance across the

image [9], or grayscale shading [5]. They impose priors

on the reflectance/shading values either by looking at local

neighorhoods [7], distant relations between pixels [36], or

global constraints to enforce gradient distributions [24] or

sparsity [10] across the entire image. We show in this paper

that we can decompose an input sequence without sophisti-

cated priors on the reflectance or shading, by automatically

learning where to enforce smooth shading and distant con-

straints based on multiple observations of the scene.

Additional input. Some methods leverage additional in-

put to infer constraints. Bousseau et al. [7] and Bell et

al. [5] allow individual or crowdsourced users to provide

reflectance or shading annotations. Barron et al. [1], Laf-

font et al. [19, 20], and Hauagge et al. [13] leverage scene

geometry, which is either captured with a depth sensor or re-

constructed from multiple viewpoints. Bonneel et al. [6] de-

compose video sequences and let users interactively refine

the results, while Ye et al. [35] propagate an existing decom-

position to every frame of a video. Other methods decom-

pose timelapses, i.e., sequences captured from a fixed view-

point under varying lighting conditions. Such sequences are

readily available for many outdoor scenes [14, 21, 30] or

can be captured indoors with a fixed camera and a mov-

ing light source. Weiss et al. [34] use a prior derived from

the image statistics of natural scenes, while Matshushita et

al. [26] explicitly model temporal and spatial constraints.

Hauagge et al. [12] propose a simplified physical model

for modeling the local visibility, with a moving directional

light source and constant ambient lighting. Sunkavalli et

al. [31, 32] target outdoor scenes and model the lighting

as a mixture of two light sources: directional sunlight and

ambient skylight. Photometric stereo methods [4] use time-

lapses to solve the related problem of estimating per-pixel

normals, but often ignore cast shadows which are an im-

portant component of shading. Our method also leverages

the information contained in a time-lapse, but makes no as-

sumption on the number or type of light sources; it can han-

dle outdoor and indoor scenes, with an arbitrary number of

light sources and shadows.

Evaluation. It is very difficult to gather ground truth re-

flectance and shading on real scenes, thus only few datasets

are available to quantitatively evaluate the results of intrin-

sic image methods. The MIT dataset by Grosse et al. [11]

is widely used, but consists of single objects that have been

carefully captured in a lab environment and have been cho-

sen to minimize interreflections. Real scenes are much more

complex, as demonstrated in the crowdsourced database of

Bell et al. [5]. Laffont et al. [20] proposed a synthetic

dataset on a challenging scene created with physically-

based rendering, for single-image or multi-view input. We

extend this dataset to multiple lighting conditions for each

view and use it for the evaluation of several recent methods.

3. Proposed approach

Our method takes as input a stack of T frames captured

from a single viewpoint, under varying lighting. We de-

note by M the number of pixels in each frame, and by It
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the image at time t ∈ {1, . . . , T}. I(p, t)(c) represents the

observed value of pixel p at frame t, in color channel c. As-

suming that the scene is static and Lambertian, we write the

intensity of each pixel p in image It as:

I(p, t)(c) = R(p)(c) S(p, t)(c). (1)

In the following we ignore the superscript c and consider

each channel independently, unless explicitly stated.

Our goal is to decompose the input image sequence into

one reflectance image and T shading images (see Fig. 1).

Our method proceeds as follows:

a) We first detect regions where shading is locally smooth,

by focusing on each local neighborhood and analyzing

its temporal variations across the sequence. In Sec. 4.1,

we derive a local energy that relates reflectance values

within each neighborhood.

b) We combine the local solutions from overlapping

patches over the entire image to derive a locally adap-

tive term that enforces smooth shading in flat regions.

In Sec. 4.2, we obtain an energy Elocal that relates the

reflectance of all pixels over the image.

c) We incorporate pairwise constraints to connect re-

gions separated with depth/normal discontinuities. In

Sec. 5, we derive an energy term Epair that relates

the reflectance of pairs of pixels that are consistently

illuminated across the entire sequence.

We combine the energy terms Elocal and Epair into a total

energy, which we minimize with respect to the reflectance.

We can then derive the shading images by dividing each

input frame by the estimated reflectance.

4. Local constraints from temporal color vari-

ations

In this section, we relate the reflectance values of pixels

across the image by deriving a locally adaptive term enforc-

ing smooth shading, based on the local color observations

over time. We divide the input images into a set of overlap-

ping patches Γ, which consists of all the square patches of

size N pixels centered on every pixel.

In the following, we consider a single patch Wi ∈ Γ. We

build our smoothness energy on the observation that, un-

der certain conditions, the shading over all pixels in Wi is

constant. More specifically, we show in the supplementary

material that the shading in Eq. 1 corresponds to the irra-

diance on a Lambertian surface. Assuming the surface is

locally flat and that all points visible in Wi receive the same

quantity of incident light in image It, we can write for each

pixel p ∈ Wi:

I(p, t) = R(p) S(i, t). (2)

When this equation holds, it allows us to relate the re-

flectance values of pixels within the patch, because they are

all linked to a single shading value S(i, t).

Eq. 2 assumes that the shading is locally constant within

a small patch. Smooth shading is widely assumed in pre-

vious work [5, 10, 22, 29, 35, 36]; especially by Retinex-

based methods to globally classify edges as reflectance or

shading edges. In contrast, we enforce the smoothness as-

sumption locally, only where it appears to hold based on the

multiple observations, while relaxing it everywhere else.

In Sec. 4.1, we observe a single patch Wi under vary-

ing illumination and estimate in which images Eq. 2 holds.

We define a local energy for this patch and mitigate the in-

fluence of violating frames in a robust manner, using Itera-

tively Reweighted Least Squares. This allows us to reduce

the influence of these frames when relating local reflectance

values. In Sec. 4.2, we then combine local energies from

overlapping patches in order to relate the reflectance of all

pixels across the entire image.

4.1. Local energy for planar surfaces

By following Eq. 2 and considering all the pixels in patch

Wi ∈ Γ, we define the local energy:

elocal(i, t) =
∑

p∈Wi

(
R(p)− 1

S(i, t)
I(p, t)

)2

. (3)

For patch Wi and frame t, the unknowns are the shading

S(i, t), constant across the patch, and the reflectance R(p)
for each pixel in patch Wi.

Unreliable images. To leverage the multiple observations

of the patch Wi over time, a straightforward but inappropri-

ate approach would be to simply sum this energy over all

frames t. This local energy is based on the assumption from

Eq. 2 that the shading is locally smooth, and if the assump-

tion holds, the optimal lowest value of elocal(i, t) at each

frame t is 0. Nevertheless, it is important to note that this

assumption is violated in two cases:

• when patch Wi contains a shadow boundary in image

It, Eq. 2 does not hold in the corresponding frame t;

• when patch Wi contains a normal or depth discontinu-

ity, Eq. 2 does not hold for any of the input images.

Therefore, all the frames should not be considered in an

equal way: the frames where the assumption is violated

should “count” less for estimating the reflectance. These

outliers will have a high residual and thus a large influence

on the estimation. To reduce the influence of the outliers,

we use a robust cost function ρ(). By considering the mul-

tiple observations over t in a robust way, we define:

elocal(i) =
∑

t

ρ (elocal(i, t)) . (4)

The unknowns are (1) the reflectance R(p) of every pixel

in patch Wi, that we stack into a N × 1 column vector Ri;
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and (2) the shading values S(i, t) of the patch Wi in every

frame t, that we stack into a T × 1 column vector Si. The

choice of the robust cost function is discussed in the supple-

mentary material. We use ρ(x) =
√
x in all our results.

IRLS formulation. We minimize Eq. 4 by the Iteratively

Reweighted Least Squares (IRLS) approach [27, 28, 18].

We will show that IRLS allows us to solve the equation ro-

bustly with a single linear system, but also eliminate un-

knowns so that the reflectance becomes the only unknown

variable.

IRLS conducts robust model fitting by reweighting each

data point in an iterative manner and by solving a weighted

least squares problem at each iteration with the current

weights. The weights control how much influence a data

point has on the estimate of the model. Along the IRLS it-

erations, frames where Eq. 2 is violated are assigned smaller

and smaller weights, and will in turn have a very small or

negligible influence on the estimated model.

Each IRLS iteration consists of two steps: estimation of

the model given the weights, and then update of the weights

given the newly estimated model.

Model estimation: At each iteration k of IRLS, we esti-

mate the model by solving:

(R
(k+1)
i ,S

(k+1)
i ) = arg min

Ri,Si

∑

t

w
(k)
it elocal(i, t) (5)

where w
(k)
it are the weights obtained at the previous iter-

ation, and elocal(i, t) depends on Ri and Si. At the first

iteration, we initialize w
(0)
it = 1 for all t.

Weights update: The residuals e
(k+1)
local (i, t) computed

with R
(k+1)
i and S

(k+1)
i obtained at Eq. 5 are now used to

update the weights. Following [8], the weights are updated

by w
(k+1)
it = ρ′

(
e
(k+1)
local (i, t)

)
with ρ′(x) = ∂ρ(x)/∂x.

Removing the shading unknown. The unknowns of

Eq. 5 are both Ri and Si. We show in the supplemen-

tary material that within each patch Wi, the shading can be

expressed as a function of the reflectance by accumulating

pixel values over the entire patch. In matrix form, we can

write their relation:

1

S(i, t)
= I

⊺

itRi/(I
⊺

itIit) (6)

where Iit is a N × 1 column vector containing the stacked

observed values of the N pixels in patch Wi in frame t.
Plugging this into Eq. 3 allows us to express the local energy

as a function of only the unknown Ri. In matrix form, we

can now rewrite Eq. 3 as:

elocal(i, t) = ‖MitRi‖2. (7)

where Mit = IdN − (I⊺itIit)
−1

IitI
⊺

it and with IdN the

identity matrix of size N × N . Reinjecting this into Eq. 5,

we obtain:

R
(k+1)
i = argmin

Ri

∑

t

w
(k)
it ‖MitRi‖2. (8)

Minimizing the local energy. At each iteration of IRLS,

the unknown in Eq. 8 is now only Ri. Note that a trivial

solution is Ri = 0, and the solution is up to scale. With-

out lack of generality, we set the norm of Ri to 1 in the

current subsection as our goal is to identify regions where

we can impose shading smoothness. The optimization of

Eq. 8 can be performed via SVD: the optimal solution Ri

corresponds to the singular vector associated to the smallest

singular value of the matrix Mi defined as

Mi =
∑

t

√
w

(k)
it Mit. (9)

Applying SVD is computationally cheap in our case be-

cause Mi is only of size N × N where N = 9 in all our

results shown. We now have a robust estimate of the per-

pixel reflectance (up to scale) within patch Wi, based on

the local color observations over the entire sequence.

The output of this process is a matrix Mi that relates the

reflectance values of all the pixels in patch Wi. This matrix

of size N×N is computed as a weighted sum (Eq. 9) where

the weights estimated via IRLS are used to mitigate the in-

fluence of frames where the shading is not constant within

the patch. This process enables us to (1) detect patches that

lie on discontinuities (see Fig. 2b) and (2) ignore the inci-

dental frames where the local shading is not smooth.

4.2. Locally adaptive energy

We have so far defined a local energy that relates the

reflectance of pixels within one single patch, and have ob-

tained weights that correspond to the reliability of our local

estimates. We now relate the reflectance of all pixels across

the image. We average the local energy of all overlapping

patches in order to obtain the adaptive energy Elocal:

Elocal =
1

|Γ|
∑

Wi∈Γ

elocal(i) =
1

|Γ|
∑

Wi∈Γ

‖MiRi‖2. (10)

This energy term relates the reflectance of all pixels in

the image, since each pixel appears in multiple overlapping

patches. Because we combine the local energies elocal(i)
obtained with our robust estimation (Sec. 4.1), this locally

adaptive energy term selectively imposes a smooth shading

in regions of the image where Eq. 2 holds, i.e. where the ob-

served surfaces are diffuse and locally planar. The influence

of occasional shadow boundaries or specularities in specific

frames is mitigated since the estimated weight wit is low in

such cases. Regions with normal or depth discontinuities

are detected (Fig. 2b) and their influence is mitigated.
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Figure 2. Residual and clustering result from the input image.

Left: input image. Middle: color-coded residual of our per-patch

local energy elocal(i); this energy term enforces smooth shading in

regions of low residual (blue). Right: clusters from appearance

profiles; each cluster contains pixels with similar shading in most

images.

4.3. Discussion

We use multiple observations of the scene under differ-

ent lighting in order to derive our locally adaptive energy

term. By leveraging this extra information, we avoid mak-

ing additional assumptions about the scene content (e.g.,

grayscale shading or priors on reflectance and shading) or

tuning thresholds for classifying local gradients into re-

flectance or shading edges (e.g., Retinex variants).

Note that the smoothness energy used for intrinsic de-

composition by Bousseau et al. [7] has a similar matrix

form, but differs in two points. First, it aims to estimate

the shading S in one single image, whereas our unknown is

the reflectance R for an entire sequence. Second, it makes

the assumption that reflectance values within each patch lie

within a color plane. We make no such assumption; our lo-

cal energy automatically detects patches and images where

the shading is locally constant, and uses this information to

constrain the reflectance values of the corresponding pixels.

5. Pairwise constraints from shading consis-

tency

The locally adaptive energy proposed in Sec. 4.2 allows

to constrain unknown reflectance values locally, in image

regions with smooth surfaces. However, it cannot cross

normal or depth discontinuities: in those areas, the resid-

ual from Eq. 3 is high and weights wit are correspondingly

low, thus preventing the local smoothness energy from con-

straining their relative reflectance values (see Fig. 2b). Us-

ing this local term Elocal alone can produce weakly con-

nected regions in terms of reflectance constraints (e.g., the

dome areas in Fig. 2 are surrounded by boundaries with high

residual) and can yield an intrinsic decomposition where the

shading of separate surfaces is not consistent across the en-

tire image.

In this section, we introduce long-distance constraints

on pairs of pixels that can be distant in image space but

whose intensities over time are related. These pairwise con-

straints allow us to relate the reflectance of regions that were

only weakly connected with our locally adaptive smooth-

ness term alone.

By definition of the intrinsic image model (Eq. 1), if

the shading in frame t is the same for two pixels p and q,

S(p, t) = S(q, t). Then, from Eq. 1, we can write:

R(p)I(q, t) = R(q)I(p, t). (11)

This means that if we could reliably find pairs of pixels

that share a similar (yet unknown) shading in one or several

frame(s) t, we would then be able to constrain the relative

values of their reflectances. The key challenges are: (1) to

identify pairs of pixels that have similar shading across most

frames; (2) once good pairs of pixels have been identified,

to mitigate the influence of occasional frames in which the

two pixels accidentally have different shading (e.g., when

one point is shadowed and not the other).

A similar approach was used by Laffont et al. [20], who

constrained the reflectance ratio of two points based on the

median of their radiance ratios observed over time. A key

difference is that they use the normals reconstructed from

multi-view input photographs in order to select pairs of

points. In contrast, in Sec. 5.1, we select pairs without prior

knowledge of the scene geometry, simply by analyzing their

appearance profiles. This makes our method not only easier

to apply but also considerably faster than [20]. We then

constrain the relative reflectance of such pairs of consistent

pixels, using the pairwise energy described in Sec. 5.2.

5.1. Selecting consistent pairs of pixels

We now select consistent pairs of pixels, which are

likely to have similar shading in most images. To do

this, we work on the appearance profile, that is the evo-

lution of the intensity of each pixel p across frames:

[I(p, 1), I(p, 2), ..., I(p, T )]. The intuition behind our ap-

proach is that, for a Lambertian scene, two points whose ap-

pearance profiles are proportional are likely to consistently

have the same shading in several frames. A naive approach

would consist in randomly sampling pairs of pixels and sav-

ing those with proportional appearance profiles; however,

this would be computationally expensive as the vast major-

ity of pixel pairs have different appearance profiles.

We propose an accelerated approach that is not only

tractable but runs in just a few seconds. The main idea is

to cluster pixels based on their appearance profiles: similar

profiles correspond to points that have a similar evolution

(up to scale), and thus similar shading in most images. We

start by normalizing the appearance profiles, since shading

is a scaled version of the pixels’ profiles. We then perform
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clustering with K-means on the normalized profiles; an ex-

ample of the obtained clusters in Fig. 2c. A similar idea was

described by Koppal et al. [17] to cluster surfaces based on

the extrema of their appearance profiles; however, their goal

is to find clusters of surfaces with similar normals, whereas

we only aim to find pairs of pixels with similar shading.

Once the clusters have been found, we sample pairs of

pixels within each cluster – since their appearance profiles

are close to the cluster centroid, they will be close to each

other as well. We sample a number of pairs per cluster, pro-

portionally to the cluster size, so that we accumulate pairs

of pixels over the entire image. The output of this process is

a set Φ of pixel pairs, whose appearance profiles are similar

over most frames.

5.2. Pairwise energy for consistently illuminated
points

Assuming the two pixels of a pair (p, q) ∈ Φ have been

properly chosen and they have the same (unknown) shad-

ing, a single frame (corresponding to a single t) is theoret-

ically sufficient to infer a relative constraint between their

reflectances according to Eq. 11. However, combining the

information from multiple images with a robust cost func-

tion allows us to estimate how confident we are that both

pixels share the same shading in multiple images. It also

mitigates the influence of outlier frames where Eq. 11 in-

cidentally does not hold, e.g. in an image where the two

pixels are distant and separated by a shadow boundary.

Given pair (p, q) ∈ Φ, we define the following energy:

epair(p, q) =
∑

t

(R(p)I(q, t)−R(q)I(p, t))
2

(12)

To handle outliers, we follow an approach similar to

Sec. 4.1: we use a robust cost function ρ() and apply IRLS

to iteratively minimize the energy and update the weights.

At each iteration k of IRLS, we optimize

(R(p)(k+1), R(q)(k+1)) =

argmin
R(p),R(q)

∑

t

w
(k)
pqt (R(p)I(q, t)−R(q)I(p, t))

2 (13)

This can be rewritten in matrix form:

(Rpair
pq )(k+1) = argmin

R
pair
pq

‖
√
W

pair
pq M

pair
pq R

pair
pq ‖2 (14)

where W
pair
pq is a diagonal T × T matrix containing the

weights w
(k)
pqt for all frames, M

pair
pq = [−Iq, Ip] a T × 2

matrix that stacks the intensities of p and q, and R
pair
pq =

[R(p);R(q)] a 2 × 1 vector that stacks the unknown re-

flectance of p and q.

The solution of Eq. 14 is obtained by SVD of√
W

pair
pq M

pair
pq which is extremely fast since this matrix is

of size 2× 2 for each pair.
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Figure 3. The approach described in Sec. 5.1 aims to select pairs

of pixels with similar shading in most images; the cumulative dis-

tribution function (left) shows that this method yields pairs of pix-

els with significantly fewer outliers than random sampling. Given

pairs of pixels with some outlier frames (right), the IRLS ap-

proach described in Sec. 5.2 yields more accurate pairwise re-

flectance ratios than by directly minimizing Eq. 13; we define error

as

∣∣∣log(R(p)
R(q)

)− log( R̃(p)

R̃(q)
)
∣∣∣ with R̃ the ground-truth reflectance.

Finally, we average the pairwise energy over all the pairs

selected in Sec. 5.1, yielding the energy Epair that constrains

the reflectance of a sparse set of pixels over the entire image:

Epair =
1

|Φ|
∑

(p,q)∈Φ

epair(p, q) (15)

6. Implementation and results

We define a global energy by summing Elocal and Epair

weighted by a scalar parameter γpair. We aim to minimize

this energy with respect to the reflectance:

argmin
R

Elocal + γpairEpair. (16)

This translates into a large sparse linear system of the

form Ax = 0. Such a system could theoretically be

solved via SVD, but this would be prohibitive given the

size of the images (matrix A has as many rows and

columns as the total number of pixels in the image).

Instead, we add a regularization term γregEreg, where

Ereg =
∑

p

∑
t

(
R(p)− 3I(p,t)∑

c
I(p,t)(c)

)2

. This commonly

used term favors reflectance values close to the chromatic-

ity of the input image. As this is not always reliable for

real scene images, we use a tiny weight γreg so it does not

influence the solution.

We solve the global sparse linear system and obtain the

per-pixel reflectance. We repeat this operation separately in

each color channel. Finally, we obtain the shading in each

frame by dividing each input by the common reflectance.

Pairwise constraints sampling and estimation. The

method described in Sec. 5.1 aims to select consistent pairs

of pixels which are likely to have similar shading in most

images. This selection process is very challenging since

shading is unknown beforehand. We show in Fig. 3 (left)
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that our approach based on clustering appearance profiles

selects pairs of pixels that are more likely to have similar

shading in some images – in other words, they have fewer

outlier frames which violate Eq. 11. For the visualization

in Fig. 3, we consider frame t to be an outlier for pair (p, q)

if the ground-truth shading values S̃(p, t) and S̃(q, t) differ

by 5% or more; we access ground truth values by using the

synthetic scene shown in Fig. 2.

Once a reasonable set of pairs has been identified, the

robust approach described in Sec. 5.2 is used to mitigate the

influence of outlier frames and estimate pairwise reflectance

ratios. Fig. 3 (right) compares the mean error in reflectance

estimation achieved with two robust function ρ(), for pairs

with varying proportions of outlier frames. We use the L1

cost (combined with IRLS) to generate our results, as it is

more robust to outliers than the standard L2 cost. Note that

unreliable pairs with a higher proportion of outliers also af-

fect less the optimization of Eq. 16, as they will be associ-

ated with smaller weights.

We now present results on some popular synthetic and

real datasets. We invite the reader to refer to our project

webpage1 for our extended St. Basil dataset (Sec. 6.2), ad-

ditional results, figures, derivations, and details including

values for our parameters.

6.1. Captured scenes: MIT benchmark

We applied our approach on the popular MIT intrinsic

image dataset [11], for which the ground truth shading is

approximately known (ignoring interrefections). We quan-

titatively evaluate several methods by comparing their re-

sults to the ground truth, using the Local Mean Squared Er-

ror (LMSE) described by Grosse et al. [11]. The quantita-

tive comparison is available in Fig. 4. Our method provides

very satisfying results and favorably compares to state-of-

the-art methods. Examples of mean runtimes of existing

methods as reported in the literature are: [10]: >600s, [29]:

>300s, [33]: >200s, [2]: >200s, [16]: 40s, [36]: 3s, [24]:1-

3s, Retinex [11]: 1s. On our PC equipped with a Core i5

2.6 Ghz CPU, [12] runs in 257s and ours in 94s on average.

On this dataset, only the method by Hauagge et al. [12]

achieves better LMSE results. Note however, that the MIT

dataset only contains isolated objects captured in laboratory

conditions, with grayscale shading and no interreflections.

Although we evaluate our results on this dataset, our method

targets more complex scenes and does not make such as-

sumptions. In addition, many objects from the dataset

are biased towards methods with a sparse reflectance prior,

since they are mostly white with a few hand-drawn colored

strokes.

1https://graphics.ethz.ch/˜plaffont/research/

intrinsicTimelapse/

Figure 4. Comparison of Local Mean Squared Error (LMSE) on

the MIT intrinsic dataset.

6.2. Synthetic dataset: Extended St. Basil

Several papers acknowledge the need for datasets with

ground truth reflectance and shading in order to evaluate in-

trinsic image algorithms [10, 23, 15]. We propose the first

synthetic dataset that depicts a scene with complex geome-

try, under multiple physically-based lighting conditions for

each viewpoint, with ground truth reflectance and shading

images. As shown in our extensive comparison, this dataset

is challenging even for recent and state-of-the-art methods

that perform well on the MIT benchmark (Sec. 6.1).

We extend the St. Basil dataset released by Laffont

et al. [20], which depicts a complex 3D scene with a

physically-based outdoor lighting model, under varying

lighting conditions and viewpoints. From each of the three

viewpoints corresponding to the evaluation images, we gen-

erate 30 input images with varying lighting and fixed cam-

era position. This allows us to evaluate methods based on

a timelapse input. We quantitatively evaluate 16 different

methods using the Local Mean Squared Error (LMSE) and

Global Mean Squared Error (GMSE) [11]. All the result

images, as well as the evaluation scores for different tech-

niques, are available on our project webpage.

Quantitatively, our method scores second on this bench-

mark, both in LMSE and GMSE (Fig. 5). It is overper-

formed only by Laffont et al. [20], which use a different

input compared to our method: since they use images from

multiple viewpoints, they have information about the scene

geometry and use it to compensate for ambient occlusion.

The method by Weiss [34] yields an LMSE similar to ours,

but its GMSE is the highest of all the tested approaches; this

is likely due to the reintegration step and yields a result is

visually very different from ground truth. In contrast, our

long-distance pairwise constraints enforce consistent shad-

ing across multiple surfaces in the scene.

Our method yields visually pleasing results. Compared

to ground truth, most of the remaining artifacts are in the

lower part of the building, under the arches. This is be-

cause most of the images in this dataset were captured dur-

ing daytime and illuminated from the top, thus most of the

shading comes from indirect lighting in those areas. These
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Figure 5. Quantitative comparison of LMSE (left) and GMSE (right) for several methods on the extended synthetic St. Basil dataset.

artifacts are shared with the other timelapse-based methods,

including the one from Sunkavalli et al. [32] which explic-

itly models outdoor lighting.

6.3. Captured scenes: Doll, Temple, and timelapses

We provide results obtained by our method on two in-

door datasets Temple and Doll from [20] shown in Fig. 1,

both containing 7 images. The input data have been cap-

tured by a camera on a tripod and with a moving light

source. Note that these datasets are much more complex

since they exhibit intricate textures, strong lighting, specu-

lar surfaces and other non-Lambertian effects (e.g. on the

doll’s clothes). Most single-image based methods perform

poorly in these cases, as the current most-advanced meth-

ods cannot disambiguate reflectance from shading on the

textured tablecloth. Nevertheless, the shading layer we re-

cover is both uncorrupted and smooth, and at the same time

our method is still able to capture fine shading details such

as the foldings of the tablecloth.

Fig. 1 shows results of our decomposition on seven time-

lapse sequences captured outdoors. More results and com-

parisons are available on our project webpage.

6.4. Discussion and limitations

Our model makes no assumption on the number or type

of light sources; it can handle outdoor and indoor scenes

(see Fig. 1), shadows (including from nearby light sources,

as in our indoor scenes), interreflections (see the base of the

domes in St. Basil).

Our model assumes static Lambertian scenes. Since the

reflectance layer is fixed for each sequence, non-Lambertian

effects (e.g., specular highlights) and moving objects are as-

signed to the shading layer. Although our method is not de-

signed to deal with a high amount of specularities, it can

cope with such view-dependent effect to some extent as

shown in our results (e.g. shiny map in indoor scenes of

Fig. 1).

When all surfaces are orthogonal, no pairwise con-

straints can be established between pixels across different

surfaces. This can occur on scenes composed of only one

isolated and matted box, e.g., the Box scene in the MIT

dataset. In practice however, many surfaces tend to have

similar (yet not identical normals) in a real scene, thus al-

lowing all surfaces to be connected to each other.

7. Conclusion

We presented a method to compute the intrinsic image

decomposition from an image sequence acquired by a static

camera. Our approach runs automatically and returns the

shading layer of each of the input images, as well as the re-

flectance. We defined a locally adaptive energy from the

observations of each local neighborhood over time, and

then enforced distant pairwise constraints across surfaces

shaded consistently. We demonstrated the validity of our

approach with extensive comparisons on both synthetic and

real datasets, and showed that our approach favorably com-

pares with state-of-the-art methods.
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