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Abstract

We present Deep Neural Decision Forests – a novel ap-

proach that unifies classification trees with the representa-

tion learning functionality known from deep convolutional

networks, by training them in an end-to-end manner. To

combine these two worlds, we introduce a stochastic and

differentiable decision tree model, which steers the rep-

resentation learning usually conducted in the initial lay-

ers of a (deep) convolutional network. Our model differs

from conventional deep networks because a decision for-

est provides the final predictions and it differs from con-

ventional decision forests since we propose a principled,

joint and global optimization of split and leaf node param-

eters. We show experimental results on benchmark machine

learning datasets like MNIST and ImageNet and find on-

par or superior results when compared to state-of-the-art

deep models. Most remarkably, we obtain Top5-Errors of

only 7.84%/6.38% on ImageNet validation data when in-

tegrating our forests in a single-crop, single/seven model

GoogLeNet architecture, respectively. Thus, even without

any form of training data set augmentation we are improv-

ing on the 6.67% error obtained by the best GoogLeNet ar-

chitecture (7 models, 144 crops).

1. Introduction

Random forests [1, 4, 7] have a rich and successful his-

tory in machine learning in general and the computer vision

community in particular. Their performance has been em-

pirically demonstrated to outperform most state-of-the-art

learners when it comes to handling high dimensional data

problems [6], they are inherently able to deal with multi-

class problems, are easily distributable on parallel hardware

architectures while being considered to be close to an ideal

learner [11]. These facts and many (computationally) ap-

pealing properties make them attractive for various research

∗The major part of this research project was undertaken when Madalina

was an intern with Microsoft Research Cambridge, UK.

areas and commercial products. In such a way, random

forests could be used as out-of-the-box classifiers for many

computer vision tasks such as image classification [3] or

semantic segmentation [5, 32], where the input space (and

corresponding data representation) they operate on is typi-

cally predefined and left unchanged.

One of the consolidated findings of modern, (very) deep

learning approaches [19, 23, 36] is that their joint and uni-

fied way of learning feature representations together with

their classifiers greatly outperforms conventional feature

descriptor & classifier pipelines, whenever enough training

data and computation capabilities are available. In fact, the

recent work in [12] demonstrated that deep networks could

even outperform humans on the task of image classification.

Similarly, the success of deep networks extends to speech

recognition [38] and automated generation of natural lan-

guage descriptions of images [9].

Addressing random forests to learn both, proper repre-

sentations of the input data and the final classifiers in a joint

manner is an open research field that has received little at-

tention in the literature so far. Notable but limited excep-

tions are [18, 24] where random forests were trained in

an entangled setting, stacking intermediate classifier out-

puts with the original input data. The approach in [28]

introduced a way to integrate multi-layer perceptrons as

split functions, however, representations were learned only

locally at split node level and independently among split

nodes. While these attempts can be considered early forms

of representation learning in random forests, their predic-

tion accuracies remained below the state-of-the-art.

In this work we present Deep Neural Decision Forests –

a novel approach to unify appealing properties from repre-

sentation learning as known from deep architectures with

the divide-and-conquer principle of decision trees. We

introduce a stochastic, differentiable, and therefore back-

propagation compatible version of decision trees, guiding

the representation learning in lower layers of deep convolu-

tional networks. Thus, the task for representation learning

is to reduce the uncertainty on the routing decisions of a

sample taken at the split nodes, such that a globally defined
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loss function is minimized.

Additionally, the optimal predictions for all leaves of our

trees given the split decisions can be obtained by minimiz-

ing a convex objective and we provide an optimization algo-

rithm for it that does not resort to tedious step-size selection.

Therefore, at test time we can take the optimal decision for

a sample ending up in the leaves, with respect to all the

training data and the current state of the network.

Our realization of back-propagation trees is modular and

we discuss how to integrate them in existing deep learn-

ing frameworks such as Caffe [16], MatConvNet [37], Min-

erva1, etc. supported by standard neural network layer im-

plementations. Of course, we also maintain the ability to

use back-propagation trees as (shallow) stand-alone classi-

fiers. We demonstrate the efficacy of our approach on a

range of datasets, including MNIST and ImageNet, show-

ing superior or on-par performance with the state-of-the-art.

Related Works. The main contribution of our work re-

lates to enriching decision trees with the capability of rep-

resentation learning, which requires a tree training approach

departing from the prevailing greedy, local optimization

procedures typically employed in the literature [7]. To this

end, we will present the parameter learning task in the con-

text of empirical risk minimization. Related approaches

of tree training via global loss function minimization were

e.g. introduced in [30] where during training a globally

tracked weight distribution guides the optimization, akin to

concepts used in boosting. The work in [15] introduced re-

gression tree fields for the task of image restoration, where

leaf parameters were learned to parametrize Gaussian con-

ditional random fields, providing different types of interac-

tion. In [35], fuzzy decision trees were presented, including

a training mechanism similar to back-propagation in neu-

ral networks. Despite sharing some properties in the way

parent-child relationships are modeled, our work differs as

follows: i) We provide a globally optimal strategy to es-

timate predictions taken in the leaves (whereas [35] simply

uses histograms for probability mass estimation). ii) The as-

pect of representation learning is absent in [35] and iii) We

do not need to specify additional hyper-parameters which

they used for their routing functions (which would poten-

tially account for millions of additional hyper-parameters

needed in the ImageNet experiments). The work in [24]

investigated the use of sigmoidal functions for the task of

differentiable information gain maximization. In [25], an

approach for global tree refinement was presented, propos-

ing joint optimization of leaf node parameters for trained

trees together with pruning strategies to counteract overfit-

ting. The work in [26] describes how (greedily) trained, cas-

caded random forests can be represented by deep networks

(and refined by additional training), building upon the work

1https://github.com/dmlc/minerva

in [31] (which describes the mapping of decision trees into

multi-layer neural networks).

In [2], a Bayesian approach using priors over all param-

eters is introduced, where also sigmoidal functions are used

to model splits, based on linear functions on the input (c.f .

the non-Bayesian work from Jordan [17]). Other hierarchi-

cal mixture of expert approaches can also be considered as

tree-structured models, however, lacking both, representa-

tion learning and ensemble aspects.

2. Decision Trees with Stochastic Routing

Consider a classification problem with input and (finite)

output spaces given by X and Y , respectively. A decision

tree is a tree-structured classifier consisting of decision (or

split) nodes and prediction (or leaf) nodes. Decision nodes

indexed by N are internal nodes of the tree, while predic-

tion nodes indexed by L are the terminal nodes of the tree.

Each prediction node ℓ ∈ L holds a probability distribution

πℓ over Y . Each decision node n ∈ N is instead assigned

a decision function dn(·; Θ) : X → [0, 1] parametrized by

Θ, which is responsible for routing samples along the tree.

When a sample x ∈ X reaches a decision node n it will

be sent to the left or right subtree based on the output of

dn(x; Θ). In standard decision forests, dn is binary and

the routing is deterministic. In this paper we will consider

rather a probabilistic routing, i.e. the routing direction is the

output of a Bernoulli random variable with mean dn(x; Θ).
Once a sample ends in a leaf node ℓ, the related tree predic-

tion is given by the class-label distribution πℓ. In the case

of stochastic routings, the leaf predictions will be averaged

by the probability of reaching the leaf. Accordingly, the fi-

nal prediction for sample x from tree T with decision nodes

parametrized by Θ is given by

PT [y|x,Θ,π] =
∑

ℓ∈L

πℓyµℓ(x|Θ) , (1)

where π = (πℓ)ℓ∈L and πℓy denotes the probability of a

sample reaching leaf ℓ to take on class y, while µℓ(x|Θ) is

regarded as the routing function providing the probability

that sample x will reach leaf ℓ. Clearly,
∑

ℓ µℓ(x|Θ) = 1
for all x ∈ X .

In order to provide an explicit form for the routing func-

tion we introduce the following binary relations that depend

on the tree’s structure: ℓ ւ n, which is true if ℓ belongs to

the left subtree of node n, and n ց ℓ, which is true if ℓ
belongs to the right subtree of node n. We can now exploit

these relations to express µℓ as follows:

µℓ(x|Θ) =
∏

n∈N

dn(x; Θ)1ℓւn d̄n(x; Θ)1nցℓ , (2)

where d̄n(x; Θ) = 1 − dn(x; Θ), and 1P is an indica-

tor function conditioned on the argument P . Although the
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Figure 1. Each node n ∈ N of the tree performs routing decisions

via function dn(·) (we omit the parametrization Θ). The black

path shows an exemplary routing of a sample x along a tree to

reach leaf ℓ4, which has probability µℓ4
= d1(x)d̄2(x)d̄5(x).

product in (2) runs over all nodes, only decision nodes along

the path from the root node to the leaf ℓ contribute to µℓ,

because for all other nodes 1ℓւn and 1nցℓ will be both 0
(assuming 00 = 1, see Fig. 1 for an illustration).

Decision nodes In the rest of the paper we consider deci-

sion functions delivering a stochastic routing with decision

functions defined as follows:

dn(x; Θ) = σ(fn(x; Θ)) , (3)

where σ(x) = (1 + e−x)−1 is the sigmoid function, and

fn(·; Θ) : X → R is a real-valued function depending

on the sample and the parametrization Θ. Further details

about the functions fn can be found in Section 4.1, but in-

tuitively depending on how we choose these functions we

can model trees having shallow decisions (e.g. such as in

oblique forests [13]) as well as deep ones.

Forests of decision trees. A forest is an ensemble of de-

cision trees F = {T1, . . . , Tk}, which delivers a prediction

for a sample x by averaging the output of each tree, i.e.

PF [y|x] =
1

k

k∑

h=1

PTh
[y|x] , (4)

omitting the tree parameters for notational convenience.

3. Learning Trees by Back-Propagation

Learning a decision tree modeled as in Section 2 requires

estimating both, the decision node parametrizations Θ and

the leaf predictions π. For their estimation we adhere to the

minimum empirical risk principle with respect to a given

data set T ⊂ X × Y under log-loss, i.e. we search for the

minimizers of the following risk term:

R(Θ,π; T ) =
1

|T |

∑

(x,y)∈T

L(Θ,π;x, y) , (5)

where L(Θ,π;x, y) is the log-loss term for the training

sample (x, y) ∈ T , which is given by

L(Θ,π;x, y) = − log(PT [y|x,Θ,π]) , (6)

and PT is defined as in (1).

We consider a two-step optimization strategy, described

in the rest of this section, where we alternate updates of Θ
with updates of π in a way to minimize (5).

3.1. Learning Decision Nodes

All decision functions depend on a common parameter

Θ, which in turn parametrizes each function fn in (3). So

far, we made no assumptions about the type of functions in

fn, therefore nothing prevents the optimization of the risk

with respect to Θ for a given π from eventually becoming

a difficult and large-scale optimization problem. As an ex-

ample, Θ could absorb all the parameters of a deep neural

network having fn as one of its output units. For this rea-

son, we will employ a Stochastic Gradient Descent (SGD)

approach to minimize the risk with respect to Θ, as com-

monly done in the context of deep neural networks:

Θ(t+1) = Θ(t) − η
∂R

∂Θ
(Θ(t),π;B)

= Θ(t) −
η

|B|

∑

(x,y)∈B

∂L

∂Θ
(Θ(t),π;x, y)

(7)

Here, 0 < η is the learning rate and B ⊆ T is a random

subset (a.k.a. mini-batch) of samples from the training set.

Although not shown explicitly, we additionally consider a

momentum term to smooth out the variations of the gradi-

ents. The gradient of the loss L with respect to Θ can be

decomposed by the chain rule as follows

∂L

∂Θ
(Θ,π;x, y) =

∑

n∈N

∂L(Θ,π;x, y)

∂fn(x; Θ)

∂fn(x; Θ)

∂Θ
. (8)

Here, the gradient term that depends on the decision tree is

given by

∂L(Θ,π;x, y)

∂fn(x; Θ)
= dn(x; Θ)Anr

− d̄n(x; Θ)Anl
, (9)

where nl and nr indicate the left and right child of node n,

respectively, and we define Am for a generic node m ∈ N
as

Am =

∑
ℓ∈Lm

πℓyµℓ(x|Θ)

PT [y|x,Θ,π]
.

With Lm ⊆ L we denote the set of leaves held by the sub-

tree rooted in node m. Detailed derivations of (9) can be

found in Section 2 of the supplementary document. More-

over, in Section 4 we describe how Am can be efficiently

computed for all nodes m with a single pass over the tree.
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As a final remark, we considered also an alternative

optimization procedure to SGD, namely Resilient Back-

Propagation (RPROP) [27], which automatically adapts a

specific learning rate for each parameter based on the sign

change of its risk partial derivative over the last iteration.

3.2. Learning Prediction Nodes

Given the update rules for the decision function parame-

ters Θ from the previous subsection, we now consider the

problem of minimizing (5) with respect to π when Θ is

fixed, i.e.

min
π

R(Θ,π; T ) . (10)

This is a convex optimization problem and a global solution

can be easily recovered. A similar problem has been en-

countered in the context of decision trees in [28], but only

at the level of a single node. In our case, however, the whole

tree is taken into account, and we are jointly estimating all

the leaf predictions.

In order to compute a global minimizer of (10) we pro-

pose the following iterative scheme:

π
(t+1)
ℓy =

1

Z
(t)
ℓ

∑

(x,y′)∈T

1y=y′ π
(t)
ℓy µℓ(x|Θ)

PT [y|x,Θ,π(t)]
, (11)

for all ℓ ∈ L and y ∈ Y , where Z
(t)
ℓ is a normalizing fac-

tor ensuring that
∑

y π
(t+1)
ℓy = 1. The starting point π(0)

can be arbitrary as long as every element is positive. A

typical choice is to start from the uniform distribution in

all leaves, i.e. π
(0)
ℓy = |Y|−1. It is interesting to note that

the update rule in (11) is step-size free and it guarantees a

strict decrease of the risk at each update until a fixed-point

is reached (see proof in supplementary material).

As opposed to the update strategy for Θ, which is based

on mini-batches, we adopt an offline learning approach to

obtain a more reliable estimate of π, because suboptimal

predictions in the leaves have a strong impact on the final

prediction. Moreover, we interleave the update of π with a

whole epoch of stochastic updates of Θ as described in the

previous subsection.

3.3. Learning a Forest

So far we have dealt with a single decision tree setting.

Now, we consider an ensemble of trees F , where all trees

can possibly share same parameters in Θ, but each tree can

have a different structure with a different set of decision

functions (still defined as in (3)), and independent leaf pre-

dictions π.

Since each tree in forest F has its own set of leaf pa-

rameters π, we can update the prediction nodes of each tree

independently as described in Subsection 3.2, given the cur-

rent estimate of Θ.

As for Θ, instead, we randomly select a tree in F for each

mini-batch and then we proceed as detailed in Subsection

3.1 for the SGD update. This strategy somewhat resembles

the basic idea of Dropout [34], where each SGD update is

potentially applied to a different network topology, which

is sampled according to a specific distribution. In addition,

updating individual trees instead of the entire forest reduces

the computational load during training.

During test time, as shown in (4), the prediction deliv-

ered by each tree is averaged to produce the final outcome.

3.4. Summary of the Learning Procedure

The learning procedure is summarized in Algorithm 1.

We start with a random initialization of the decision nodes

parameters Θ and iterate the learning procedure for a pre-

determined number of epochs, given a training set T . At

each epoch, we initially obtain an estimation of the pre-

diction node parameters π given the actual value of Θ by

running the iterative scheme in (11), starting from the uni-

form distribution in each leaf, i.e. π
(0)
ℓy = |Y|−1. Then we

split the training set into a random sequence of mini-batches

and we perform for each mini-batch a SGD update of Θ as

in (7). After each epoch we might eventually change the

learning rate according to pre-determined schedules.

More details about the computation of some tree-specific

terms are given in the next section.

Algorithm 1 Learning trees by back-propagation

Require: T : training set, nEpochs

1: random initialization of Θ
2: for all i ∈ {1, . . . , nEpochs} do

3: Compute π by iterating (11)

4: break T into a set of random mini-batches

5: for all B: mini-batch from T do

6: Update Θ by SGD step in (7)

7: end for

8: end for

4. Implementation Notes

4.1. Decision Nodes

We have defined decision functions dn in terms of real-

valued functions fn(·; Θ), which are not necessarily inde-

pendent, but coupled through the shared parametrization Θ.

Our intention is to endow the trees with feature learning ca-

pabilities by embedding functions fn within a deep convo-

lutional neural network with parameters Θ. In the specific,

we can regard each function fn as a linear output unit of a

deep network that will be turned into a probabilistic rout-

ing decision by the action of dn, which applies a sigmoid

activation to obtain a response in the [0, 1] range. Fig. 2

provides a schematic illustration of this idea, showing how
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Deep CNN with parameters Θ

Figure 2. Illustration how to implement a deep neural decision forest (dNDF). Top: Deep CNN with variable number of layers, subsumed

via parameters Θ. FC block: Fully Connected layer used to provide functions fn(·; Θ) (here: inner products), described in Equ. (3). Each

output of fn is brought in correspondence with a split node in a tree, eventually producing the routing (split) decisions dn(x) = σ(fn(x)).
The order of the assignments of output units to decision nodes can be arbitrary (the one we show allows a simple visualization). The circles

at bottom correspond to leaf nodes, holding probability distributions πℓ as a result from solving the convex optimization problem defined

in Equ. (10).

decision nodes can be implemented by using typically avail-

able fully-connected (or inner-product) and sigmoid layers

in DNN frameworks like Caffe or MatConvNet. Easy to

see, the number of split nodes is determined by the number

of output nodes of the preceding fully-connected layer.

Under the proposed construction, the output units of the

deep network are therefore not directly delivering the final

predictions, e.g. through a Softmax layer, but each unit is

responsible for driving the decision of a node in the for-

est. Indeed, during the forward pass through the deep net-

work, a data sample x produces soft activations of the rout-

ing decisions of the tree that induce via the routing function

a mixture of leaf predictions as per (1), which will form the

final output. Finally, please note that by assuming linear

and independent (via separate parametrizations) functions

fn(x;θn) = θ
⊤
nx, we recover a model similar to oblique

forests [13].

4.2. Routing Function

The computation of the routing function µℓ can be car-

ried out by traversing the tree once. Let ⊤ ∈ N be the

root node and for each node n ∈ N let nl and nr denote

its left and right child, respectively. We start from the root

by setting µ⊤ = 1 and for each node n ∈ N that we

visit in breadth-first order we set µnl
= dn(x; Θ)µn and

µnr
= d̄n(x; Θ)µn. At the end, we can read from the leaves

the desired values of the routing function.

4.3. Learning Decision Nodes

The forward pass of the back-propagation algorithm pre-

computes the values of the routing function µℓ(x; Θ) and

the value of the tree prediction PT [y|x,Θ,π] for each sam-

ple (x, y) in the mini-batch B. The backward pass requires

the computation of the gradient term in (9) for each sample

(x, y) in the mini-batch. This can be carried out by a single,

bottom-up tree traversal. We start by setting

Aℓ =
πℓyµℓ(x; Θ)

PT [y|x,Θ,π]

for each ℓ ∈ L. Then we visit the tree in reversed breadth-

first order (bottom-up). Once in a node n ∈ N , we can

compute the partial derivative in (9) since we can read Anl

and Anr
from the children, and we set An = Anl

+ Anr
,

which will be required by the parent node.

4.4. Learning Prediction Nodes

Before starting the iterations in (11), we precomputed

µℓ(x; Θ) for each ℓ ∈ L and for each sample x in the train-

ing set, as detailed in Subsection 4.2. The iterative scheme

requires few iterations to converge to a solution with an ac-

ceptable accuracy (20 iterations were enough for all our ex-

periments).

5. Experiments

Our experiments illustrate both, the performance of shal-

low neural decision forests (sNDFs) as standalone classi-

fiers, as well as their effect when used as classifiers in

deep, convolutional neural networks (dNDF). To this end,

we evaluate our proposed classifiers on diverse datasets,

covering a broad range of classification tasks (ranging from

simple binary classification of synthetically generated data

up to large-scale image recognition on the 1000-class Ima-

geNet dataset).
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G50c [33] Letter [10] USPS [14] MNIST [20] Char74k[8]

# Train Samples 50 16000 7291 60000 66707

# Test Samples 500 4000 2007 10000 7400

# Classes 2 26 10 10 62

# Input dimensions 50 16 256 784 64

Alternating Decision Forest (ADF) [30] 18.71±1.27 3.52±0.17 5.59±0.16 2.71±0.10 16.67±0.21

Shallow Neural Decision Forest (sNDF) 17.4±1.52 2.92±0.17 5.01±0.24 2.8±0.12 16.04±0.20

Tree input features 10 (random) 8 (random) 10x10 patches 15x15 patches 10 (random)

Depth 5 10 10 10 12

Number of trees 50 70 100 80 200

Batch size 25 500 250 1000 1000

Table 1. Comparison of alternating decision forests (ADF) to shallow neural decision forests (sNDFs, no hidden layers) on selected standard

machine learning datasets. Top: Details about datasets. Middle: Average error [%] (with corresponding standard deviation) obtained from

10 repetitions of the experiment. Bottom: Details about the parametrization of our model.

5.1. Comparison of sNDFs to Forest Classifiers

We first compared sNDFs against state-of-the-art in

terms of stand-alone, off-the-shelf forest ensembles. In or-

der to have a fair comparison, our classifier is built without

hidden layers, i.e. we consider feature mappings having the

simple form fn(x;θn) = θ
⊤
nx. We used the 5 datasets in

[30] to compare the performance of sNDFs to that of Alter-

nating Decision Forests (ADF). The details of this experi-

ment are summarized in Tab. 1. For ADF, we provide re-

sults reported in their paper and we use their reported max-

imal tree depth and forest size as an upper bound on the

size of our models. Essentially, for each of the datasets,

all our trees are less deep and there are fewer of them

than in the corresponding ADF models. We used ensem-

bles of different sizes depending on the size of the dataset

and the complexity of the learning tasks. In all cases, we

use RPROP and the recommended hyper-parameters of the

original publication [27] for split node parameter optimiza-

tion. We report the average error with standard deviations

resulting from 10 repetitions of the experiment. Overall, we

outperform ADF, though significant results, with p-values

less than 0.05, were obtained for the Letter, USPS and

Char74k datasets.

5.2. Improving Performance with dNDF

In the following experiments we integrated our novel for-

est classifiers in end-to-end image classification pipelines,

using multiple convolutional layers for representation learn-

ing as typically done in deep learning systems.

5.2.1 MNIST

We used the MatConvNet library [37] and their reference

implementation of LeNet-5 [21], for building an end-to-end

digit classification system on MNIST training data, replac-

ing the conventionally used Softmax layer by our forest.

The baseline yields an error of 0.9% on test data, which we

obtained by re-running the provided example architecture

with given settings for optimization, hyper-parameters, etc.

By using our proposed dNDF on top of LeNet-5, each deci-

sion function being driven by an output unit fully connected

to the last hidden layer of the CNN, we can reduce the clas-

sification error to 0.7%. The ensemble size was fixed to 10

trees, each with a depth of 5. Please note the positive ef-

fect on MNIST performance compared to Section 5.1 when

spending additional layers on representation learning.

5.2.2 ImageNet

ImageNet [29] is a benchmark for large-scale image recog-

nition tasks and its images are assigned to a single out

of 1000 possible ground truth labels. The dataset con-

tains ≈1.2M training images, 50.000 validation images

and 100.000 test images with average dimensionality of

482x415 pixels. Training and validation data are pub-

licly available and we followed the commonly agreed pro-

tocol by reporting Top5-Errors on validation data. The

GoogLeNet architecture [36], which has a reported Top5-

Error of 10.07% when used in a single-model, single-crop

setting (see first row in Tab. 3 in [36]) served as basis for

our experiments. It uses 3 Softmax layers at different stages

of the network to encourage the construction of informative

features, due to its very deep architecture. Each of these

Softmax layers gets their input from a Fully Connected (FC)

layer, built on top of an Average Pool layer, which in turn is

built on top of a corresponding Concat layer. Let DC0, DC1

and DC2 be the Concat layers preceding each of the Soft-

max layers in GoogLeNet. Let AvgPool0, AvgPool1 and

AvgPool2 be the Average Pool layers preceding these Soft-

max layers. To avoid problems with propagation of gradi-

ents given the depth of the network and in order to provide

the final classification layers with the features obtained in

the early stages of the pipeline, we have also supplied DC0

1472



GoogLeNet [36] GoogLeNet⋆ dNDF.NET

# Models 1 7 1 1 7

# Crops 1 10 144 1 10 144 1 1 10 1

Top5-Errors 10.07% 9.15% 7.89% 8.09% 7.62% 6.67% 10.02% 7.84% 7.08% 6.38%

Table 2. Top5-Errors obtained on ImageNet validation data, comparing our dNDF.NET to GoogLeNet(⋆).

as input to AvgPool1 and AvgPool2 and DC1 as input to

AvgPool2. We have implemented this modified network

using the Distributed (Deep) Machine Learning Common

(DMLC) library [22]2 and dub it GoogLeNet⋆. Its single-

model, single crop Top5-Error is 10.02% (when trained

with SGD, 0.9 momentum, fixed learning rate schedule, de-

creasing the learning rate by 4% every 8 epochs and mini-

batches composed of 50 images).

In order to obtain a Deep Neural Decision Forest ar-

chitecture coined dNDF.NET, we have replaced each Soft-

max layer from GoogLeNet⋆ with a forest consisting of 10

trees (each fixed to depth 15), resulting in a total number

of 30 trees. We refer to the individual forests as dNDF0

(closest to raw input), dNDF1 (replacing middle loss layer

in GoogLeNet⋆) and dNDF2 (as terminal layer). We pro-

vide a visualization for our dNDF.NET architecture in the

supplementary document. Following the implementation

guideline in Subsection 4.1, we randomly selected 500

output dimensions of the respectively preceding layers in

GoogLeNet⋆ for each decision function fn. In such a way,

a single FC layer with #trees × #split nodes/tree output

units provides all the split node inputs per dNDFx. The

resulting architecture was implemented in DMLC as well,

and we trained the network for 1000 epochs using (mini-)

batches composed of 100.000 images (which was feasible

due to distribution of the computational load to a cluster of

52 CPUs and 12 hosts, where each host is equipped with a

NVIDIA Tesla K40 GPU).

For posterior learning, we only update the leaf node pre-

dictions of the tree that also receives split node parameter

updates, i.e. the randomly selected one as described in Sub-

section 3.3. To improve computational efficiency, we con-

sider only the samples of the current mini-batch for pos-

terior learning, while all the training data could be used in

principle. However, since we use mini-batches composed of

100.000 samples, we can approximate the training set suf-

ficiently well while simultaneously introducing a positive,

regularizing effect.

Tab. 2 provides a summary of Top5-Errors on valida-

tion data for our proposed dNDF.NET against GoogLeNet

and GoogLeNet⋆. We ascribe the improvements on the sin-

gle crop, single model setting (Top5-Error of only 7.84%)

to our proposed approach, as the only architectural differ-

ence to GoogLeNet⋆ (Top5-Error of 10.02%) is deploying

2https://github.com/dmlc/cxxnet.git

our dNDFs. By using an ensemble of 7 dNDF.NETs (still

single crop inputs), we can improve further and obtain a

Top5-Error of 6.38%, which is better than the best result of

6.67%, obtained with 7 GoogLeNets using 144 crops per

image [36]. Next, we discuss some operational characteris-

tics of our single-model, single-crop setting.

Evaluation of tree nodes Intuitively, a tree-structured

classifier aims to produce pure leaf node distributions. This

means that the training error is reduced by (repeatedly) par-

titioning the input space in a way such that it correlates with

target classes in Y .

Analyzing the outputs of decision functions fn is infor-

mative about the routing uncertainties for a given sample x,

as it traverses the tree(s). In Fig. 3, we show histograms

of all available split node outputs of our three forests (i.e.

dNDF0, dNDF1, dNDF2) for all samples of the validation

set after running for 100, 500 and 1000 epochs over the

training data. The leftmost histogram (after 100 training

epochs) shows the highest uncertainty about the routing di-

rection, i.e. the split decisions are not yet very crisp such

that a sample will be routed to many leaf nodes. As train-

ing progresses (middle and right plots after 500 and 1000

epochs), we can see how the distributions get very peaked

at 0 and 1 (i.e. samples are routed either to the left or right

child with low uncertainty), respectively. As a result, the

samples will only be routed to a small subset of available

leaf nodes with reasonably high probability. In other words,

most available leaves will never be reached from a sample-

centric view and therefore only a small number of overall

paths needs to be evaluated at test time. As part of future

work and in order to decrease computational load, we plan

to route samples along the trees by sampling from these split

distributions, rather than sending them to every leaf node.

To assess the quality of the resulting leaf posterior dis-

tributions obtained from the global optimization procedure,

we illustrate how the mean leaf entropy develops as a func-

tion of training epochs (see Fig. 4). To this end, we ran-

domly selected 1024 leaves from all available ones per tree

and computed their mean entropy after each epoch. The

highest entropy would result from a uniform distribution

and is ≈9.96 bits for a 1000-class problem. Instead, we

want to obtain highly peaked distributions for the leaf pre-

dictors, leading to low entropy. Indeed, the average entropy

decreases as training progresses, confirming the efficacy of

our proposed leaf node parameter learning approach.
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Figure 3. Histograms over all split node responses of all three forests in dNDF.NET on ImageNet validation data after accomplishing

100 (left), 500 (middle) and 1000 (right) epochs over training data. As training progresses, the split node outputs approach 0 or 1 which

corresponds to eliminating routing uncertainty of samples when being propagated through the trees.
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Figure 4. Average leaf entropy development as a function of train-

ing epochs in dNDF.NET.

Evaluation of model performance In Fig. 5 we show

the development of Top5-Errors for each dNDFx in

dNDF.NET as well as their ensemble performances as a

function of training epochs. The left plot shows the devel-

opment over all training epochs (1000 in total) while the

right plot is a zoomed view from epochs 500 to 1000 and

Top5-Errors 0–12%. As expected, dNDF0 (which is clos-

est to the input layer) performs worse than dNDF2, which

constitutes the final layer of dNDF.NET, however, only

by 1.34%. Consequently, the computational load between

dNDF0 and dNDF2 could be traded for a degradation of

only 1.34% in accuracy during inference. Conversely, tak-

ing the mean over all three dNDFs yields the lowest Top5-

Error of 7.84% after 1000 epochs over training data.

6. Conclusions

In this paper we have shown how to model and train

stochastic, differentiable decision trees, usable as alterna-

tive classifiers for end-to-end learning in (deep) convolu-

tional networks. Prevailing approaches for decision tree

training typically operate in a greedy and local manner,

#Training Epochs
0 200 400 600 800 1000

T
op

5-
E

rr
or

 [%
]

0

20

40

60

80

100

#Training Epochs
500 550 600 650 700 750 800 850 900 950 1000

T
op

5-
E

rr
or

 [%
]

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5
5.5

6
6.5

7
7.5

8
8.5

9
9.5
10

10.5
11

11.5
12

ImageNet Top5-Errors

dNDF
0
 on Validation

dNDF
1
 on Validation

dNDF
2
 on Validation

dNDF.NET on Validation
dNDF.NET on Training

Figure 5. Top5-Error plots for individual dNDFx used in

dNDF.NET as well as their joint ensemble errors. Left: Plot over

all 1000 training epochs. Right: Zoomed version of left plot,

showing Top5-Errors from 0–12% between training epochs 500-

1000.

making representation learning impossible. To overcome

this problem, we introduced stochastic routing for deci-

sion trees, enabling split node parameter learning via back-

propagation. Moreover, we showed how to populate leaf

nodes with their optimal predictors, given the current state

of the tree/underlying network. We have successfully vali-

dated our new decision forest model as stand-alone classi-

fier on standard machine learning datasets and surpass state-

of-the-art performance on ImageNet when integrating them

in the GoogLeNet architecture, without any form of dataset

augmentation.
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