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Abstract

We formulate the estimation of dense depth maps from

video sequences as a problem of intrinsic image estima-

tion. Our approach synergistically integrates the estimation

of multiple intrinsic images including depth, albedo, shad-

ing, optical flow, and surface contours. We build upon an

example-based framework for depth estimation that uses la-

bel transfer from a database of RGB and depth pairs. We

combine this with a method that extracts consistent albedo

and shading from video. In contrast to raw RGB values,

albedo and shading provide a richer, more physical, founda-

tion for depth transfer. Additionally we train a new contour

detector to predict surface boundaries from albedo, shad-

ing, and pixel values and use this to improve the estima-

tion of depth boundaries. We also integrate sparse structure

from motion with our method to improve the metric accu-

racy of the estimated depth maps. We evaluate our Intrin-

sic Depth method quantitatively by estimating depth from

videos in the NYU RGB-D and SUN3D datasets. We find

that combining the estimation of multiple intrinsic images

improves depth estimation relative to the baseline method.

1. Introduction

As laid out by Barrow and Tenenbaum [2] and elaborated

over the years, intrinsic images correspond to physical prop-

erties of the scene such as depth, reflectance, shadows, op-

tical flow, and surface shape. Barrow and Tenenbaum em-

phasize that the recovery of such intrinsic images is difficult

and that the solution should recover them together, exploit-

ing consistency between them. Here we take a step in that

direction. Given a video sequence, which may contain cam-

era motion and independently moving objects, we estimate

the following intrinsic images at each frame: depth, albedo,

shading, optical flow, and surface contours. As predicted by

Barrow and Tenenbaum, we find that these different intrin-

sic images provide complimentary information and that es-

timating them in a synergistic way improves our estimation

of scene structure. In doing so, we combine several lines

of work including example-based depth estimation, sparse

structure from motion, optical flow, contour detection, and

reflectance and shading analysis. We refer to our method as

Intrinsic Depth estimation (Fig. 1).

There have been recent successes in directly inferring the

depth structure of images and video sequences from pixel

values. In particular, our method builds on the framework

of Depth Transfer [12], which is a non-parametric, data-

driven, method for estimating scene depth using a database

of images (or videos) and corresponding depth images.

Given a new query image Depth Transfer has several steps.

First it finds similar images in a database using gist match-

ing [22]; the gist features are computed from image pixels

and optical flow. It then uses label transfer [18] between

the query image and the matched images to create a set

of possible depth values for the scene. A final stage per-

forms spatio-temporal regularization in an MRF formula-

tion. Given sufficient training data, the method performs

well at extracting plausible, dense, 3D surface structure.

The output is neither metrically accurate nor faithful to the

object boundaries in the scene. Here, however, we show

that we can do better by integrating depth estimation with

the extraction of other intrinsic images.

Gist features computed from pixel values may include

confounding effects of illumination and reflectance. By

mixing together reflectance, illumination, motion, and sur-

face shape, pixel values obscure the physical processes that

give rise to them. If the database contains very similar im-

ages (as it does in [12]) good matches will be found. A

query image, however, may look very different due to dif-

ferent illumination and having a database that covers all re-

flectance and illumination conditions may be prohibitive to

construct. Consequently we hypothesize that albedo and

shading, instead of RGB values, provide a more physically

motivated foundation for depth transfer. To that end, we use

the Intrinsic Video method [13], which extracts temporally
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Figure 1. Intrinsic Depth. (a) Input video. (b),(c) Albedo and

shading estimated by the intrinsic video method [13]. (d) Surface

contours from [8] modified to combine RGB, albedo and shad-

ing information. (e) Proxy depth by propagating sparse SfM [28]

depth using video segments from [9]. (f) Depth estimated by our

method, which combines the previous two methods. (g) Depth

from the original Depth Transfer method [12]. (h) Depth from

the fully-metric method [32]. (i) Depth from the example-based

single image method [24, 25]. (j) Ground truth depth. Note that

integrating information from different intrinsic images improves

the estimation of the depth structure. In (e) and (j), black pixels

indicate that no valid depth values are provided.

coherent albedo and shading from a video sequence by ex-

ploiting optical flow (Fig. 1(b,c)). We then use the estimated

albedo and shading to compute gist features separately on

albedo, shading, RGB, and flow and use these features for

generating candidate image matches.

We use albedo and shading in another way as well.

Depth Transfer uses spatial regularization and ideally such

smoothing should be disabled at surface boundaries. It is

well known that edges in images are a poor proxy for sur-

face boundaries because they combine surface markings

with shape and illumination. Again we hypothesize that

albedo and shading can provide important information to

help disambiguate what are surface markings and what are

object boundaries. In particular, surface boundaries in the

depth map are likely to correspond to discontinuities in the

shading images. However, shading edges are affected by

illumination, thus simply relying on shading alone is insuf-

ficient. Consequently we train a new contour detector using

RGB values, shading, and albedo to predict contours at sur-

face boundaries. We use the decision forest method in [8]

and train it on the synthetic 3D Sintel database [5] in which

surface boundaries are known. We modify Sintel to create a

training set with ground truth albedo and shading by simpli-

fying the lighting conditions and making all surface mate-

rials Lambertian. We find that the resulting detector makes

better predictions about surface boundaries (Fig. 1(d)) and

we use these in regularizing our depth estimates.

Better scene matching and better surface contour detec-

tion improve depth estimation compared with Depth Trans-

fer. We improve metric accuracy as well by integrating

structure from motion estimation (SfM) [28] into the frame-

work. SfM computes camera poses and sparse 3D points

that are metrically accurate but that need to be densified

to become an intrinsic “image.” Many methods have been

used for densification, but here we integrate sparse matches

within our Intrinsic Depth framework. We first obtain semi-

dense proxy depth maps by computing segmentation vol-

umes from [9] and estimating the depth of each segment

from the depth of the sparse 3D points projected into the

image (Fig. 1(e)). We then use these proxy maps as priors

in estimating our depth, replacing the use of average depth

data in [12].

We find that these changes produce markedly more re-

alistic depth maps with more precise depth boundaries

and better metric accuracy (Fig. 1(f,g)). By combining

Depth Transfer with intrinsic image decomposition, Intrin-

sic Depth makes a step towards an integrated treatment of

intrinsic image extraction.

2. Previous Work

Depth estimation from image cues. The estimation

of depth from a single image may use many well-studied

cues such as texture gradients, atmospheric effects, vanish-
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ing points, etc. Progress has accelerated due to the recent

availability of training data with depth sensors and corre-

sponding color imagery.

One class of approaches learns a probabilistic model

from training data and poses the estimation problem as in-

ference. Saxena et al. [24, 25] predict depth from monocu-

lar image features using an MRF. A more efficient learning

strategy for this approach is proposed in [3]. Performance

improves by incorporating semantic labels [16] and even

more by jointly inferring depth and other cues such as seg-

mentation, scene category, saliency, etc. [15].

Example-based methods assume that appearance and

depth are correlated. Hassner and Basri [10] combine

known depth values of patches from similar objects to pro-

duce a plausible depth estimate of a query image of a single

object. Konrad et al. [14] extend this idea to deal with the

whole scene by simply fusing candidate depth maps. The

spirit of the Depth Transfer method in [12] is similar, but it

combines the candidate depth maps on a per-pixel basis us-

ing label transfer [18] by warping every pixel based on SIFT

flow [18]. In addition, their method is not limited to single

images, but rather exploits temporal information to obtain

temporally coherent depth estimates. While Depth Transfer

gives impressive results, the resulting depth maps are blurry

and do not precisely correspond to the scene structure.

Most recently, Liu et al. [19] train a method to estimate

depth from one image using a combination of a convo-

lutional neural network (CNN) and a conditional random

field. Their results look very natural and suggest that the

CNN features are useful for this task. If perceptual quality

is more desirable than metric accuracy, estimated depth can

be transformed as in [7].

Structure from motion. There is a long history of work

on structure from motion estimation (SfM). Very briefly, if

the video involves a static scene with sufficient camera mo-

tion, current SfM methods work well (e.g. [21, 32]). While

there are solutions for dealing with independently moving

objects (e.g. [31]) this case remains a challenge. Karsch et

al. [12] compare their method with [32] and demonstrate

that, as expected, [32] works only for videos with sufficient

parallax, while [12] produces results for any video regard-

less of the camera motion or object motion. The results of

[12], however, are of much lower fidelity.

Intrinsic image estimation. The idea of extracting

image-registered “intrinsic images” dates back to Barrow

and Tenenbaum [2]. Recently this term has been taken to

mean only “albedo” and “shading” but more generally in-

cludes the estimation of physically relevant properties such

as depth, normals, optical flow, surface boundaries, etc.

Most recent work has focused on estimating albedo and

shading from a single image. The most successful recent

approaches require additional depth information, e.g. from

an RGB-D sensor [1, 6, 11]. These methods essentially

use depth to estimate shading and albedo while our method

takes the opposite approach; that is, we start by estimat-

ing albedo and shading and then use this to estimate depth.

Note that our method does not require an RGB-D sensor at

test time, though we use RGB-D data for training as in other

depth transfer approaches.

Recent work has addressed the problem of intrinsic im-

age estimation in video sequences by exploiting temporal

information to reduce the uncertainty of the problem. Kong

et al. [13] exploit motion to extract temporally coherent

albedo and shading. Ye et al. [30] use optical flow to prop-

agate an initial albedo decomposition of the first frame over

the video sequence. Bonneel et al. [4] separate image gra-

dients into albedo and shading gradients based on scribbles

provided by the user, and propagate the strokes to subse-

quent frames using optical flow. We used the method in [13]

since this method is fully automatic and generates shading

that is piecewise smooth while well capturing overall sur-

face structure.

3. Formulation

Given a new query video, our goal is to estimate a dense

depth map at every frame. We briefly summarize the origi-

nal Depth Transfer method [12] and overview our modifica-

tions. While the original method can deal with both single

images and videos, our method focuses only on videos with

camera motion, possibly including moving objects. There-

fore we only describe the video-based procedures here.

Overview. The system initially obtains similar looking

video frames in the database by matching a set of gist de-

scriptors of the query video to every video clip in a database.

We find that better candidates are selected if each descriptor

is further decomposed into albedo gist and shading gist.

Next, the system warps the stored depth maps associ-

ated with the candidate frames onto each frame of the query

video using SIFT flow [18].

The final step enhances the warped depth maps using im-

age boundaries and optical flow. We replace image bound-

aries with surface contours predicted using pixel RGB,

albedo and shading. In addition, we use sparse points and

camera poses from structure from motion estimation [28] in

regularizing the estimated depth.

3.1. Exacting intrinsic images

Intrinsic video for database and input. Our database is

composed of RGB-D sequences and their corresponding es-

timated albedo, shading, and optical flow. We create this

using time-varying raw sequences from the NYU RGB-D

dataset1, in which every clip is composed of a long image

sequence of a moving camera, possibly including moving

1http://cs.nyu.edu/∼silberman/datasets/nyu depth v2.html
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(a) Training: RGB – abledo – shading – boundaries

(b) Example contour detection
Figure 2. Surface contours estimated from albedo and shading.

(a) A few frames from our contour training dataset: RGB, albedo,

shading, and boundaries from left to right. (b) An RGB image and

its surface contours predicted by our method modified from [8].

objects, and illumination variation. Note that this is differ-

ent from the typical NYU RGB-D dataset [20], which is

composed of single frames. For each video frame, we de-

compose it into albedo and shading

I t (x) = A t (x) � St (x); (1)

where t is frame index, I t is an RGB image, A t is an albedo

image, St is a shading image, and x is pixel position. Note,

importantly, that we do not use the depth for estimating the

albedo and shading. Our goal is to be able to extract intrin-

sic images, including depth, directly for video observations.

In order to extract temporally coherent albedo and shad-

ing from challenging RGB videos, we chose the intrinsic

video method in [13], since this method does make any

assumptions about the scenes if the videos have enough

motion throughout the sequences; for example, they can

include independently moving objects. The shading se-

quences from this method convey piecewise smooth struc-

ture, whose discontinuities overall align with the true shape

of the scenes. We estimated optical flow from each of the

sequences using the method of [17]. We tried other state-

of-the-art flow algorithms [23, 26, 27], but this consistently

performed the best on this database. We use the same meth-

ods to compute albedo and shading from a query video.

Surface contours. Shading provides a good cue about the

location of surface boundaries, but shading boundaries are

easily affected by illumination variation and thus not per-

fectly reliable. In [8] it is shown that surface contours can

be predicted better by combining pixel values with extra

information from known depth maps. We find that a sim-

ilar approach works well by substituting the extra depth

channel with albedo and shading. Specifically we retrain

their decision forests on ground truth combinations of RGB,

albedo, shading, and corresponding boundaries using the

Sintel dataset [5]. See Fig. 2 and Section 6 in Sup. Mat.

Sparse depth and segmentation. We compute sparse SfM

using VisualSFM2, which implements multicore bundle ad-

justment [28]. We apply this to the test sequences to com-

pute the depth at sparse points as well as camera poses. We

then densify these as described in Section 1 of Sup. Mat.

using segmentation volumes extracted by [9]. This provides

semi-dense, metric, depth that acts as a prior and improves

accuracy.

3.2. Modified Depth Transfer

We describe details of the modifications made to the

original Depth Transfer method, then show and reason

about the improvement over the original method.

Candidate frame selection. For each video sequence, the

system computes a set of gist descriptors that are composed

of the gist of each video frame (image gist), gist of each

flow field (flow gist), and gist of the full video sequence

(video gist). We further decompose the image and video gist

using albedo and shading. According to the gist numbers,

the system first chooses the 7 best matching videos and then

the best matching frame from each of the videos.

The original matching score [12] between a frame in the

query video q and a frame of a clip c in the database is

defined as

wi kG(Iq) � G(Ic))k2 + wf kG(F q) � G(F c)k2; (2)

where wi and wf are blending weights (wi = wf = 1
2 ), and

G is a gist operator [22], Iq is a query video frame whose

optical flow field is F q, Ic is a video frame to compare with,

whose flow field is F c. Our matching score is modified as

wakG(Aq) � G(Ac)k2 + wskG(Sq) � G(Sc)k2

+ wi kG(Iq) � G(Ic))k2 + wf kG(F q) � G(F c)k2; (3)

where wa , ws , wi and wf are blending weights given as

wa = ws = wi = wf = 1
4 , Aq and Sq are albedo and

shading of a query video frame, respectively, and Ac and

Scare those of a frame to compare with.

The video gist is defined as the gist of a median image

over all video frames. We further define the albedo gist and

the shading video gist as the gist of a median albedo and that

of a median shading image over the video, respectively. For

video clip selection, we replace the original video gist with

a blending of the video gist, albedo video gist, and shading

video gist with even factors.

Figure 3 shows that our modified candidate selection per-

forms better in that it chooses more similar looking frames.

2http://ccwu.me/vsfm/
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