
Efficient Decomposition of Image and Mesh Graphs by Lifted Multicuts

M. Keuper1, E. Levinkov2, N. Bonneel3, G. Lavoué3, T. Brox1 and B. Andres2,∗
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Abstract

Formulations of the Image Decomposition Problem [8]

as a Multicut Problem (MP) w.r.t. a superpixel graph have

received considerable attention. In contrast, instances of the

MP w.r.t. a pixel grid graph have received little attention,

firstly, because the MP is NP-hard and instances w.r.t. a pixel

grid graph are hard to solve in practice, and, secondly, due

to the lack of long-range terms in the objective function of

the MP. We propose a generalization of the MP with long-

range terms (LMP). We design and implement two efficient

algorithms (primal feasible heuristics) for the MP and LMP

which allow us to study instances of both problems w.r.t. the

pixel grid graphs of the images in the BSDS-500 benchmark

[8]. The decompositions we obtain do not differ significantly

from the state of the art, suggesting that the LMP is a com-

petitive formulation of the Image Decomposition Problem.

To demonstrate the generality of the LMP, we apply it also

to the Mesh Decomposition Problem posed by the Princeton

benchmark [16], obtaining state-of-the-art decompositions.

1. Introduction

Formulations of the Image Decomposition Problem [8]

as a Minimum Cost Multicut Problem (MP) [17, 19] have

received considerable attention [2, 5, 6, 7, 10, 12, 13, 26,

27, 28, 31, 32, 35, 40, 41]. Advantages of this formulation

are in order: Firstly, the feasible solutions of the MP relate

one-to-one to the decompositions of a graph. In particular,

the number of components is not fixed in advance but is

determined by the solution. Secondly, the MP, unlike bal-

anced cut problems [37], does not favor one decomposition

over another by definition. Thirdly, multicut algorithms are

easy to use; they take as input a graph, e.g. the pixel grid

graph of an image, and, for every edge, a real-valued cost

(reward) of the incident nodes being in distinct components,

e.g. log 1−pe

pe
+ log 1−p∗

p∗
, for an estimated probability pe of

boundary [8] at the edge e, and a prior probability p∗ ∈ (0, 1)

∗Correspondence: andres@mpi-inf.mpg.de

of cuts. The output is a 01-labeling of the edges that well-

defines a decomposition of the graph by 0 indicating “join”

and 1 indicating “cut”.

One disadvantage is the NP-hardness of the MP [11, 18].

Despite significant progress in the design of efficient heuris-

tics [10, 12, 13, 29], instances of the MP for image segmenta-

tion have so far only been solved w.r.t. superpixel adjacency

graphs and not w.r.t. pixel grid graphs, with the sole and

notable exception of [10]. A second disadvantage results

from the fact that a multicut makes explicit only for edges

whether the incident nodes are in distinct components. It

does not make explicit for pairs of nodes that are not neigh-

bors whether these are in distinct components. Hence, the

linear objective function of the MP w.r.t. a pixel grid graph

cannot assign a cost specifically to all decompositions for

which a pair of pixels that are not neighbors are in distinct

components. This limitation, noted e.g. in [7], hampers ap-

plications as it is often hard to estimate, for an image and

a pair of neighboring pixels, whether the image is to be cut

precisely between these pixels (only these estimates are used

in the MP), and as it is sometimes easy to estimate for pixels

at larger distance whether these are in distinct components

(these estimates are not used in the MP).

An optimization problem whose feasible solutions relate

one-to-one to the decompositions of a graph and whose ob-

jective function can assign, for any pair of nodes, a cost to

all decompositions for which these nodes are in distinct com-

ponents, although desirable, has not been proposed before.

Contribution. We propose the Minimum Cost Lifted

Multicut Problem (LMP), a generalization of the MP whose

feasible solutions relate one-to-one to the decompositions of

a graph and whose objective function can assign, for any pair

of nodes, a real-valued cost (reward) to all decompositions

for which these nodes are in distinct components. We design

and implement two efficient algorighms for both the MP and

the LMP and evaluate both problem formulations in con-

junction with both algorithms for the Image Decomposition

Problem in terms of the BSDS-500 benchmark [8] and for

the Mesh Decomposition Problem in terms of the Princeton

Mesh Segmentation benchmark [16].
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2. Related Work

The MP is known as Correlation Clustering in machine

learning and theoretical computer science [11, 18]. For com-

plete graphs, which are of special interest in machine learn-

ing, the well-known MP and the proposed LMP coincide.

A generalization of the MP by a higher-order objective

function, called the Higher-Order Multicut Problem (HMP),

was proposed in [31] and is studied in detail in [27, 32].

In principle, the HMP subsumes all optimization problems

whose feasible solutions coincide with the multicuts of a

graph, including the LMP we propose. In fact, the HMP is

strictly more general than the LMP; its objective function can

assign an objective value to all decompositions for which any

set of edges is cut, unlike the objective function of the LMP

which is limited to single edges. However, the instances of

the HMP that are equivalent to the instances of the LMP we

propose have an objective function whose order is equal to

the number of edges in the graph and are hence impractical.

Thus, the HMP and LMP are complementary in practice.

Efficient algorithms (primal feasible heuristics) for the

MP are proposed and analyzed in [10, 13, 12, 29]. The

algorithms we design and implement are compared here to

the state of the art [13]. Our implementation of (an extension

of) the Kernighan-Lin Algorithm (KL) [29] is compared

here, in addition, to the implementation of KL in [4, 25].

Toward image decomposition [8], the state of the art

in boundary detection is [15, 21], followed closely by [20,

23]. Our experiments are based on [20] which is publicly

available and outperformed marginally by [15, 21]. The state

of the art in image decomposition is [9], followed closely by

[8, 23]. Our results are compared quantitatively to [9].

Toward mesh decomposition [38], the state of the art is

[24, 14, 39], followed closely by [42, 33]. Our experiments

are based on [24, 42, 33]. In prior work, methods based on

learning mostly rely on a unary term which requires com-

ponents to be labeled semantically [24, 39]. One method

based on edge probabilities was introduced previously [14].

It applies a complex post-process (contour thinning and com-

pletion, snake movement) to obtain a decomposition. We

show the first mesh decompositions based on multicuts.

3. Problem Formulation

3.1. Minimum Cost Lifted Multicut Problem

We now define an optimization problem, the Minimum

Cost Lifted Multicut Problem, whose feasible solutions re-

late one-to-one to the decompositions of a graph and whose

objective function can assign, for any pair of nodes, a cost

to all decompositions for which these nodes are in distinct

components. Here, a component of a graph is any non-empty

subgraph that is node-induced and connected. A decomposi-

tion of a graph is any partition Π of the node set such that,

for every V ′ ∈ Π, the subgraph induced by V ′ is connected

(and hence a component of the graph). An instance of the

problem is defined w.r.t.:

• A simple, undirected graph G = (V,E), e.g., the pixel

grid graph of an image or the triangle adjacency graph

of a mesh.

• Additional edges F ⊆
(

V
2

)

\ E connecting nodes that

are not neighbors in G. In practice, we choose F so

as to connect any two nodes v, w ∈ V whose distance

dvw in the graph holds 1 < dvw ≤ d∗ for a maximum

distance d∗ ∈ R
+
0 , fixed for the experiments in Sec. 5.

• For every edge vw ∈ E ∪ F , a cost cvw ∈ R assigned

to all feasible solutions for which v and w are in distinct

components. The estimation of cvw from image and

mesh data is discussed in Sections 3.3 and 5.

With respect to the above, we define a feasible set YEF ⊆
{0, 1}E∪F whose elements y ∈ YEF are 01-labelings of all

edges E ∪ F . The feasible set is defined such that two con-

ditions hold: Firstly, the feasible solutions y ∈ YEF relate

one-to-one to the decompositions of the graph G. Secondly,

for every edge vw ∈ E ∪ F , yvw = 1 if and only if v and w

are in distinct components of G. This is expressed rigorously

by two classes of constraints: The linear inequalities (2) be-

low constrain y such that {e ∈ E | ye = 1} is a multicut

of the graph G [17]. For any decomposition of a graph, the

multicut related to the decomposition is the subset of those

edges that straddle distinct components. In addition, the

linear inequalities (3) and (4) constrain y such that, for any

vw ∈ F , yvw = 0 if and only if there exists a path in G from

v to w, along which all edges are labeled 0.

Definition 1 For any simple, undirected graph G = (V,E),
any F ⊆

(

V
2

)

\ E and any c : E ∪ F → R, the 01 linear

program written below is called an instance of the Minimum

Cost Lifted Multicut Problem (LMP) w.r.t. G, F and c.

min
y∈YEF

∑

e∈E∪F

ceye (1)

with YEF ⊆ {0, 1}E∪F the set of all y ∈ {0, 1}E∪F with

∀C ∈ cycles(G) ∀e ∈ C : ye ≤
∑

e′∈C\{e}

ye′ (2)

∀vw ∈ F ∀P ∈ vw-paths(G) : yvw ≤
∑

e∈P

ye (3)

∀vw ∈ F ∀C ∈ vw-cuts(G) : 1− yvw ≤
∑

e∈C

(1− ye) (4)

3.2. Properties

We now discuss properties of the LMP (Def. 1):

For F = ∅, the LMP specializes to the MP [17, 19]. Its

feasible set YE∅ consists of the characteristic functions of
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Figure 1. Depicted in black is a Bayesian Network defining a set

of probability measures on multicuts [5]. Depicted in green is our

extension defining a set of probability measures on lifted multicuts.

all multicuts of G (which relate one-to-one to the decom-

positions of G). Its linear objective function can be chosen

so as to assign, for any edge vw ∈ E, a cost cvw ∈ R to

all decompositions of G for which the nodes v and w are in

distinct components. It cannot be chosen so as to assign, for

distinct nodes v and w that are not neighbors in G, a cost

precisely to all decompositions of G for which v and w are

in distinct components.

For F 6= ∅, the LMP is not a MP. Its feasible solutions

still relate one-to-one to the decompositions of the graph

G (because ϕ : YEF → YE∅ : y 7→ yE is a bijection). Its

objective function can be chosen so as to assign, for any

vw ∈ E ∪ F , a cost to all decompositions for which the

nodes v and w are in distinct components. Thus, the LMP

generalizes the MP. The feasible solutions y ∈ YEF are

called lifted multicuts from (V,E) to (V,E ∪ F ) and are

studied in [3].

For some instances of the LMP, notably if cF < 0 [7], its

solutions can be identified with the solutions of the instance

of the MP w.r.t. the larger graph G′ := (V,E ∪ F ) and c.

For the general LMP, this is not true. The feasible solutions

of the MP with respect to G′ and c do not relate one-to-one

to the decompositions of G, unlike the feasible solutions

of the LMP which are the characteristic functions of some

multicuts of G′, namely those that are lifted from G [3].

A cutting plane algorithm for the LMP, based on the

canonical LP-relaxation of the ILP in Def. 1, is impractical

for the instances we consider in Sec. 5: Although the in-

equalities (2)–(4) can be separated efficiently, the number of

to-be-separated inequalities (4) is prohibitive, and the facet-

defining subset of (4) is unknown [3]. Thus, we propose in

Sec. 4 two primal feasible heuristics for the LMP.

3.3. Probabilistic Model

We now define a familiy of probability measures on lifted

multicuts for which the maximally probable lifted multi-

cuts are the solutions the LMP (Def. 1). This relates the

coefficients c of the LMP to image and mesh data.

Probability measures on multicuts. Andres et al. [5]

define, with respect to a graph G = (V,E) and with respect

to the Bayesian Network depicted in Fig. 1 (in black), a

measure of the conditional probability of a y ∈ {0, 1}E ,

given the feasible set YE∅ of the characteristic functions of

all multicuts of G and given, for every edge e ∈ E, a vector

xe ∈ R
n of n ∈ N edge features. Specifically,

pY|X ,Y ∝ pY |Y ·
∏

e∈E

pYe|Xe
(5)

with pY |Y(YE∅, y) ∝

{

1 if y ∈ YE∅

0 otherwise
. (6)

They show that y maximizes pY|X ,Y if and only if it is

a solution of the instance of the MP with respect to G and

c ∈ R
E such that

∀e ∈ E : ce = log
pYe|Xe

(0, xe)

pYe|Xe
(1, xe)

. (7)

Probability measures on lifted multicuts. We extend

the Bayesian Network of Andres et al. [5] in order to incor-

porate estimated probabilities not only for edges but also for

pairs of nodes that are not neighbors.

The extension is depicted in Fig. 1 (in green). It contains

one additional random variable Yf for every f ∈ F . The

conditional probability measures pY|X ,Y consistent with the

extended Bayesian Network have the form

pY|X ,Y ∝ pY |Y ·
∏

e∈E

pYe|Xe
·
∏

f∈F

pYf |XE
. (8)

A realization of all random variables Y is a 01-labeling

y ∈ {0, 1}E∪F of all edges vw ∈ E ∪ F . In order to

constrain it to the characteristic functions of lifted multicuts,

we consider (6) with YEF instead of YE∅.

Probabilistic Geodesic Lifting. Estimating, for edges

vw = e ∈ E, the probability pYe|Xe
of the nodes v and w

being in distinct components, given features xe defined by

image and mesh data, is the classical problem of boundary

estimation [8]. In our experiments described in Sec. 5, we

build on recent work [20, 24, 33, 42] in this field.

Estimating, for pairs vw = f ∈ F of nodes v and w that

are not neighbors, the probability pYf |XE
of v and w being

in distinct components is a much harder problem: As these

nodes could be connected by any path in G, this probability

depends on the features xE of all edges. In our experiments,

we define, for all vw = f ∈ F :

pYf |XE
(0, xE) := max

P∈vw-paths(G)

∏

e∈P

pYe|Xe
(0, xe) . (9)

On the one hand, this under-estimates the probability as

only one path is considered. On the other hand, it is the

largerst such under-estimate as a maximally probable such

path is considerd. Note also that − log pYf |XE
(0, xE) can

be computed efficiently using, e.g., Dijkstra’s algorithm.
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Algorithm 1: Greedy Additive Edge Contraction (GAEC)

1 while E 6= ∅ do

2 ab := argmax
a′b′∈E

χa′b′

3 if χab < 0 then

4 break

5 contract ab in G and G′

6 foreach ab 6= ab′ ∈ E ′ do

7 χab′ := χab′ + χbb′

4. Efficient Algorithms

We now introduce two efficient algorithms (primal feasi-

ble heuristics) which are applicable to the LMP (Def. 1) and

the MP (the special case of the LMP for F = ∅).

Alg. 1 is an adaptation of greedy agglomeration, more

specifically, greedy additive edge contraction. It takes as

input an instance of the LMP defined by G = (V,E), F
and c (Def. 1) and constructs as output a decomposition of

the graph G. Alg. 2 is an extension of the Kernighan-Lin

Algorithm [29]. It takes as input an instance of the LMP

and an initial decomposition of G and constructs as output a

decomposition of G whose lifted multicut has an objective

value lower than or equal to that of the initial decomposition.

Both algorithms maintain a decomposition of G, represented

by graph G = (V, E) whose nodes a ∈ V are components

of G and whose edges ab ∈ E connect any components a

and b of G which are neighbors in G. Objective values are

computed w.r.t. the larger graph G′ = (V,E ∪ F ) and c.

4.1. Greedy Additive Edge Contraction

Overview. Alg. 1 starts from the decomposition into

single nodes. In every iteration, a pair of neighboring com-

ponents is joined for which the join decreases the objective

value maximally. If no join strictly decreases the objective

value, the algorithm terminates.

Implementation. Our implementation [1] uses ordered

adjacency lists for the graph G and for a graph G′ = (V, E ′)
whose edges ab ∈ E ′ connect any components a and b of

G for which there is an edge vw ∈ E ∪ F with v ∈ a and

w ∈ b. It uses a disjoint set data structure for the partition

of V and a priority queue for an ordered sequence of costs

χ : E → R of feasible joins. Its worst-case time complexity

O(|V |2 log |V |) is due to a sequence of at most |V | con-

tractions, in each of which at most deg G′ ≤ |V | edges are

removed, each in time O(log deg G′) ∈ O(log |V |).

4.2. KernighanLin Algorithm with Joins

Overview. Alg. 2 starts from an initial decomposition

provided as input. In each iteration, an attempt is made to

improve the current decomposition by one of the following

transformations: 1. moving nodes between two neighboring

Algorithm 2: Kernighan-Lin Algorithm with Joins (KLj)

1 repeat

2 foreach ab ∈ E do

3 if has changed(a) or has changed(b) then

4 update bipartition(G, a, b)

5 foreach a ∈ V do

6 if has changed(a) then

7 repeat

8 update bipartition(G, a, ∅)

9 until no changes

10 until no changes

components, 2. moving nodes from one component to an ad-

ditional, newly introduced component, 3. joining two neigh-

boring components. The main operation “update bipartition”

is described below. It takes as input the current decompo-

sition and a pair ab ∈ E of neighboring components of G

and assesses Transformations 1 and 3 for this pair. Transfor-

mations 2 are assessed by executing “update bipartition” for

each component and ∅.

The operation “update bipartition” constructs a sequence

of elementary transformations of the components a and b

and a k ∈ N0 such that the first k elementary transformations

in the sequence, carried out in order, descrease the objective

value maximally. Each elementary transformation consists

in either moving a node currently in the component a which

currently has a neighbor in the component b from a to b,

or in moving a node currently in the component b which

currently has a neighbor in the component a from b to a.

The sequence of elementary transformations is constructed

greedily, always choosing one elementary transformation

that decreases the objective function maximally. If either the

first k elementary transformations together or a complete join

of the components a and b strictly decreases the objective

value, an optimal among these operations is carried out.

Implementation. Our implementation [1] of Alg. 2 tags

components that are updated in order to avoid that a pair of

components that is fixed under “update bipartition” is pro-

cessed more than once. In the operation “update bipartition”,

we maintain the set Ω ⊆ E of edges of G that straddle the

components a and b. A substantial complication in the case

of an LMP (F 6= ∅) arises from the fact that moving a node

v ∈ V from a component a ⊆ V to a neighboring com-

ponent b ⊆ V might leave the set a \ {v} disconnected.

Keeping track of these cut-vertices by the Hopcroft-Tarjan

Algorithm [22] turned out to be impractical due to excessive

absolute runtime. Our implementation allows for elemen-

tary transformations that leave components disconnected;

we even compute the difference to the objective value in-

correctly in such a case while constructing the sequence of

elementary transformations. However, the first k elementary
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transformations are carried out only if the correct differ-

ence to the objective value (computed after the construc-

tion of the entire sequence) is optimal. Our implementation

of “update bipartition” has the worst-case time complexity

O(|a ∪ b|(|Ω|+ degG′)). The number of outer iterations of

Alg. 2 is not bounded here by a polynomial but is typically

small (less than 20 for all experiments in Sec. 5).

5. Experiments

5.1. Image Decomposition

We now apply both formulations of the graph decompo-

sition problem, the Minimum Cost Multicut Problem (MP)

[17] and the Minimum Cost Lifted Multicut Problem (LMP)

defined in Sec. 3, in conjunction with both algorithms de-

fined in Sec. 4, GAEC and KLj, to the Image Decomposition

Problem posed by the BSDS-500 benchmark [8].

For every test image, we define instances of the MP and

the LMP as descibed in Sec. 3. For each of these, we com-

pute a feasible solution, firstly, by greedy additive edge

contraction (GAEC, Alg. 1) and, secondly, by applying the

extended Kernighan-Lin Algorithm (KLj, Alg. 2) to the out-

put of GAEC. All decompositions obtained in this way are

compared to the man-made decompositions in the BSDS-

500 benchmark in terms of boundary precision and recall

(BPR) [8] and variation of information (VI) [34]. The VI is

split into a distance due to false joins, plus a distances due to

false cuts, as in [30]. Statistics for the entire BSDS-500 test

set are shown in Tab. 1 and Fig. 2 and are discussed below,

after a specification of the experimental setup.

Setup. For every image, instances of the MP are defined

w.r.t.: 1. the pixel grid graph of the image, 2. for every

edge in this graph, i.e., for every pair of pixels that are 4-

neighbors, the probability estimated in [20] of these pixels

being in distinct components, 3. a prior probability p∗ of

neighboring pixels being in distinct components. We vary

p∗ ∈ {0.05, 0.10, . . . , 0.95}, constructing one instance of

the MP for every image and every p∗. For each of these

instance of the MP, three instances of the LMP are defined

by Probabilistic Geodesic Lifting (Sec. 3.3), one for each

d∗ ∈ {5, 10, 20}. Each experiment described in this section

is conducted using one Intel Xeon CPU E5-2680 operating

at 2.70 GHz (no parallelization).

Results. It can be seen form Fig. 2 that the algorithms

GAEC and KLj defined in Sec. 4 terminate in a time in the

order of 103 seconds for every instance of the MP and LMP

we define, more than an order of magnitude faster than the

state of the art [13]. Note that we do use the most efficient

algorithm of [13] which exploits the planarity of the pixel

grid graph. A more detailed comparison of KLj with CGC

[13] and the implementation of KL in [4, 25] in terms of

objective value and runtime is depicted in Fig. 3. It can be

seen from this figure that our implementation of KLj is faster

Boundary Volume

F-measure Covering RI VI [34]

gPb-owt-ucm [8] 0.73 0.59 0.83 1.69

SE+MS+SH[20]+ucm 0.73 0.59 0.83 1.71

SE+multi+ucm [9] 0.75 0.61 0.83 1.57

SE+MP GAEC 0.71 0.50 0.80 2.36

SE+MP GAEC-KLj 0.71 0.50 0.80 2.36

SE+MP 1-KLj 0.71 0.49 0.80 2.41

SE+MP GAEC-CGC 0.71 0.50 0.80 2.23

SE+LMP10 GAEC 0.71 0.51 0.80 2.33

SE+LMP10 GAEC-KLj 0.73 0.58 0.82 1.76

SE+LMP10 1-KLj 0.73 0.58 0.82 1.76

SE+LMP20 GAEC 0.71 0.52 0.80 2.22

SE+LMP20 GAEC-KLj 0.73 0.58 0.82 1.74

SE+LMP20 1-KLj 0.73 0.57 0.82 1.75

Table 1. Written above are boundary and volume metrics measuring

the distance between the man-made decompositions of the BSDS-

500 benchmark [8] and the decompositions defined by multicuts

(MP), lifted multicuts (LMP) and top-performing competing meth-

ods [8, 9, 20]. Parameters are fixed for the entire data set (ODS).

than the implementation in [4, 25] also by more than an

order of magnitude. This improvement in runtime facilitates

our study of the MP and LMP with respect to the pixel grid

graphs of the images in the BSDS-500 benchmark.

It can also be seen from Fig. 2 that feasible solutions of the

MP found by GAEC are not improved significantly by either

of the local search heuristics KLj or CGC [13]. Compared to

the man-made decompositions in the benchmark in terms of

BPR and VI, feasbile solutions of the MP found by GAEC,

improved by either CGC or KLj, are significantly worse than

the state of the art [9] for this benchmark (Tab. 1).

In contrast, feasible solutions of the LMP found by GAEC

are improved effectively and efficiently by KLj. CGC is not

practical for the larger, non-planar graphs of the instances of

the LMP we define; the absolute runtime exceeds 48 hours

for every image and p∗ = 0.5. Compared to the man-made

decompositions in the benchmark, feasible solutions of the

LMP found by GAEC and improved by KLj are not signifi-

cantly worse than the state of the art [9] for this benchmark.

The effect of changing p∗ is shown for the average over all

test images in Fig. 2 and for one image in particular in Fig. 4.

The best decompositions for this image as well as for all

images on average are obtained for p∗ = 0.5. The effect of

changing d∗ is shown for the average over all test images

in Fig. 3 (on the left). It can be seen from this figure that

increasing d∗ from 5 to 10 improves results while further

increasing d∗ to 20 does not change results noticably.

5.2. Mesh Decomposition

We now apply our formulations and algorithms without

any changes to the Mesh Segmentation Problem [16]. For

the LMP and Alg. 2, we obtain state-of-the-art results.
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Figure 2. Depicted above is an assessment of the Multicut Problem (MP) and the Lifted Multicut Problem with d∗ = 20 (LMP20) in

conjunction with Alg. 1 (GAEC) and Alg. 2 (KLj), in an application to the image decomposition problem posed by the BSDS-500 benchmark

[8]. Every point in the figures above shows, for one problem and algorithm, the average over all test images in the benchmark. Depicted are,

on the left, the variation of information (VI), split additively into a distance due to false cuts and a distance due to false joins, in the middle,

the accuracy of boundary detection, split into recall and precision and, on the right, the absolute runtime. The state of the art SE+multi+ucm

[9] and SE+MS+SH[20]+ucm are depicted as solid/dashed gray lines. Error bars depict the 0.25 and 0.75-quantile.
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Figure 3. Depicted on the left is the effect of the lifting distance d∗. It can be seen that increasing d∗ from 5 to 10 improves the quality

of image decompositions as measured by the VI; further increasing d∗ to 20 does not result in a measurable improvement. In the middle,

a comparison of Alg. 2 (KLj) with CGC [13] and the implementation of the Kernighan-Lin Algorithm in [4, 25] (KL) is given. Every

point corresponds to one instance of the MP (p∗ = 0.5) defined w.r.t. one test image in the BSDS-500 benchmark [8]. All algorithms are

initialized here with the output of Alg. 1 (GAEC) for this instance. On the right, analogous results are shown for all algorithms initialized

with a decomposition of the pixel grid into tiles of 30 · 30 pixels. It can be seen that KLj strikes a favorable balance between objective value

and runtime.
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p∗ = 0.3 p∗ = 0.4 p∗ = 0.5 p∗ = 0.6 p∗ = 0.7
Figure 4. Depicted above is a comparison of decompositions defined by feasible solutions of the MP (top row for, the optimal p∗ = 0.8),
with decompositions defined by feasible solutions of the LMP (middle row, for the optimal p∗ = 0.5 and d∗ = 20). All solutions are found

by Alg. 2 (KLj), initialized with the output of Alg. 1 (GAEC). The decompositions defined by feasible solutions of the MP have closed

contours but consist of tiny components on or near the boundary of desired components. This problem is overcome by feasible solutions of

the LMP due to the long-range terms in the objective function. Depicted in the bottom row is the effect of the prior probability p∗ which

establishes a trade-off between over- and under-segmentation, reasonable in particular at p∗ = 0.5.

[42] [33] [24] MP LMP70 LMPopt

RI RI RI VI RI VI RI VI RI VI

Human 0.89 0.88 0.88 1.43 0.21 2.93 0.86 1.62 0.87 1.79

Cup 0.80 0.79 0.90 0.35 0.74 0.68 0.89 0.39 0.90 0.39

Glasses 0.91 0.90 0.86 0.68 0.35 1.83 0.84 0.76 0.90 0.68

Airplane 0.89 0.87 0.92 0.67 0.69 1.39 0.92 0.82 0.92 0.83

Ant 0.98 0.96 0.98 0.37 0.93 0.67 0.98 0.42 0.98 0.42

Chair 0.89 0.88 0.95 0.43 0.79 0.98 0.93 0.55 0.93 0.55

Octopus 0.98 0.96 0.98 0.29 0.86 0.80 0.98 0.35 0.98 0.33

Table 0.90 0.94 0.94 0.28 0.76 0.81 0.94 0.28 0.94 0.29

Teddy 0.97 0.95 0.97 0.37 0.69 1.37 0.96 0.51 0.96 0.50

Hand 0.92 0.89 0.90 0.85 0.29 2.36 0.83 1.26 0.85 1.32

Plier 0.91 0.93 0.95 0.57 0.25 2.14 0.91 0.88 0.93 0.84

Fish 0.70 0.76 0.87 0.70 0.64 1.27 0.80 1.09 0.80 1.09

Bird 0.91 0.90 0.91 0.73 0.67 1.36 0.93 0.88 0.93 0.99

Armadillo 0.91 0.89 0.93 1.11 0.21 3.27 0.92 1.60 0.92 1.48

Bust 0.75 0.76 0.76 1.35 0.42 1.67 0.69 2.25 0.69 2.25

Mech 0.87 0.88 0.89 0.46 0.78 0.69 0.84 0.59 0.84 0.59

Bearing 0.83 0.82 0.91 0.45 0.87 0.60 0.84 0.69 0.84 0.69

Vase 0.88 0.83 0.85 0.75 0.55 1.34 0.83 0.90 0.84 0.87

FourLeg 0.86 0.82 0.86 1.34 0.30 2.58 0.84 1.84 0.84 1.72

Average 0.88 0.87 0.91 0.69 0.58 1.51 0.88 0.93 0.89 0.93

Table 2. Written above are boundary and volume metrics measuring

the distance between the man-made decompositions of meshes in

the Princeton Benchmark and the decompositions defined by multi-

cuts (MP), lifted multicuts (LMP) and top-performing competing

methods [42, 33, 24]. The evaluation is for a fixed parameter set for

the entire database (p∗ = 0.55, d∗ = 70: LMP70) as well as for

the best parameter set we found for each class of meshes (LMPopt).

Results for the MP are for the optimal p∗ = 0.9.

Setup. The Princeton Segmentation Benchmark [16]

consists of 19 classes, ranging from humans to man-made

objects, each containing 20 meshes. Manual segmentations

Figure 5. Depicted above is the effect of varying the prior proba-

bility p∗ of adjacent triangles being in distinct components. Here,

p∗ ∈ {0.5, 0.55, 0.58, 0.6, 0.62}, from left to right.

of these meshes provide us with a ground truth for evaluation

and supervised learning. We compute informative features

known to provide good results in previous work [24, 14, 39]:

curvatures (minimum, maximum, Gaussian and mean) com-

puted at two different scales, shape diameter [36] and dihe-

dral angle. Except the dihedral angle, which is computed for

each edge, the curvatures and shape diameter are computed

for each vertex of the mesh. To derive each of these criteria

for an edge, we consider (1) its mean value over the two ver-

tices of the edge, (2) its difference between the two vertices

at each side of the edge and (3) the difference between its

mean values computed on 1-ring neighborhoods at each side

of the edge. This last combination provides additional robust-

ness and multi-resolution behavior. This way, we obtain a

28-dimensional vector, which is more compact and efficient

than the hundreds of features used in prior work [24, 39].
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Figure 6. Depicted above is a sample of decompositions of images and meshes found by solving an instance of the Lifted Multicut Problem

(LMP) using Alg. 2. Included are some cases where this approach fails.

Probabilities of edges being cut are learned from the ground

truth using a Random Forest classifier, through a leave-one-

out experiment similarly to previous work [24, 39]. We apply

Alg. 2 on the dual graph of the mesh (one node per triangle),

varying the prior probabilities p∗ of neighboring triangles

being in distinct components, and d∗ ∈ {60, 70, 80, 100}.

Results. An evaluation in terms of Rand’s index (RI) and

the VI is shown in Tab. 2. The results are slightly better

than [42, 33] and close to those of [24]. However, Kaloger-

akis et al. [24] require a semantic labeling of the ground-

truth, while our multicut formulation only requires boundary

information. The median computation time per model is

resp. 51 seconds for the lifting and 59 seconds for Alg. 2 on

an Intel i7 Pentium laptop computer operating at 2.20 GHz.

Graphs have a median of 18000 nodes and 27000 edges. A

sample of our results is shown in Fig. 6. Varying the prior

probability p∗ of cuts allows for controlling the amount of

over or under-segmentation, as shown in Fig. 5.

6. Conclusion

We have introduced a generalization of the Minimum

Cost Multicut Problem (MP), the Minimum Cost Lifted Mul-

ticut Problem (LMP), which overcomes limitations of the

MP in applications to image and mesh segmentation. We

have defined and implemented two efficient algortihms (pri-

mal feasible heuristics) applicable to the MP and the LMP.

We have assessed both algorithms in conjunction with both

optimization problems in applications to image decomposi-

tion (BSDS-500 benchmark [8]) and mesh decomposition

(Princeton benchmark [16]). In both applications, we have

found solutions that do not differ significantly from the state

of the art. This suggests that the LMP is a useful formulation

of graph decomposition problems in vision.
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