
Dense Continuous-Time Tracking and Mapping

with Rolling Shutter RGB-D Cameras

Christian Kerl, Jörg Stückler, and Daniel Cremers

Technische Universität München

{kerl,stueckle,cremers}@in.tum.de

Abstract

We propose a dense continuous-time tracking and map-

ping method for RGB-D cameras. We parametrize the

camera trajectory using continuous B-splines and optimize

the trajectory through dense, direct image alignment. Our

method also directly models rolling shutter in both RGB and

depth images within the optimization, which improves track-

ing and reconstruction quality for low-cost CMOS sensors.

Using a continuous trajectory representation has a num-

ber of advantages over a discrete-time representation (e.g.

camera poses at the frame interval). With splines, less vari-

ables need to be optimized than with a discrete represen-

tation, since the trajectory can be represented with fewer

control points than frames. Splines also naturally include

smoothness constraints on derivatives of the trajectory es-

timate. Finally, the continuous trajectory representation al-

lows to compensate for rolling shutter effects, since a pose

estimate is available at any exposure time of an image. Our

approach demonstrates superior quality in tracking and re-

construction compared to approaches with discrete-time or

global shutter assumptions.

1. Introduction

Most current approaches to simultaneous localization

and mapping (SLAM) with RGB-D cameras estimate the

trajectory at discrete times, e.g. one pose for each frame [2,

6, 10]. Implicitly, the discrete pose of a frame needs to ap-

ply to all pixels in the image—an assumption that is clearly

violated for rolling shutter cameras. In effect, the alignment

of two images is biased towards a wrong estimate for such

cameras. Since most consumer-grade RGB-D cameras use

rolling shutter CMOS sensors, the use of a trajectory rep-

resentation is desirable that can provide a camera pose esti-

mate for each sensor row individually and allows for com-

pensating for rolling shutter.

In this paper, we propose to optimize a continuous-time

trajectory representation in the form of B-splines through

direct, dense image alignment. This way, our approach can

Figure 1: We propose a dense tracking and mapping method to

estimate a continuous-time trajectory from a sequence of rolling

shutter RGB-D images. Our approach significantly reduces tra-

jectory drift leading to more consistent 3D reconstructions (top)

compared to a state-of-the-art algorithm which estimate discrete

camera poses w.r.t. to keyframes (bottom). Neither method in-

volves global optimization.

incorporate parameters of sensor exposure such as exposure

durations and time differences of the RGB and depth sensor.

The trajectory can be represented with much less parame-

ters, i.e. control points, than pose variables per frame. The

spline parametrization also inherently adds constraints on

derivatives and produces smooth trajectories. Hence, it reg-

ularizes the ill-posed problem of estimating the camera pose

for each image row. A further advantage of the spline repre-

sentation is the easy integration of other sensing modalities

such as inertial measurement units (IMU). These sensors

can have arbitrarily lower or higher measurement rates than

the camera and do not need to measure synchronously with

the frames.

12264



By explicitly modeling rolling shutter in direct image

alignment, our method achieves improvements in tracking

and reconstruction quality. In our SLAM method, we use

the continuous trajectory estimate to fuse RGB-D frames

consistently in keyframes over time and remove rolling

shutter effects. We also accurately quantify motion blur

at each pixel, and use this measure to improve the quality

of the color reconstruction. We compare our method with

approaches estimating discrete camera poses or relying on

global shutter assumptions, and demonstrate superior per-

formance for tracking and reconstruction towards the state-

of-the-art. Figure 1 shows a 3D reconstruction of our pro-

posed method (top) in comparison to a baseline algorithm

(bottom). The better performance of our method leads to a

consistent 3D model even without global optimization.

2. Related Work

Visual SLAM and structure from motion (SfM) has

been traditionally formulated with discrete-time trajecto-

ries [2, 6, 10]. Recently, Furgale et al. [3] proposed a

continuous-time spline-based trajectory representation for

keypoint-based monocular and stereo SLAM. They explore

continuous trajectories for the main purposes of reduc-

ing the state-space and for seamlessly integrating high-rate

IMU measurements. Lovegrove et al. [9] formulate monoc-

ular SLAM in a compositional spline representation in the

se(3) Lie algebra, overcoming problems of the Cayley-

Gibbs-Rodrigues representation of poses used in [3]. Their

approach compensates for rolling shutter, however, in con-

trast to our dense method, sparse keypoints are matched be-

tween images. They demonstrate SLAM in a small-scale

calibration example and on a synthetic sequence.

Several approaches correct for rolling shutter in monoc-

ular, stereo, or RGB-D images. Klein and Murray [8] esti-

mate camera motion in a monocular image from the move-

ment of keypoints between frames and use this motion to

determine a rolling-shutter compensated image. Baker et

al. [1] estimate translational pixel motion in a frame from

optical flow. The approach in [15] estimates a linear inter-

polation spline of rotational camera motion from KLT fea-

ture tracks in a short window of frames. A similar approach

for modeling rolling shutter is used in the bundle adjustment

approach in [5]. Here, the pose of the top row of each im-

age is estimated and interpolated linearly between frames.

For RGB-D cameras, only a few approaches exist. Ringaby

et al. [14] remove rolling shutter in the depth image of a

structured light sensor by applying the keypoint-based cor-

rection method [15] to the infrared image. In [13], a 3-axis

gyro is used to determine the rotation of the camera instead.

Meilland et al. [11] assume the camera velocity to be linear

during the exposure of a frame and determine the motion

through direct image alignment.

Our method introduces a generalized continuous-time

spline-based trajectory representation to consider rolling

shutter for direct RGB-D image alignment and SLAM. We

model rolling shutter in both the RGB and depth image. We

also propose to fuse the rolling shutter corrected RGB-D

images in keyframes and reduce the effects of motion blur

based on the motion estimate of individual pixels.

3. Approach

The RGB-D camera provides us with a sequence of RGB

and depth images in the time interval [tmin, tmax). Our goal

is to estimate a trajectory function T (t) : R → SE(3) ∀ t ∈
[tmin, tmax) from the image sequence using dense image

alignment.

An RGB image will be denoted by C : ΩC → R
3, the

derived intensity image by I : ΩI → R and a depth image

by Z : ΩZ → R. The corresponding timestamps are tC , tI
and tZ . We do not require the timestamps of an RGB-D im-

age pair to be synchronized. For simplicity we assume that

all image domains have the same dimensions with width w
and height h.

3.1. Camera Model

We model the RGB and depth cameras as rolling shutter

cameras with pinhole projection including radial and tan-

gential lens distortion. We assume the intrinsic and extrinsic

parameters of both cameras to be known. The focal length

will be denoted by f and the offset of the projection center

by ox along the image x-axis and oy for the y-axis respec-

tively. The relative transformation between RGB and depth

camera is Tcam. For clarity of presentation we omit the lens

distortion in the projection equation.

The projection function π mapping a 3D point p =
(X,Y, Z)T to a 2D pixel x = (x, y)T is defined as:

x = π(p) =

(
X

Z
f + ox,

Y

Z
f + oy

)
. (1)

The inverse projection function π-1 reconstructs a 3D

point given a pixel location x and a depth image Z:

p = π-1(x,Z(x)) =

(
x− ox

f
,
y − oy

f
, 1

)T

Z(x). (2)

For a rolling shutter camera the pose which transforms

a world point into the camera frame depends on the pixel

location the point projects to. This can be formalized as the

following constraint:

tr/h [π(T
-1(t0 + tx)p)]y

!
= tx (3)

where t0 is the time of the first row, tr is the read out time of

the camera, and h is the number of rows. The read out time

specifies the time difference between the capture of the first

and the last row. Here we assume that the camera reads the

image row-wise. To project a point with arbitrary T (t) we

solve (3) for tx using the Newton-Raphson method.

2265



3.2. Trajectory Representation

We use the cumulative cubic B-spline representation in-

troduced by Lovegrove et al. [9] for the trajectory function

T (t). Here we briefly repeat the definition of T (t). For a

detailed derivation and formulas for the time derivatives we

refer the interested reader to [9].

The trajectory is defined over a time interval [tmin, tmax).
The shape of the trajectory is determined by the set TC of

m control points TC,l ∈ SE(3) placed at discrete times

(knots) t0 . . . tl . . . tm−1 in the time interval. The knots are

uniformly distributed in the interval. Each of these knot

intervals is ∆t wide. In our case we use ∆t = 0.05 s.

Every point on the trajectory is influenced by four con-

trol points. At time t these are the control points at times

{tl−1, tl, tl+1, tl+2} if t ∈ [tl, tl+1). Then the pose at t is:

T (t) = TC,l−1

3∏

k=1

exp(Bj(u)Ωl−1+k) (4)

with Ωl = log(T -1
C,l−1 TC,l) ∈ se(3). u = (t− tl)/∆t nor-

malizes t to the interval [0, 1). The cumulative basis func-

tions B(u) are:

B(u) =
1

6




6 0 0 0
5 3 −3 1
1 3 3 −2
0 0 0 1







1
u
u2

u3


 . (5)

Bk(u) selects the k-th element from B(u) with indices

starting at 0. A pose T (t) transforms a point from local

coordinates to world coordinates.

Equipped with the rolling shutter camera model and the

continuous-time trajectory representation we define in the

next sections the dense image alignment terms, which we

use to estimate the control points of the spline.

3.3. Dense Image Alignment

To estimate the trajectory function T (t) we use a dense,

direct image alignment method, because they are more ro-

bust in scenes with little features and on blurred images. In

general, direct image alignment methods estimate the mo-

tion parameters to align a given current image to a reference

image or model. Iteratively we take a set of points from

the reference image, apply a warping function to transfer

these points to the current image, where we evaluate an er-

ror function measuring consistency between the two, finally

the motion parameters are adjusted to increase consistency.

In this process the data association between reference and

current image is solved implicitly, which is in contrast to

feature based methods. In our case the warping function is

the composition of back projection, rigid body motion and

projection.

For rolling shutter cameras the parameters of the warp-

ing function depend on its result as previously described.

Therefore, the warping involves for general rigid body mo-

tions and projection functions itself an iterative optimiza-

tion, which increases the computational load. Especially for

direct, dense methods, because they have to apply the warp-

ing function to a large number of points. Therefore, previ-

ous approaches resort to linear motion approximations. In

contrast, we present a dense image alignment term, which

does not require the projection into a rolling shutter image,

and as alternative an efficient strategy to project even with

our more general trajectory representation.

We use a geometric and a photometric error term in the

image alignment. In the following we describe both error

terms.

Geometric Error For the geometric error we take advan-

tage of the fact that the roles of reference and current image

can be swapped, i.e., points from the current depth image

can be warped to the reference image. For the current depth

image we know the capture time for every row and can eval-

uate the trajectory function at the appropriate point in time.

The geometric error for one point is given by

rZ,i,j =Zref(π(T
-1(tZ,ref + tx)p

′
j))−

[T -1(tZ,ref + tx)p
′
j ]Z (6)

where p′
j = T (tZ,i +

tr/h [xj ]y)π
-1(xj ,Zi(xj)) is the

point from the i-th image transformed into the world frame.

[·]Z selects the Z component of the point. The time off-

set tx is either 0, if the reference image is rectified, or it is

determined by solving (3). Here, rectified means that we

removed the rolling shutter effects from the image and a

global shutter projection model applies. Note, if we have

rectified the reference image, we can solve the alignment

problem based on the geometric error without the need to

project into a rolling shutter image. This insight is equally

applicable to ICP-like error functions.

Photometric Error We define the photometric error for

a point visible in the reference intensity image Iref and the

i-th intensity image Ii as:

rI,i,j =Ii(π(Tcam T -1(tI,i + ti,x)p
′
j))−

Iref(π(Tcam T -1(tI,ref + tref,x)p
′
j)) (7)

where p′
j = T (tZ,ref+

tr/h [xj ]y)π
-1(xj ,Zref(xj)) is a 3D

point from the reference depth image transformed into the

world frame. The time offsets ti,x and tref,x are determined

by solving (3). In case the depth reference image is rectified

and has a registered intensity image (7) can be simplified.

Registered means that we determined the intensity of every

3D point in the reference depth image beforehand. Basi-

cally, this can be done by evaluating the second part of (7).

2266



However, it requires an estimate of T (t) during the frame

interval of Iref. The simplified error term is:

rI,i,j = Ii(π(Tcam T -1(tI,i + tcur,x)p
′
j))− Iref(xj) (8)

with p′
j = T (tZ,ref)π

-1(xj ,Zref(xj)). In this case it is

equivalent to the photometric error described by Meilland et

al. [11] except for our more general trajectory function. In

the following we will only use the simplified version (8) of

the photometric error assuming we have a rectified and reg-

istered reference image. In Section 3.6 we give additional

details about frame rectification and registration.

3.4. Non­linear Trajectory Optimization

With the point-wise photometric and geometric errors

defined in the previous section we formulate an error func-

tion over a whole image, which we minimize with respect to

the spline control points parameterizing our trajectory (c.f .

Section 3.2). Every error term depends on multiple con-

trol points. Therefore, multiple images constrain the same

control points and require us to minimize the error function

jointly over multiple images. This joint optimization is in

contrast to all previous dense, direct image alignment meth-

ods, which only optimize the relative transformation of the

most recent image to some reference image and ignore the

temporal relationship of the images.

Given a rectified and registered reference RGB-D image

and a set of N rolling shutter RGB and depth images we

define the joint photometric error as:

rI =

N∑

i

Mi∑

j

wI,i,jr
2
I,i,j (9)

where Mi is the number of points visible in image Ii and

rI,i,j is the photometric error for one point as defined in (8).

Similarly, we define the joint geometric error for these

N images as:

rZ =

N∑

i

Mi∑

j

wZ,i,jr
2
Z,i,j (10)

with Mi being the number of points in the i-th depth image,

which project into the reference image.

We also include a per residual weight in the joint er-

rors wI,i,j = w(rI,i,j) for (9) and wZ,i,j = w(rZ,i,j) for

(10). The weight function w(r) is derived from the Student

t-distribution [7]:

w(r) =
ν + 1

ν + (r/σ)2
(11)

where ν are the degrees of freedom (fixed to ν = 5) and

scale parameter σ. We estimate 2N scale parameters σ.

One for the photometric and one for the geometric errors of

each of the N images.

When we align two images only the relative pose is ob-

servable. However, with our trajectory representation we

optimize the poses w.r.t. the world frame. Therefore, we fix

the control points defining the pose of the rectified reference

image T (tZ,ref). With one pose fixed every point-wise er-

ror influences four control points. As the capture interval of

one image [t0, t0 + tr) might span multiple knot intervals

of the spline, one image influences four or more spline con-

trol points. Let T̃C ⊂ TC denote the set of control points

influenced by the N images excluding the fixed ones of the

reference pose. Then we define our joint trajectory opti-

mization problem for the set of optimal control point poses

T̃ ∗
C as:

T̃ ∗
C = argmin

T̃C

rI + rZ (12)

This is a non-linear weighted least squares problem, which

we solve iteratively using the Gauss-Newton method. The

error function is linearized with respect to small increments

∆TC to the control points. The increments are represented

using the Lie algebra se(3). In every iteration we solve the

normal equations A∆TC = −b. The Hessian matrix A

has a band diagonal structure. Every point-wise error con-

tributes a dense 24 × 24 block to A. In Section 3.7 we

provide details how to efficiently compute the Jacobians to

construct the normal equations.

As common in dense image alignment we use a coarse-

to-fine scheme to increase the convergence radius. The opti-

mization for T̃ ∗
C starts with a low resolution version of each

of the N images and sequentially increases the resolution as

the affected control points converge. To choose the appro-

priate resolution for an image we use the following strategy.

We associate with every control point TC,l an image reso-

lution. Furthermore, we keep track of the magnitude of the

increments to the control point. Once this magnitude falls

below a threshold or after a maximum number of iterations

we increase the resolution associated with the control point.

We choose the lowest resolution among all affected con-

trol points per image. When control points converge on the

highest resolution they are excluded from further optimiza-

tion.

3.5. Online Trajectory Estimation

We apply our optimization strategy in an online system

where new RGB and depth images become available in-

crementally. In our system we choose certain frames as

keyframes. The latest keyframe serves as reference image in

the direct image alignment. Previous keyframes are merely

kept for visualization purposes. For a new image the spline

is expanded by adding new knots such that the capture in-

terval [t0, t0 + tr) of the new frame lies entirely inside the

trajectory interval [tmin, tmax). We initialize the new control

points simply with the value of the last control point. Opti-

mization for the new image starts on the lowest resolution.

2267



Furthermore, we can remove old frames from the optimiza-

tion for which all control points converged. We fuse these

converged frames into the latest keyframe as described in

the next section. For the online estimation we choose the

image resolution only once before the non-linear optimiza-

tion and keep it fixed during the iterations.

At some point, the latest image will have too little over-

lap with the keyframe to reliably estimate the pose. There-

fore, we have to choose a new one. The simplest strategy

is to choose the last converged frame as new keyframe. An

alternative is to choose the last frame and initially only use

the geometric error term with rolling shutter reference. Af-

ter the control points of this new keyframe converge it can

be rectified and the photometric and geometric term can be

used. This more involved approach helps to keep track dur-

ing camera motions with fast viewpoint changes. Further-

more, this strategy allows to bootstrap the system, because

the geometric term does not require a rectified reference.

We always propagate the depth and RGB values from the

last keyframe to the new, rectified keyframe. Therefore, we

loose all information about the scene, which is not repre-

sented in the new keyframe, rendering our trajectory esti-

mation an odometry method. Alternatively, if a consistent

model of the scene is available, e.g., as signed distance func-

tion volume [12] or a set of keyframes [10], the reference

frames can be synthesized from this model.

3.6. Frame Rectification and Fusion

Once all control points for an RGB-D frame converged,

we rectify the frame and fuse it into the keyframe. To fuse

the depth image, we first warp it to the keyframe using the

GPU-based technique described by Meilland et al. [10]. To

correct for the rolling shutter distortion we use a different

transformation per row, which we obtain by evaluating T (t)
at the corresponding timestamps. Afterwards, we update for

each pixel in the keyframe the weighted average of the depth

value. The weights take the distance based uncertainty of

the depth values into account. The forward warping has the

benefit, that we can fill pixels with missing data.

For the fusion of the RGB images we warp every point

of the keyframe into the RGB image, taking the rolling

shutter constraint into account, and lookup the new RGB

measurement. In practice, we also handle self occlusions

of those points. All RGB measurements for a point in the

keyframe are combined using a moving average. We pro-

pose to use the following weighting function for the RGB

measurements, which models the amount of motion blur:

wC,i(p) = exp

(
−
‖xt − xt−te‖

σ2

)
(13)

where xt = π(Tcam T -1(tC,i + ti,x)p) is the pixel loca-

tion the point p (in world coordinates) projects to in the i-th
RGB image, and xt−te = π(Tcam T -1(tC,i + ti,x − te)p)

(a) Registered RGB image (b) Blur-aware weights

(c) Fused keyframe using con-

stant weights

(d) Fused keyframe using blur-

aware weights

Figure 2: Illustration of our weighting to suppress motion blur in

the fused keyframes: a) rectified input image with motion blur,

b) computed blur-aware weights where green indicates a high and

red a low value, c) fused keyframe averaged with constant weights,

and d) keyframe fused using blur-aware weights for the average.

Note how our weighting scheme retains sharp details.

is the pixel at the beginning of the frame exposure. There-

fore, ‖xt − xt−te‖ is the length of a line approximating the

path of the point in the image during exposure time te. The

more pixels a point covers the stronger motion blur is and

correspondingly wC,i(p) will be lower. In all experiments

we set σ = 1. Figure 2 illustrates the effects of our blur-

aware weight function in comparison to a simple constant

weight. Figure 2a shows an RGB image, which was reg-

istered to the keyframe. In Figure 2b we show the corre-

sponding weights where green indicates high and red low

weights. Note how the green spot matches the sharp area

in the center of the registered RGB image. The images in

the bottom row show the color image of the keyframe after

fusing multiple images with constant weights (Figure 2c)

and our proposed weights (Figure 2d). It is clearly visible

that our weights suppress the influence of blurred images

on the fusion result. Our weighting function, which quanti-

fies the amount of motion blur, is complementary to other,

e.g. normal-based, weight functions previously proposed.

Whenever we propagate the fused RGB and depth values

from the last keyframe to a new one we also propagate their

corresponding weights.

3.7. Implementation Details

The main computational burden in dense, direct image

alignment is the evaluation of the error function and the con-

struction of the normal equations. In both parts we found

2268



operations which evaluate the trajectory T (t) most costly.

For the geometric alignment a separate transformation

for every point depending on its image row is required.

Therefore, we precompute the pose of every row for all the

images currently involved in the optimization once per it-

eration. Similarly, for the projection into a rolling shut-

ter image we need to repeatedly evaluate the pose and its

derivative w.r.t. time. We found it sufficient to use the pose

and time derivative of the closest integer row index, which

we also precompute for every image included in the opti-

mization. Note, that the projection still results in subpixel

locations. An even coarser sampling of the poses and veloc-

ities, e.g. every 5th or 10th row, might be sufficient. Using

only one pose and velocity per image results in a constant

velocity model.

Another costly operation is the computation of the Ja-

cobians and building the normal equations. Lovegrove et

al. use numerical derivatives [9] that is feasible for a small

number of feature points, but prohibitively expensive for

the amount of points involved in dense image alignment.

Therefore, we derive analytic expressions for the photomet-

ric and geometric error terms and a decomposition, which

reduces the additional effort for the spline representation

compared to a single pose for each image to a factor propor-

tional to the height h of the images instead of the number

of pixels h× w. The derivative of the simplified photomet-

ric error (8) w.r.t. the increments to the four control points

defining T (tI,i + ti,x) is:

∂rI,i,j
∂∆TC

=
∂Ii(π(Tcam T -1 p′

j))

∂T

∣∣∣∣∣
T=T (tI,i+ti,x)

∂T (tI,i + ti,x)

∂∆TC

∣∣∣∣
∆TC=0

(14)

where the first part is a 1 × 12 matrix well known from

dense photometric alignment estimating a single rigid body

motion. The second part is a 12 × 24 matrix and specific

to the spline trajectory representation. For the geometric

error with a rectified reference image we obtain a similar

expression:

∂rZ,i,j

∂∆TC

=
∂Zref(π(T

-1
ref T pj))− [T -1

ref T pj ]Z
∂T

∣∣∣∣
T=T (tZ,i+tj,x)

∂T (tZ,i + tj,x)

∂∆TC

∣∣∣∣
∆TC=0

(15)

with Tref = T (tZ,ref), pj = π-1(xj ,Zi(xj)), and tj,x =
tr/h [xj ]y . The key insight is that the second part of the

Jacobian in (15) is constant for all pixels in the same row.

Therefore, we just have to form the outer product of 1× 12
Jacobians and sum 12 × 12 matrices for all pixels in the

same row instead of 1 × 24 Jacobians and 24 × 24 matri-

ces to build the normal equations. The same holds for (14)

if we evaluate the Jacobian only at times corresponding to

integer row indices. Nevertheless, for the photometric er-

ror points from the same row in the reference image will be

scattered to different rows in the i-th image. Therefore, it

is useful to sort the residual terms by row before computing

the Jacobians. This ensures that the Jacobian of the pose

w.r.t. the control points has to be computed only once for

each row. We also derived an analytic expression for the Ja-

cobian of a pose w.r.t. its control points, which we provide

in the supplementary material due to space limitations.

4. Evaluation

We evaluate our trajectory estimation approach on simu-

lated and real world datasets. For the experiments on syn-

thetic data we adapt the ICL-NUIM dataset proposed by

Handa et al. [4]. We perform the experiments with real data

on a set of sequences, which we recorded along with the

groundtruth trajectory from a motion capture system.

We run all experiments on a PC with Intel Core i7-2600

CPU and 8GB RAM. The alignment with geometric error

requires on average 210ms/frame and 775ms/frame with

photometric and geometric error. Our C++ implementation

computes the error terms and normal equations for the not

yet converged images in parallel. We expect to achieve fur-

ther speedup using a GPU implementation.

4.1. Synthetic Rolling Shutter Dataset

The ICL-NUIM dataset is a synthetic, ray-casted RGB-

D dataset. It comprises eight datasets for two scenes, a liv-

ing room and an office, with four different trajectories each.

Besides the groundtruth trajectories the authors also pro-

vide a model of the living room scene and tools to evaluate

the reconstruction accuracy. However, Handa et al. created

the datasets with the global shutter assumption. Therefore,

we extend this dataset by creating four sequences with the

rolling shutter model for the living room scene. To do so

we raycast every row of each image from a separate camera

pose. We obtain the pose of every row by fitting a cumu-

lative B-spline trajectory to the groundtruth trajectories and

evaluating it at the appropriate time. We also generate new

groundtruth trajectories from the fitted spline, which differ

slightly from the original ones. Figure 3 shows an example

RGB-D frame from the lr kt2 sequence rendered with global

shutter and rolling shutter model, and the absolute differ-

ence of the intensity and depth values. Note how rolling

shutter affects the error of most pixels in the depth images,

but only pixels close to edges in the color images. We did

not simulate the motion blur effect, because it would have

increased the raycasting time tremendously.

4.2. Real World Dataset

We ran a second set of experiments on six datasets

captured with a PrimeSense Carmine sensor inside a mo-

2269



(a) Global shutter

color image

(b) Rolling shutter

color image

(c) Absolute inten-

sity difference

(d) Global shutter

depth image

(e) Rolling shutter

depth image

(f) Absolute depth

difference

Figure 3: Example of simulated RGB-D images and comparison

between global shutter and rolling shutter models. To visualize the

influence of the rolling shutter model we show the intensity differ-

ence c) between a) and b), and the depth difference f) between im-

ages d) and e). Green corresponds to zero and red to a difference

of 10% for the intensity and 0.01m for depth. The color images

differ mainly on the small number of edge pixels. In contrast, there

is a large difference for many pixels in the depth images.

tion capture volume. We could not use any of the exist-

ing RGB-D benchmark datasets with groundtruth trajectory

(e.g. TUM RGB-D benchmark [16]), because they only pro-

vide pre-registered depth images, which destroys the cor-

respondence between rows in the depth image and their

capture time. The six sequences comprise three different

motion patterns: translation along horizontal camera axis

(robot t1/t2), rotation around camera z-axis (robot r1/r2),

and a more general scanning motion (table1/2). Table 1 lists

length, average translational and rotational velocity for each

of these datasets. The translational velocities are among

the fastest in comparison to the TUM RGB-D benchmark

datasets and the rotational velocities are larger than any

present in the TUM RGB-D benchmark. We plan to release

all of these new datasets to the public with this publication.

4.3. Results

In total we have ten datasets to evaluate our approach.

We compare a baseline method (a variant of [10]) and four

variants of our approach. The baseline method performs

frame to keyframe tracking estimating a single pose per

frame with a geometric error term and global shutter as-

sumption. Furthermore, we fuse all frames into the cur-

rent keyframe and choose new keyframes based on the same

overlap criterion as in our approach. We generate the four

variants of our approach by using either only the geomet-

ric error term (G) or in addition the photometric error term

(P+G), and by switching between global shutter (GS) and

rolling shutter (RS) models. To evaluate the different al-

gorithms we use the absolute trajectory error (ATE) and

Table 1: Statistics of real world datasets we recorded with

groundtruth trajectories from a motion capture system. We per-

formed three different motions: translation along camera x-axis

(robot t1/t2), rotation around camera z-axis (robot r1/r2) and gen-

eral motion (table1/2).

Dataset Length [m] avg. transl. avg. rot.

velocity [m/s] velocity [deg/s]

robot t1 7.678 0.356 15.807

robot t2 7.671 0.359 13.782

robot r1 2.592 0.123 62.172

robot r2 3.203 0.153 66.847

table1 11.494 0.423 23.223

table2 5.273 0.153 38.582

the relative pose error per second (RPE/s) as proposed by

Sturm et al. [16]. Table 2 shows the root mean squared

error (RMSE) of the translational and rotational RPE/s for

all five algorithms and the ten sequences. For the synthetic

and real world datasets we separately show the average drift

and the improvement relative to the baseline algorithm. The

results of the best performing algorithm for each sequence

are marked with a bold font. Similarly, Table 3 shows the

RMSE of the ATE.

In general, our algorithms, which estimate a continuous-

time trajectory, outperform the baseline algorithm in terms

of the RPE and ATE metrics. The large difference on ta-

ble1/table2, kt0, kt1 and kt3 is mainly due to temporary

failures of the baseline algorithm, because of too fast mo-

tion or few frames only observing a wall. The spline repre-

sentation helps in these cases to stabilize the optimization.

There is only a small difference between the geometric and

combined photometric and geometric error terms on the real

world datasets. We attribute this to the presence of enough

geometric structure and that we neglect the motion blur ef-

fects in the photometric error term. In contrast, on the syn-

thetic datasets the inclusion of the photometric error term

improves the performance, because of the missing motion

blur and little structure in parts of the sequences. Further-

more, modeling rolling shutter improves the translational

RPE and the ATE about 10%. More interestingly, the im-

provement w.r.t. rotational drift is around 30%. Considering

that rotational drift causes most of the error in large scale

mapping we find this a remarkable improvement.

To summarize, we demonstrate the superior performance

of our continuous-time tracking and mapping algorithm on

a number of synthetic and real world datasets in comparison

to a standard baseline algorithm. The continuous-time tra-

jectory representation improves tracking performance dur-

ing fast motions. The combination of photometric and geo-

metric error terms helps to stabilize tracking in structureless

regions. Modeling of the rolling shutter effects increases the

precision even further.

2270



Table 2: RMSE values of translational and rotational drift per second (RPE/s) for five different trajectory estimation methods on six real

world and four synthetic datasets. The four spline-based methods use different combinations of geometric (G) and photometric (P) error

terms, and global shutter (GS) and rolling shutter (RS) models. The results for real world and synthetic datasets are separately summarized

by average RPE/s values and relative improvement w.r.t. baseline method. All algorithms estimating a continuous-time trajectory clearly

outperform the baseline method.

Dataset Baseline Spline+GS+G Spline+RS+G Spline+GS+P+G Spline+RS+P+G

[m/s] [deg/s] [m/s] [deg/s] [m/s] [deg/s] [m/s] [deg/s] [m/s] [deg/s]

robot t1 0.0149 0.7761 0.0168 0.8098 0.0116 0.5389 0.0133 0.9368 0.0085 0.4857

robot t2 0.0102 0.6679 0.0104 0.6649 0.0100 0.4962 0.0108 0.7730 0.0089 0.4961

robot r1 0.0180 2.1351 0.0177 2.1407 0.0173 1.1222 0.0160 2.1507 0.0156 1.1624

robot r2 0.0112 2.3313 0.0108 2.2961 0.0110 1.1619 0.0114 2.0803 0.0105 1.1911

table1 0.0827 2.2656 0.0362 1.4801 0.0158 0.9305 0.0371 1.4749 0.0160 0.9297

table2 0.1160 4.2465 0.0117 1.6441 0.0132 0.5973 0.0103 1.5749 0.0126 0.5464

average 0.0422 2.0704 0.0173 1.5059 0.0132 0.8078 0.0165 1.4984 0.0120 0.8019

0% 0% 59.0% 27.3% 68.8% 61.0% 60.9% 27.6% 71.5% 61.3%

lr kt0 0.0162 2.9869 0.0804 0.2673 0.0268 0.1059 0.0075 0.2394 0.0056 0.1170

lr kt1 0.1569 30.7227 0.0047 0.1700 0.0029 0.0625 0.0064 0.1709 0.0024 0.0590

lr kt2 0.0054 0.2744 0.0068 0.2973 0.0044 0.0723 0.0068 0.2128 0.0031 0.0655

lr kt3 0.7420 35.6279 0.0075 0.9161 0.0068 0.9427 0.0164 0.1900 0.0100 0.2482

average 0.2301 17.4030 0.0249 0.4127 0.0102 0.2958 0.0093 0.2033 0.0053 0.1224

0% 0% 89.2% 97.6% 95.6% 98.3% 96.0% 98.8% 97.7% 99.3%

Table 3: RMSE values of absolute trajectory error (ATE) c.f . caption of Table 2 for structure and abbreviations. Modeling rolling shut-

ter improves the ATE on the real world sequences by 10%. On the synthetic sequences the spline representation and inclusion of the

photometric term stabilize the trajectory estimate.

Dataset Baseline [m] Spline+GS+G [m] Spline+RS+G [m] Spline+GS+P+G [m] Spline+RS+P+G [m]

robot t1 0.0129 0.0169 0.0129 0.0133 0.0092

robot t2 0.0116 0.0161 0.0082 0.0287 0.0145

robot r1 0.0170 0.0148 0.0145 0.0135 0.0137

robot r2 0.0099 0.0105 0.0108 0.0092 0.0083

table1 0.2521 0.0842 0.0379 0.0909 0.0110

table2 0.4675 0.0127 0.0111 0.0144 0.0112

average 0.1285 (0%) 0.0259 (79.9%) 0.0159 (87.6%) 0.0283 (78.0%) 0.0113 (91.2%)

lr kt0 0.1129 0.3980 0.1088 0.0259 0.0186

lr kt1 0.2651 0.0111 0.0108 0.0092 0.0054

lr kt2 0.0209 0.0173 0.0109 0.0082 0.0079

lr kt3 1.2669 0.0607 0.0676 0.0498 0.0210

average 0.4165 (0%) 0.1218 (70.8%) 0.0495 (88.1%) 0.0233 (94.4%) 0.0132 (96.8%)

5. Conclusion

In this paper we introduced a dense tracking method

to estimate a continuous-time trajectory from a sequence

of unsynchronized and unregistered RGB-D images. The

continuous-time representation helps to better constrain in-

dividual image poses and to model the rolling shutter of

color and depth cameras. Furthermore, this representation

has several benefits, which are now available to dense, di-

rect tracking methods. Additionally, we show how to use

the continuous-time trajectory to easily quantify the amount

of motion blur and suppress its influence on the fused 3D

model. Quantitative evaluation on both synthetic and real

world datasets shows that the proposed dense alignment

with continuous-time trajectory and rolling shutter model

lead to drastic improvements in the trajectory error.

Acknowledgments

We thank the Chair of Information-oriented Control (ITR) at TUM

for access to their motion capture system. This work has been

partially funded through ERC grant Convex Vision (#240168) and

ERC Proof of Concept grant CopyMe3D (#632200).

2271



References

[1] S. Baker, E. Bennett, S. B. Kang, and R. Szeliski. Remov-

ing rolling shutter wobble. In Computer Vision and Pat-

tern Recognition (CVPR), 2010 IEEE Conference on, pages

2392–2399, June 2010. 2

[2] F. Endres, J. Hess, J. Sturm, D. Cremers, and W. Burgard.

3d mapping with an RGB-D camera. IEEE Transactions on

Robotics (T-RO), 30(1):177–187, 2013. 1, 2

[3] P. Furgale, T. D. Barfoot, and G. Sibley. Continuous-time

batch estimation using temporal basis functions. In Robotics

and Automation (ICRA), 2012 IEEE International Confer-

ence on, pages 2088–2095. IEEE, 2012. 2

[4] A. Handa, T. Whelan, J. McDonald, and A. Davison. A

benchmark for rgb-d visual odometry, 3d reconstruction and

slam. In Robotics and Automation (ICRA), 2014 IEEE Inter-

national Conference on, pages 1524–1531, May 2014. 6

[5] J. Hedborg, P.-E. Forssén, M. Felsberg, and E. Ringaby.

Rolling shutter bundle adjustment. In Computer Vision and

Pattern Recognition (CVPR), 2012 IEEE Conference on,

pages 1434–1441, June 2012. 2

[6] C. Kerl, J. Sturm, and D. Cremers. Dense visual slam for

rgb-d cameras. In Intelligent Robots and Systems (IROS),

2013 IEEE/RSJ International Conference on, pages 2100–

2106, Nov 2013. 1, 2

[7] C. Kerl, J. Sturm, and D. Cremers. Robust odometry estima-

tion for rgb-d cameras. In Robotics and Automation (ICRA),

2013 IEEE International Conference on, pages 3748–3754,

May 2013. 4

[8] G. Klein and D. Murray. Parallel tracking and mapping on

a camera phone. In Mixed and Augmented Reality, 2009.

ISMAR 2009. 8th IEEE International Symposium on, pages

83–86, Oct 2009. 2

[9] S. Lovegrove, A. Patron-Perez, and G. Sibley. Spline fu-

sion: A continuous-time representation for visual-inertial fu-

sion with application to rolling shutter cameras. Proceedings

of the British machine vision conference, pages 93–1, 2013.

2, 3, 6

[10] M. Meilland and A. Comport. On unifying key-frame and

voxel-based dense visual slam at large scales. In Intelligent

Robots and Systems (IROS), 2013 IEEE/RSJ International

Conference on, pages 3677–3683, Nov 2013. 1, 2, 5, 7

[11] M. Meilland, T. Drummond, and A. Comport. A unified

rolling shutter and motion blur model for 3d visual registra-

tion. In Computer Vision (ICCV), 2013 IEEE International

Conference on, pages 2016–2023, Dec 2013. 2, 4

[12] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux,

D. Kim, A. J. Davison, P. Kohi, J. Shotton, S. Hodges, and

A. Fitzgibbon. Kinectfusion: Real-time dense surface map-

ping and tracking. In Mixed and Augmented Reality (IS-

MAR), 2011 10th IEEE International Symposium on, pages

127–136, Oct 2011. 5

[13] H. Ovrén, P.-E. Forssén, and D. Törnqvist. Improving rgb-

d scene reconstruction using rolling shutter rectification. In

Y. Sun, A. Behal, and C.-K. R. Chung, editors, New Develop-

ment in Robot Vision, volume 23 of Cognitive Systems Mono-

graphs, pages 55–71. Springer Berlin Heidelberg, 2015. 2

[14] E. Ringaby and P.-E. Forssén. Scan rectification for struc-

tured light range sensors with rolling shutters. In Com-

puter Vision (ICCV), 2011 IEEE International Conference

on, pages 1575–1582, Nov 2011. 2

[15] E. Ringaby and P.-E. Forssén. Efficient video rectification

and stabilisation for cell-phones. International Journal of

Computer Vision, 96(3):335–352, 2012. 2

[16] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cre-

mers. A benchmark for the evaluation of rgb-d slam systems.

In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ In-

ternational Conference on, pages 573–580, Oct 2012. 7

2272


