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Abstract

Temporal information has useful features for recogniz-

ing facial expressions. However, to manually design useful

features requires a lot of effort. In this paper, to reduce this

effort, a deep learning technique, which is regarded as a

tool to automatically extract useful features from raw data,

is adopted. Our deep network is based on two different

models. The first deep network extracts temporal appear-

ance features from image sequences, while the other deep

network extracts temporal geometry features from tempo-

ral facial landmark points. These two models are combined

using a new integration method in order to boost the perfor-

mance of the facial expression recognition. Through several

experiments, we show that the two models cooperate with

each other. As a result, we achieve superior performance to

other state-of-the-art methods in the CK+ and Oulu-CASIA

databases. Furthermore, we show that our new integration

method gives more accurate results than traditional meth-

ods, such as a weighted summation and a feature concate-

nation method.

1. Introduction

Recognizing an emotion from a facial image is a clas-

sic problem in the field of computer vision, and many stud-

ies have been conducted. It can be classified into two cat-

egories: image sequence-based and still image-based ap-

proaches. Image sequence-based approach has been used to

increase the recognition performance by extracting useful

temporal features from the image sequences, and the per-

formance is usually better than a still image-based approach

[15, 20, 12, 17, 8]. Both appearance and geometric features

can be used for the spatio-temporal feature [1, 22].

Well-known deep learning algorithms, such as the deep

neural networks (DNNs) and the convolutional neural net-

works (CNNs), have an ability to automatically extract use-

ful representations from raw data (e.g., image data). How-

ever, there is a limit when applying them directly to facial

Figure 1. Overall structure of our approach. The blue and red

boxes with dotted lines correspond to the two architectures of the

deep networks. Our two deep networks receive an image sequence

and facial landmark points as input, respectively. Conv and FC

refer to the convolutional and fully connected layers. Finally, the

outputs of these networks are integrated using a proposed joint

fine-tuning method, which is represented in the purple box.

expression recognition databases, such as CK+ [13], MMI

[18], and Oulu-CASIA [23]. The major reason is that the

amount of data is too small, so a deep network that has many

parameters can easily fall into overfitting when training. (In

general, data collection is expensive.) Furthermore, if the

training data is high dimensional, the overfitting problem

becomes more crucial.

In this paper, we are interested in recognizing facial ex-

pressions using a limited amount of (typically a few hun-

dreds of) image sequence data with a deep network. In order

to overcome the problem of having a small amount of data,

we construct two small deep networks that complement

each other. One of the deep networks is trained using image

sequences, while the other deep network learns the tempo-

ral trajectories of facial landmark points. In other words,

the first network focuses more on appearance changes of

facial expressions over time, while the second network is di-

rectly related to the motion of facial parts. Furthermore, we

present a new integration method called joint fine-tuning,

which performs better than simple weighted summation
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method. Therefore, our main contributions in this paper can

be summarized as follows:

• Two deep network models are presented in order to

extract useful temporal representations from two

kinds of sequential data: image sequences and the

trajectories of landmark points.

• We observed that the two networks automatically de-

tect moving facial parts and action points, respec-

tively.

• We presented a joint fine-tuning method integrating

these two networks with different characteristics, and

performance improvement was achieved in terms of

the recognition rates.

2. Related Work

2.1. Deep Learning­Based Method

Typically, a CNN uses a single image, but CNN can

also be used for temporal recognition problems, such as ac-

tion recognition [15]. In this 3D CNN method, the filters

are shared along the time axis. Additionally, this method

has been applied to facial expression recognition with de-

formable action part constraints, which is called 3D CNN-

DAP [11]. The 3D CNN-DAP method is based on 3D CNN

and uses the strong spatial structural constraints of the dy-

namic action parts. It could receive a performance boost

from using the hybrid method, but it falls short of the per-

formance of other state-of-the-art methods.

2.2. Hand­Crafted Feature­Based Method

Many studies in this field have been conducted. Tradi-

tional local features, such as HOG, SIFT, LBP, and BoW

have been extended in order to be applicable to video, and

these are called 3D HOG [9], 3D SIFT [16], LBP-TOP [24],

and BoW [17], respectively. Additionally, there was an at-

tempt to improve accuracy through temporal modeling of

each facial shape (TMS) [6]. They used conditional random

fields and shape-appearance features created manually.

Recently, spatio-temporal covariance descriptors with

the Riemannian locality preserving projection approach

were developed (Cov3D) [15], and an interval temporal

Bayesian network (ITBN) for capturing complex spatio-

temporal relations among muscles was proposed [20]. Re-

cently, expressionlet-based spatio-temporal manifold repre-

sentation was developed (STM-ExpLet) [12].

In addition to the ones mentioned above, perceptual

color space was considered for facial expression [10]. Ap-

pearance and geometric feature-based approaches were also

considered to be a solution for facial expression recogni-

tion, so several approches were developed [1, 22]. Recently,

there is an approach that uses 3D shape model, and they im-

proved facial expression recognition rate [8]. They used a

ZFace algorithm [7] to estimate 3D landmark points, so the

algorithm requires 3D information of face for training.

3. Our Approach

We utilize deep learning techniques in order to recognize

facial expressions. Basically, two deep networks are com-

bined: the deep temporal appearance network (DTAN) and

the deep temporal geometry network (DTGN). The DTAN,

which is based on a CNN, is used to extract the temporal

appearance feature necessary for facial expression recog-

nition. The DTGN, which is based on a fully connected

DNN, catches geometrical information about the motion

of the facial landmark points. Finally, these two models

are integrated in order to increase the expression recogni-

tion performance. This network is called the deep temporal

appearance-geometry network (DTAGN). The architecture

of our deep network is shown in Figure 1.

3.1. Preprocessing

In general, the length of image sequences is variable,

but the input dimension is usually fixed in a deep network.

Consequently, the normalization along the time axis is re-

quired as input for the networks. We adopt the method in

[26], which makes an image sequence into a fixed length.

Then, the faces in the input image sequences are detected,

cropped, and rescaled to 64×64. From these detected faces,

facial landmark points are extracted using the algorithm

called IntraFace [21]. This algorithm provides accurate fa-

cial landmark points consisting of 49 landmark points, in-

cluding two eyes, a nose, a mouth, and two eyebrows.

3.2. Deep Temporal Appearance Network

In this paper, a CNN is used for capturing temporal

changes of appearance. Conventional CNN uses still im-

ages as input, and 3D CNN was presented recently for deal-

ing with image sequences. As mentioned in Section 2,

the 3D CNN method shares the 3D filters along the time

axis [15]. However, we use the n-image sequences without

weight sharing along the time axis. This means that each

filter plays a different role depending on the time. The acti-

vation value of the first layer is defined as follows:

fx,y,i = σ(

Ta
∑

t=1

R
∑

r=0

S
∑

s=0

I
(t)
x+r,y+s · w

(t)
r,s,i + bi), (1)

where fx,y,i is the activation value of position (x, y) of the

i-th feature map. R and S are the number of rows and

columns of the filter, respectively. Ta is the total frame num-

ber of the input grayscale image sequences. I
(t)
x+r,y+s means

that the value at the position (x+r, y+s) of the input frame

at time t. w
(t)
r,s,i is the i-th filter coefficient at (r, s) for the

t-th frame, and bi is the bias for the i-th filter. σ(·) is an

22984



activation function, which is usually a non-linear function.

Additionally, we utilize a ReLU, σ(x) = max(0, x) as an

activation function, where x is an input value [3].

The other layers are not different from the conventional

CNN as follows: the output of the convolutional layer is

rescaled to half-size in a pooling layer for efficient calcula-

tion. Using these activation values, a convolution operation

and pooling are performed one more time. Finally, these

output values are passed through the two fully connected

layers and then classified using softmax. For training our

network, the stochastic gradient descent method is used for

optimization, and dropout [5] and weight decay methods are

utilized for regularization.

We designed our network with a moderate depth and a

moderate number of parameters to avoid overfitting, since

the size of the facial expression recognition database is too

small— there are only 205 sequences in the MMI database.

Additionally, the first layer turns out to detect the temporal

difference of the appearance in input image sequences as

discussed in Section 4.

3.3. Deep Temporal Geometry Network

DTGN receives the trajectories of facial landmark points

as input. These trajectories can be considered as one-

dimensional signals and defined as follows:

X(t) =
[

x
(t)
1 y

(t)
1 x

(t)
2 y

(t)
2 · · · x

(t)
n y

(t)
n

]⊤

,

(2)

where n is the total number of landmark points at frame t,

and X(t) is a 2n dimensional vector at t. x
(t)
k and y

(t)
k are

coordinates of the k-th facial landmark points at frame t.

These xy-coordinates are inappropriate for direct use as

an input to the deep network, because they are not normal-

ized. For the normalization of the xy-coordinates, we first

subtract the xy-coordinates of the nose position (the posi-

tion of the red point among the facial landmark points in

the red box with the dotted line in Figure 1) from the xy-

coordinates of each point. Then, each coordinate is divided

by each standard deviation of xy-coordinates in each frame

as follows:

x̄i
(t) =

x
(t)
i − x

(t)
o

σ
(t)
x

, (3)

where x
(t)
i is x-coordinate of the i-th facial landmark point

at frame t, x
(t)
o is x-coordinate of the nose landmark coordi-

nate at frame t. σ
(t)
x is standard deviation of x-coordinates

at frame t. This process is also applied to the y
(t)
i . Fi-

nally, these normalized points are concatenated along the

time, and these points are used for the input to the DTGN.

X̄ =
[

x̄
(1)
1 ȳ

(1)
1 · · · x̄

(Tg)
n ȳ

(Tg)
n

]⊤

, (4)

Figure 2. Joint fine-tuning method. The green box denotes linear

fully connected network which has logit values. The logit val-

ues are used as the input to the softmax activation. To integrate

two networks, we freeze the weight values in gray boxes of two

trained networks, and retrain the top layer in green boxes. In the

training step, we use three softmax functions for calculating three

loss functions, and we only use Softmax3 for prediction.

where X̄ is a 2nTg dimensional input vector, and x̄
(Tg)
k and

ȳ
(Tg)
k are coordinates of k-th normalized landmark points at

frame Tg .

The figure in the red box with a dotted line in Figure 1 il-

lustrates the architecture of our DTGN model. Our network

receives the concatenated landmark points X̄ as input. Ba-

sically, we utilize two hidden layers, and the top layer is a

softmax layer. Similar to the DTAN, this network is also

trained by using the stochastic gradient descent method.

The activation function for each hidden layer is ReLU. Fur-

thermore, for regularization of the network, dropout [5] and

weight decay are used.

3.4. Data Augmentation

In order to better classify unseen data, a number of train-

ing data covering various situations are required. However,

facial expression databases, such as CK+, Oulu-CASIA,

and MMI, provide only hundreds of sequences. This makes

a deep network easily overfit, because a typical deep net-

work has many parameters. To overcome this problem, var-

ious data augmentation techniques are required.

First, whole image sequences are horizontally

flipped. Then, each image is rotated by each angle in

{−15◦,−10◦,−5◦, 5◦, 10◦, 15◦}. This makes the model

robust against the slight rotational changes of the input

images. Finally, we obtain 14 times more data: original

images (1), flipped images (1), rotated images with six

angles, and their flipped versions (12).

Similar to the augmentation of image sequences, the nor-

malized facial landmark points are also horizontally flipped.

Then, Gaussian noise is added to the raw landmark points.

x̃
(t)
i = x̄

(t)
i + z

(t)
i , (5)

where z
(t)
i ∼ N(0, σ2

i ) is additive noise with noise level σi

for the x-coordinate of the i-th landmark points at frame t.
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We set the value of σi to 0.01. Additionally, we contam-

inated y-coordinate with noise in the same way. The net-

work learns to be robust against slight pose changes using

this method. To prepare for rotational changes, we construct

rotated data as follows:

[

x̃
(t)
i ỹ

(t)
i

]⊤

= R(t)
[

x̄
(t)
i ȳ

(t)
i

]⊤

, (6)

for i = 1, . . . , n where x̃
(t)
i and ỹ

(t)
i are i-th rotated xy-

coordinates at time t, and R(t) is a 2 × 2 rotation matrix for

the xy-coordinates at time t, which has an angle θ(t). The

value of θ(t) is drawn from a uniform distribution where

θ(t) ∼ Unif[β, γ]. We set the values of β and γ to −π/10
and π/10, respectively.

We performed the first data augmentation methods in

equation 5 three times, and the second data augmentation in

equation 6 was also conducted three times. Consequently,

we obtained six times more facial landmark points. As a

result, we augmented the training data fourteen times: orig-

inal coordinates (1), flipped coordinates (1), and six aug-

mented coordinates, and their flipped versions (12).

3.5. Model Integration

3.5.1 Weighted Summation

The outputs from the top layers of the two networks were

integrated using equation 7.

oi = αpi + (1− α)qi, 0 ≤ α ≤ 1, (7)

for i = 1, . . . , c where c is the total number of emotion

class, pi, qi are outputs of DTAN and DTGN, and oi is the

final score. Finally, the index with the maximum value is

the final prediction. The parameter α usually depends on

the performance of each network. For all the experiments

in this paper, we set the value of α to 0.5 that is the optimal

value as shown in Figure 11.

3.5.2 Joint Fine-Tuning Method

The above method is simple to use, but it may not use the

most of the ability of the two models. Consequently, we

propose an alternative integration method for the two net-

works using a joint fine-tuning method, which achieves bet-

ter results than the above method.

First, the two trained networks are reused, as shown in Fig-

ure 2. Next, we retrain the linear fully connected network,

which is located below softmax activation function, with the

loss function LDTAGN of DTAGN defined as follows:

LDTAGN = λ1L1 + λ2L2 + λ3L3, (8)

where L1, L2, and L3 are loss functions computed by

DTAN, DTGN, and both, respectively. The λ1, λ2, and λ3

are tuning parameters. Usually, the parameters λ1 and λ2

Figure 3. Filters learned by a single frame-based CNN. The in-

put image size was 64 × 64, and the filter size was 5 × 5. 18

filters were selected for visualization from 64 learned filters in the

first convolutional layer. The black and white colors represent the

negative and positive values, respectively. There were several di-

rectional edge and blob detection filters.

Figure 4. Feature maps corresponding to Figure 3. The left im-

age represents the input image, and the right image shows the fea-

ture maps extracted by each filter in Figure 3. The emotion label

for the input image was surprise. The blue and red values repre-

sent the low and high response values, respectively. The edges of

the input image are detected in most of the filter.

are the same, and λ3 has a smaller value than the value of

two tuning parameters. For all the experiments perfomed in

this paper, we set λ1, λ2, and λ3 to 1, 1, and 0.1, respec-

tively. The parameters were intuitively chosen. Each loss

function is a cross entropy loss function, which is defined

as follows:

Li = −

c
∑

j=1

yj log(ỹi,j), (9)

where yj is the j-th value of the ground truth label, and ỹi,j
is the j-th output value of softmax of network i. (For conve-

nience, we call DTAN, DTGN, and the integrated network

by network 1, 2, and 3, respectively.) The ỹ3,j is defined

using logit values of network 1 and 2 as follows:

ỹ3,j = σs(l1,j + l2,j), (10)

where l1,j and l2,j are j-th logit values of network 1 and 2,

respectively. σs(·) is a softmax activation function.

Finally, the final decision õ is obtained using the output

of softmax of network 3 as follows:

õ = argmax
j

ỹ3,j , (11)

As a result, we utilized three loss functions in the training

step, and use only integrated result for prediction. When

using our joint fine-tuning method, we use the same training

dataset used in training of each network. Also, the dropout

method is used for reducing over-fitting.
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Figure 5. Filters learned by DTAN. The number of input frames

was three in this figure, so there are three filters corresponding to

each frame. The three filters in each bold black box generate one

feature map. As with Figure 3, 18 filters were selected from 64

learned filters. In this figure, we can see that our network detects

differences between frames.

Figure 6. Feature maps corresponding to Figure 5. The gray

images on the left side form the image sequence used as input, and

the images on the right side are the feature maps corresponding to

each filter in Figure 5. Blue and red represent the low and high

response values. The emotion label for the input image sequence

was surprise. We observed that our network responded to moving

parts for expressing emotion.

4. What Will Deep Networks Learn?

4.1. Visualization of DTAN

To find out what our DTAN has learned, the learned

filters were visualized. Figure 3 demonstrates the filters

learned by a single frame-based CNN in the first convolu-

tional layers using the CK+ database. The filters were sim-

ilar to the edge or blob detectors. Corresponding responses

to each filter are provided in Figure 4. The edge components

with several directions were detected by these filters.

In our DTAN, which is a multiple frame-based CNN, the

learned filters are shown in Figure 5. Unlike the filters of a

single frame-based CNN, the filters were not edge or blob

detectors. To exaggerate a little, these were just combina-

tions of black, gray, and white filters. Figure 6 shows the

meaning of these filters. High response values were usually

shown in parts with big differences between input frames.

In other words, we can see that the first convolutional layer

of our DTAN detects facial movements arising from the ex-

pression of emotion.

4.2. Visualization of DTGN

The left side of Figure 7 (a) shows the significant facial

landmark points for facial expression recognition. These

positions were automatically identified by DTGN. The ex-

tracted positions were very similar to those of emotional

facial action coding system (EFACS) [2] in Figure 7 (b). To

explain it further, the two extracted points on the nose be-

come wider when people make a happy expression because

both cheeks are pulled up.

In order to figure out the characteristics of the features

An Co Di Fe Ha Sa Su All

CK+ 45 18 59 25 69 28 83 327

Oulu 80 - 80 80 80 80 80 480

MMI 32 - 31 28 42 32 40 205

Table 1. The number of image sequences for each emotion:

anger (An), contempt (Co), disgust (Di), fear (Fe), happiness (Ha),

sadness (Sa), and surprise (Su).

extracted from the top layer, we also visualized the feature

vectors using t-SNE, which is a useful tool for visualization

of high dimensional data [19]. The input data were spread

randomly in Figure 7 (c), but the features extracted from the

second hidden layer were well separated according to their

label, as shown in Figure 7 (d).

5. Experiments

In this section, we compare our approach with other

state-of-the-art algorithms in facial expression recognition,

such as manifold-based sparse representation (MSR) [14],

AdaLBP [23], Atlases [4], and common and specific active

patches (CSPL) [25]. We excluded person dependent algo-

rithms or algorithms that utilize 3D geometry information

in the experiments. For assessing the performance of our

method, we used three databases: the CK+, Oulu-CASIA,

and MMI databases. The number of image sequences in

each database is listed according to each emotion in Table 1.

5.1. Network Architecture

The architecture of DTGN for the CK+ is D1176-

FC100-FC600-S7. D1176 is a 1176 dimensional input

vector, and FC100 refers to a fully connected layer with

100 nodes. Also, S7 is the softmax layer with seven out-

puts. Our DTAN model for the CK+ is I64-C(5,64)-L5-P2-

C(5,64)-L3-P2-FC500-FC500-S7, where I64 means 64×64

input image sequences, and C(5,64) is a convolutional layer

with 64 filters of 5× 5. L5 is a local contrast normalization

layer with a window size of 5 × 5. P2 means a 2 × 2 max

pooling layer. The stride of each layer was 1 with the ex-

ception of the pooling layer. The value of the stride for each

pooling layer was set to 2. The DTGN and DTAN models

Method Accuracy

HOG 3D [9] 91.44

MSR [14] 91.4

TMS [6] 91.89

Cov3D [15] 92.3

STM-ExpLet [12] 94.19

3DCNN [11] 85.9

3DCNN-DAP [11] 92.4

DTAN 91.44

DTGN 92.35

DTAGN(Weighted Sum) 96.94

DTAGN(Joint) 97.25

Table 2. Overall accuracy in the CK+ database. The red and

blue colors represent the first and second most accurate, respec-

tively.
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(a) (b) (c) (d)

Figure 7. Visualization of representation extracted by DTGN. (a) (b) show extracted feature points and emotional action parts [2],

respectively. The important top-10 positions are detected by our network (red points in the left figure). In order to visualize these ten

points, we calculated the average of the absolute values of weights in the first layer connected to each landmark point. Then, these values

were sorted in descending order, and the top 10 points with highest value were selected. The action parts defined by EFACS [2] are shown

in the right figure (green colored area). (c) Visualization of original input data in CK+ database, using t-SNE [19]. The number of data was

4149: (327-33)×14 augmented training data and 33 test data. The small dots and large squares represent training and test data, respectively.

The numbers in the legend correspond to each label of the CK+ database: 0-anger, 1-contempt, 2-disgust, 3-fear, 4-happiness, 5-sadness,

and 6-surprise. (d) Visualization of the outputs in the second hidden layer. The data points were automatically grouped by DTGN.

for Oulu-CASIA were the same as the models for the CK+

except the number of nodes in the top layer, because there

are six labels in the Oulu-CASIA.

For the MMI, we used the DTGN model of D1176-

FC100-FC200-FC6. Our DTAN model was designed as

I64-C(5,32)-P3-C(3,32)-FC30-S6. Unlike the other two

databases, the number of subjects and image sequences are

very small. Consequently, we decreased the total number of

parameters significantly.

5.2. CK+

Description of the database. CK+ is a representative

database for facial expression recognition. This database is

composed of 327 image sequences with seven emotion la-

bels: anger, contempt, disgust, fear, happiness, sadness, and

surprise. There are 118 subjects, and these subjects are di-

vided into ten groups by ID in ascending order. Nine subsets

were used for training our networks, and the remaining sub-

set was used for validation. This process is the same as the

10-fold cross validation protocol in [12]. In this database,

each sequence starts with a neutral emotion and ends with a

peak of the emotion.

Results. The total accuracy of 10-fold cross validation is

shown in Table 2. The performances of DTAN and DTGN

are lower than other algorithms, but the performance of the

integrated network is better than other state-of-the-art algo-

An Co Di Fe Ha Sa Su

An 100 0 0 0 0 0 0

Co 0 94.44 0 0 0 5.56 0

Di 0 0 100 0 0 0 0

Fe 0 0 0 84 8 0 8

Ha 0 0 0 0 100 0 0

Sa 10.71 0 0 0 0 89.29 0

Su 0 1.2 0 0 0 0 98.8

Table 3. Confusion matrix of the joint fine-tuning method for

the CK+ database. The labels in the leftmost column and on the

top represent the ground truth and prediction results, respectively.

Figure 8. Comparison of accuracy in the CK+ according to each

emotion among three networks.

rithms. The two networks were complementary, and this is

shown in Figure 8. The DTAN had a good performance

with respect to contempt, whereas it had lower accuracy

with fear. On the other hand, the geometry-based model

was strong with fear. Table 3 shows the confusion matrix for

CK+. Our algorithm performed well in recognizing anger,

disgust, happiness, and surprise. For the other emotions,

our method also performed reasonably well.

5.3. Oulu­CASIA

Description of the database. For further experiments, we

used Oulu-CASIA, which includes 480 image sequences

taken under normal illumination conditions. Each image

sequence has one of six emotion labels: anger, disgust, fear,

happiness, sadness, or surprise. There are 80 subjects, and

10-fold cross validation was performed in the same way as

in the case of CK+. Similar to the CK+ database, each se-

quence begins with a neutral facial expression and ends with

the facial expression of each emotion.

Results. The accuracy of our algorithm was superior to

the other state-of-the-art algorithms, as shown in Table 4.

The best performance from among the existing methods was

75.52%, which was achieved by Atlases, and this record had

not been broken for three years. However, we have signif-
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Figure 9. Comparison of accuracy in the Oulu-CASIA accord-

ing to each emotion among three networks.

icantly improved the accuracy by about 6% using our inte-

grated two deep networks. In Figure 9, the performance of

two networks and the combined model is compared. Sim-

ilar to the case of CK+, we can see that the two networks

are complementary to each other. In particular, the perfor-

mance of the DTGN in the case of disgust was lower than

the DTAN, but the combined model produced good results.

Table 5 shows the confusion matrix for our algorithm. The

performance in the cases of happiness, sadness, and surprise

was good, but the performance for anger, disgust, and fear

was relatively poor. In particular, anger and disgust were

confused in our algorithm.

5.4. MMI

Description of the database. MMI consists of 205 im-

age sequences with frontal faces and includes only 30 sub-

jects. Similar to the Oulu-CASIA database, there are six

kinds of emotion labels. This database was also divided

Method Accuracy

3D SIFT [16] 55.83

LBP-TOP [24] 68.13

HOG 3D [9] 70.63

AdaLBP [23] 73.54

Atlases [4] 75.52

STM-ExpLet [12] 74.59

DTAN 74.38

DTGN 74.17

DTAGN(Weighted Sum) 80.62

DTAGN(Joint) 81.46

Table 4. Overall accuracy in the Oulu-CASIA database. The

red and blue colors represent the first and second most accurate,

respectively.

An Di Fe Ha Sa Su

An 72.5 16.25 1.25 1.25 8.75 0

Di 21.25 75 3.75 0 0 0

Fe 2.5 1.25 77.5 6.25 2.5 10

Ha 0 0 7.5 90 2.5 0

Sa 13.75 0 2.5 0 83.75 0

Su 0 0 10 0 0 90

Table 5. Confusion matrix of the joint fine-tuning method for

the Oulu-CASIA database. The labels in the leftmost column

and on the top represent the ground truth and prediction results,

respectively.

Figure 10. Comparison of accuracy in the MMI according to

each emotion among three networks.

into 10 groups for person independent 10-fold cross valida-

tiaon. This database is different from the other databases;

each sequence begins with a neutral facial expression, and

has the facial expression of each emotion in the middle of

the sequence. This ends with the neutral facial expression.

The location of the peak frame is not provided as a prior

information.

Results. This dataset is especially difficult for a deep learn-

ing algorithm to learn from, because there are too small

number of data and subjects. The previous top record

achieved by a deep learning technique was only 63.4% us-

ing 3D CNN-DAP. However, we improved the recognition

rate to 70.24% as shown in Table 6. Finally, our algorithm is

much better than 3D SIFT, which was the second best algo-

rithm. In particular, our joint fine-tuning method achieved

a significantly improved recognition rate compared with a

Method Accuracy

HOG 3D [9] 60.89

3D SIFT [16] 64.39

ITBN [20] 59.7

CSPL [25] (73.53)

STM-ExpLet [12] 75.12

3DCNN [11] 53.2

3DCNN-DAP [11] 63.4

DTAN 62.45

DTGN 59.02

DTAGN (Weighted Sum) 65.85

DTAGN (Joint) 70.24

Table 6. Overall accuracy in the MMI database. The red and

blue colors represent the first and second most accurate, respec-

tively. The CSPL used additional ground truth information, so it

was excluded from the ranking.

An Di Fe Ha Sa Su

An 61.29 25.8 0 0 12.9 0

Di 15.62 71.88 0 9.37 0 3.13

Fe 10.71 0 35.71 10.71 14.29 28.57

He 0 0 4.76 95.24 0 0

Sa 9.38 3.13 15.62 0 68.8 3.12

Su 2.5 0 20 2.5 0 75

Table 7. Confusion matrix of the joint fine-tuning method for

the MMI Database. The labels in the leftmost column and on the

top represent the ground truth and prediction results, respectively.
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Figure 11. Performance of DTAGN using the weighted summa-

tion method with respect to α. We changed the value of α from

0 to 1 with interval of 0.01.

Figure 12. All failure cases with fear in the MMI database. Our

deep network predicted fear to surprise (green box), anger (red

box), sadness (orange box), and happiness (blue box).

weighted summation method.

We compared two networks and the combined model in

Figure 10. The two networks were complementary to each

other for most of the emotions. However, with fear, our al-

gorithm was not successful enough. This is also shown in

the confusion matrix in Table 7. We observed that the accu-

racy for fear was much lower than other emotions. In partic-

ular, most of the fear emotions were confused with surprise.

To examine this phenomenon, we checked all the failure

cases, as shown in Figure 12. The results indicated that a

variety of facial expressions are labeled as fear, even though

many cases were similar to surprise or sadness. To success-

fully recognize these various expressions, various kinds of

training data are additionally required. However, we had

only 27 subjects for training data. (Three subjects were

used for validation.) Unfortunately, performance of deep

learning techniques highly depends on the quality of train-

ing data, so our accuracy with fear was not good enough.

6. Discussion on the Joint Fine-Tuning Method

In this section, we discuss the joint fine-tuning method.

First we evaluated the effectiveness of the three loss func-

tions of our joint fine-tuning method using each database.

As a result, the accuracy using the three loss functions was

better than using L3 only, as shown in Table 8. Also, we

compared our algorithm with a concatenation of high level

features, which is one natural way for integrating two deep

networks. To evaluate the concatenation method, we con-

catenated the activation values of the top hidden layers in

the two gray areas in Figure 2. Then the concatenated ac-

tivation values are used for inputs to a fully connected net-

work with a softmax activation, and a dropout was used for

regularizing the network. Table 9 shows the experimental

results using each database. The performance of the con-

# Of Loss Functions Baseline One (L3 only) Three

Accuracy (CK+) 96.94 96.64 97.25

Accuracy (Oulu) 80.62 81.04 81.46

Accuracy (MMI) 65.85 69.76 70.24

Table 8. Comparison between one and three loss function

methods. Baseline denotes the weighted summation method pre-

sented in this paper.

Concatenation Joint Fine-tuning

Accuracy (CK+) 94.5 97.25

Accuracy (Oulu) 75.63 81.46

Accuracy (MMI) 67.8 70.24

Table 9. Comparison between the concatenation method and

proposed joint fine-tuning method. Our joint fine-tuning method

showed about 3∼6% improvement in terms of the recognition

rates.

catenation method was worse than either one of our two

networks.

As mentioned in Section 3.5.2, we used the same dataset

for fine-tuning together with dropout, which reduces over-

fitting. Of course, without dropout, there will be little to

fine-tune with the same dataset, as the error for the same

training dataset would be already almost zero before fine-

tuning starts. Interestingly, thanks to dropout, there is some-

thing to fine-tune with the same dataset as the dropout by

randomly inducing errors achieves an effect of providing

different training data to the layers to fine-tune. Further, as

dropout creates an ensemble of many networks and each

network in the ensemble experiences a different random

subset of whole dataset, each member of ensemble with a

particular dropout pattern experiences different subsets of

data for the first training and the following fine-tuning.

7. Conclusion

We presented two deep network models that collaborate

with each other. The first network was DTAN, which was

based on appearances of multiple frames, while the second

network was DTGN, which extracted useful temporal

geometric features from raw facial landmark points. We

showed that the filters learned by the DTAN in the first

layer have the ability to obtain the difference between the

input frames. Furthermore, the important landmark points

extracted by DTGN were also shown. We achieved best

recognition rates using the integrated deep network on

the CK+ and Oulu-CASIA databases. Furthermore, we

showed that our joint fine-tuning method is superior to

other integration methods, such as a weighted summation

and a feature concatenation method.
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