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Abstract

Consistent object extraction plays an essential role for

stereo image editing with the population of stereoscopic

3D media. Most previous methods perform segmentation

on entire images for both views using dense stereo cor-

respondence constraints. We find that for such kind of

methods the computation is highly redundant since the

two views are near-duplicate. Besides, the consistency

may be violated due to the imperfectness of current stereo

matching algorithms. In this paper, we propose a contour

based method which searches for consistent object contours

instead of regions. It integrates both stereo correspondence

and object boundary constraints into an energy minimiza-

tion framework. The proposed method has several advan-

tages compared to previous works. First, the searching

space is restricted in object boundaries thus the efficiency

significantly improved. Second, the discriminative power of

object contours results in a more consistent segmentation.

Furthermore, the proposed method can effortlessly extend

existing single-image segmentation methods to work in

stereo scenarios. The experiment on the Adobe bench-

mark shows superior extraction accuracy and significant

improvement of efficiency of our method to state-of-the-art.

We also demonstrate in a few applications how our method

can be used as a basic tool for stereo image editing.

1. Introduction

The enthusiasm on stereoscopic media has been lit up by

the population of 3D movies and TV programs in recent

years. With the increasing amount of stereoscopic data,

tools to handle such a kind of media turns to be an urgent

demand to support television broadcasting, film industry

and even daily life photo editing. Among the tasks for

stereo media handling, one of the most essential tools is

to consistently extract objects from stereo image pairs, as

shown in Fig. 1.

Extracting objects from stereo images with single-image

tools usually causes inconsistency, because they need to be

applied view by view, let alone the doubled workload. How-

Figure 1. Consistent object extraction for stereo images. First row:

the interactions on stereo images and the resultant object contours.

Second row: object masks generated from contours. Our method

can effortlessly make single-image segmentation methods work

for stereo scenarios with only one view interaction, e.g. graph

cuts [6] (left) and GrabCut [27] (right).

ever, inter-view consistency is of great importance to supply

good 3D experience. To overcome the problems, some

previous methods apply stereo correspondence constraints

to single image models and perform segmentation jointly

or successively [21, 24]. We find that the computational

cost for these models are quite high as they perform at

least double operations. Since the two views of a stereo

image pair are naturally near-duplicate, we believe that

once the contour of one view is given, the extraction for

the other view could be obtained with very little cost.

Besides, previous methods suffer from the inaccuracy of

current stereo matching algorithms, which may also lead

to inconsistent extractions.

In this paper, we propose a contour based method to

overcome the above limitations. First, after investigating the

results of previous methods, it is obvious to conclude that

most of the ground-truth regions can be covered by a rough

segmentation, while errors usually occur on boundaries.

Consequently, matching contours from one view to another

seems to be a smarter choice other than matching entire

images. Since the search space for contours is much smaller

than pixels from entire images, the cost for consistent

extraction is significantly reduced.

The second improvement is the relaxation of stereo

correspondence constraint. Previous models apply im-
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plicit or explicit dense correspondence between views,

which may suffer from the imperfectness of current stereo

matching algorithms. In contrast, the matching of two

contours are much easier and more accurate than dense

stereo matching, since contours are usually full of gradient

and appearance variance around. The problem of accurate

contour correspondence is to miss occluded regions. To

solve this problem, we add an object boundary term in

our optimization function to pull the contours towards real

boundaries, so that the occluded regions can be recalled.

Besides, some previous works [24, 23] integrate stereo

correspondence constraints and single-image segmentation

model into a unified framework, i.e. a single cost function

in optimization. As a result, it is difficult for them to select

different single view methods. In contrast, our method

works as an independent module which does not care about

specific methods for single view extraction. Any current

single-image methods can effortlessly adopt our method to

handle stereo tasks. We show an example in Fig. 1, where

graph cuts [6] and GrabCut [27] are respectively combined

with our method to conduct consistent object extraction.

We evaluate the proposed method on the Adobe open

dataset [24], which includes 31 stereo image pairs and

corresponding ground truth. Compared to state-of-the-

art, our method shows superior extraction accuracy, and

significantly improves efficiency. We further combine our

method with some current single-image segmentation tools,

like Magnetic Lasso [22], GrabCut [27] and [6, 11, 12, 20].

We show that our method is competent to make them handle

stereo images. At last, we give some applications of our

method to show its usefulness in stereo image editing.

The contribution of this paper can be briefly stated as fol-

lows. First, we propose a novel consistent object extraction

method tailored for stereo images, which shows superior

performance to state-of-the-art due to the exploration of

object contour properties. Second, we show that our method

can serve well as an independent module to combine with

single-image methods, and consequently makes them work

for stereo scenarios effortlessly.

2. Related Works

Single image segmentation. There are generally two cate-

gories of models for single image segmentation: boundary

based and region based [32]. The former one, represented

by snakes [17] and intelligent scissors [22], extracts an

object by tracing its contour using single image prop-

erties. Our method differs from them in objective and

searching space: we are searching for an optimal contour

corresponding to a given one under stereo correspondence

constraint. Another category of model is based on region,

which considers both region statistics and inter-regional

similarities, like graph cuts [6], geodesic distance [1],

random walks [11] and [25, 10] etc. This category of

methods simplifies the user interactions a lot, but are more

computationally expensive.

Stereo image segmentation. In [24] Price et al. proposed

a framework to simultaneously segment both views by

integrating dense stereo correspondence term into the graph

cuts model. The model is adopted by [16] and [23]. In

[33] it has been shown that sparse correspondence can

achieve comparable result. These methods, however, are

computationally expensive and closed in framework, thus

difficult to select different single image models. Lo et

al. developed a stereoscopic 3D copy&paste system [21],

which aims at extracting an object from one stereo image

and composite to another one. For consistent segmentation,

they employ a slight variant of Snapcut [2], which will be

introduced later.

Contour matching and tracking. Some early work-

s perform stereo matching/tracking on contours [17, 7].

Different from them, we are searching for real object

boundaries instead of accurate contours, which will be

discussed in Sect. 3.3. Besides, we exploit more powerful

stereo cues instead of single image properties. Contours

have also been used for object tracking [8, 36]. Our

method differs from them in two aspects. First, contour

tracking aims at tracing the motion of objects, which

allows a certain error margin. In contrast, our method

serves for stereo image editing, which has a much higher

requirement on consistency. Second, the motion in contour

tracking usually appearers to be a 2D flow, while for stereo

image segmentation, epipolar geometry [37] is a more strict

constraint to restrict the parallax between views.

Co-segmentation. Co-segmentation [28, 3] targets at pick-

ing out the same object from a collection of images. Rother

et al. [28] model the problem as a MRF minimization

that integrates smoothness and histogram matching term

which forces similar foreground appearances. The research

handles the extraction task on a collection of loosely related

images, while for our scenario, stereo images are tightly

related between views, and thus adaptable to more strict

constraints on both boundary and appearance.

Video segmentation. Another research topic related to our

work is video segmentation. The interframe consistency

for video object extraction is similar to the case of stereo

images segmentation. Snapcut [2] and Livecut [26] are

two famous interactive video segmentation works. Users

interactively segment the first frame and the result is used

to guide the segmentation on consecutive frames. These

works, like object tracking, mainly focus on temporal

motion consistency. In contrast, for stereo images we care

about spatial consistency caused by parallax.

3. Consistent Object Extraction

We give an overview of our method in Fig. 2. First, we

extract the object-of-interest on either view using single-
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Single view object selection Contour correspondenceInput stereo image pair Consistent extraction

Figure 2. An overview of the proposed method. Given a pair of stereo image, our method allows user to interactively segment on one view

using any current single-image methods. The consistent object extraction on the other view is then generated by the proposed method. Our

method works on boundaries and supplies object masks as output.

image methods. There are many good choices for single

image segmentation, as introduced in Sect. 2. In this

section we take graph cuts [6] for example, and in Sect. 4

we will give more results that our method combined with

current single-image methods. Next, we transform the

extraction result into contours and search for the corre-

sponding contours in the other view. We integrate stereo

correspondence and object boundary constraints into an

energy minimization function to find the optimal contours.

At last, we recover the extraction masks from the contours

using [14].

3.1. StereoSnakes model

Suppose the extraction for one view is obtained and

recorded in a mask �, where each entry �(��) could

be 1 or 0, indicating “Object” or “Background” respec-

tively. We then extract the contours of the object using

[31]. The borders are recorded as a set of vectors: � =
{�1, �2, ..., ��}. Each vector �� indicates a closed curve,

which encodes the location of boundary pixels clockwise:

�� = {�1, �2, ..., ���
}. For each contour ��, we formu-

late the contour correspondence as an energy minimization

problem in the disparity space:

�(�) =
∑

��∈��

��(��, �� − �(��))

+ ����(��, �� − �(��)) + ���(��, ��−1)

(1)

in the left part, � stands for the required disparities and

�(�) is the objective energy score. In the right of the

equation, the first term denotes the matching cost between

corresponding pixels �� and �� − �(��) from two views.

�(��) is the disparity of ��, which is restricted in the

horizontal direction owing to the epipolar geometry [37].

The second term stands for the object boundary cost, which

pulls contours towards real object boundaries. The last term

is a smoothness function between adjacent pixels �� and

��−1. �� and �� are two weighting parameters to adjust

the power of object boundary and smoothness term.

  

 

    

(a) Occlusion

 
 

 

    

(b) Self-occlusion

Figure 3. Occlusion and self-occlusion illustration. (a) Due to

binocular disparity, inconsistent local imaging between views

occurs when there exists occlusion. (b) Part of object region

missing caused by self-occlusion.

3.2. Stereo correspondence cost

The first term of Eq 1 indicates the matching cost

between �� and its corresponding pixel �� = �� − �(��)
in the other view. We measure the pixel-wise matching cost

using the absolute difference between their colors:

���(��, ��) =
∑

ℎ={�,�,�}

∣�ℎ(��)− �ℎ(��)∣ (2)

Considering of robustness, we aggregate the matching cost

in a local surrounding window:

��(��, ��) =
∑

��∈Φ(��)∧�(��)=1

���(��, ��) (3)

where �� = ��−�(��) and Φ(��) is a local window centered

at �� with size � × �. �(��) = 1 indicates that we

only aggregate the costs for object pixels. This is designed

to overcome the inconsistency of local appearance due to

binocular disparity. We illustrate the problem in Fig. 3 (a).

A contour pixel with surrounding areas � and � in the left

view appears to be encircled with � and � in the right
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4. Illustration of the cost terms in our model. (a) Left

image. (b) Right image. (c) Left mask. (d) Object likelihood of

the right view calculated using histogram of the left. Warmer color

(red) indicates higher object probability, vice versa. (e) Stereo

correspondence cost �� . Cooler color indicates lower cost, vice

versa. (f) Object boundary cost �� . (g) Optimal contour obtained

using only �� . (h) Optimal contour obtained using only �� . (i)

Contour jointly optimized using �� and �� .

view, which may lead to mismatch. However, our stereo

correspondence term only aggregates the costs in area �

and thus preserves consistency well.

Minimization of the stereo correspondence term forces

the objective contour to have similar local appearances to

the known one. Usually, the local areas around object

contours are rich in gradient and appearance changes, since

one side of the contour belongs to object and the other falls

into background. This property makes it much easier to

locate object contours than densely match entire images

even using very simple matching cost functions, which

is a major advantage of our method to previous works.

The aggregation cost can be efficiently computed within a

complexity of �(1) using the integral image technique [35].

One could also choose advanced matching cost functions

and aggregation methods [29, 13, 34, 15] to handle specific

cases like photometric distortions, specular reflectance and

other sophisticated problems.

3.3. Object boundary cost

Sometimes accurate contour correspondence will miss

object regions due to self-occlusion as shown in Fig. 3

(b). We give an example in Fig. 4. The left hand of

the boy is occluded in the left view but visible in the

right. Consequently, an accurate contour correspondence

will miss the invisible part as shown in Fig. 4 (g).

To solve this problem, we employ an object boundary

term to pull the contours towards real object borders. We

first use the extraction result in the left view to model

foreground and background color distributions. We find

that color histogram is sufficient for this task while being

efficient. Suppose the histograms for object and background

are denoted as �� and �� respectively, we measure the

object boundary cost as:

��(��, ��) =
∑

��∈Φ(��)

∣��(�∣��)−�(��)∣ (4)

��(�∣��) =
��(�(��))

��(�(��)) +��(�(��))
(5)

where �� = �� − �(��) and �(��) is the RGB color of point

�� . ��(�∣��) is the posterior probability of pixel �� to be

object. We show the object probability of the right view in

Fig. 4 (d). �� gets minimum score when and only when

both the object and background part of Φ(��) matches the

other view, that’s where the real object boundary is.

We show �� and �� in possible searching space in

Fig. 4 (e) and (f). It can be found that �� favors accurate

corresponding contours and thus tend to miss self-occluded

object regions. In contrast, �� has a more powerful

discrimination to strong real object boundaries, but is prone

to be puzzled by weak borders. The results in Fig. 4 (g)

and (h) shows the defects of single cost terms respectively.

Fortunately, a combination of the two terms complement

each other and thus produces superior results, as shown in

Fig. 4 (i).

3.4. Optimization using dynamic programming

Typically our objective function (Eq. 1) can be optimized

using graph cuts [5, 18] or primal-dual methods [19].

However, in this task we find it can be solved more

efficiently using dynamic programming in the disparity

space. We first write the smoothness function as:

�(��, ��−1) =

{

��, if ∣�(��)− �(��−1)∣ ≤ ��

∞, otherwise
(6)

where �� and ��−1 are adjacent pixels in a contour �. It

should be noted that � is a closed curve and thus the

last pixel �� is adjacent to the first one �0. �� is a

penalty term for discontinuous disparities: ��(��, ��−1) =
∣�(��) − �(��−1)∣. �� sets an upper bound of acceptable

discontinuities. We should mention that the above smooth-

ness function is used to restrict the change of the objective

contour to that in the known view, while in previous

works [17, 8, 36] they are mainly used to control the shapes

of the contours.

Then we can give the state transition function:
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Figure 5. Illustration of our contour correspondence algorithm.

Contours are extracted from the segmented view, then mapped

to the disparity space. The corresponding contour path is then

obtained by dynamic programming as described in Algorithm. 1.

At last the contour is mapped back to the image space and the

object mask is recovered.

���� (�, �) =
⎧

⎨

⎩

�(��, ��), � = 1

�(��, ��) + min
�∈[�−��,�+��]

���� (�− 1, �), ��ℎ������

(7)

where ���� (�, �) is the state energy. �(��, ��) is the corre-

spondence energy for a single pixel �� given a hypothesized

disparity �� :

�(��, ��) = ��(��, �� − ��)

+ ����(��, �� − ��) + ���(��, ��−1)
(8)

Now we can get the state transition matrix according to

Eq. 7. After the computation, we traceback the path with

the lowest state energy to find the optimal contour. The

traceback function is written as:

�(�) =
⎧

⎨

⎩

index ( min
�∈[1,�]

���� (�, �)), � = �

index ( min
�∈[�(�+1)−��,�(�+1)+��]

���� (�, �)), ��ℎ������

(9)

where � is the possible disparity range and � is the contour

length. index(min ∗) returns the index of the minimum

value.

We given an example in Fig. 5 for illustration. Suppose

the object is selected in the left view and the extracted

contour is shown in green in the leftmost. The state

transition matrix � , as shown in the middle, is of �

rows and � columns, where � ranges from ���� to

����. The left contour corresponds to the zero-disparity

column, as shown in green. The state energy of each

entry (�, �) is calculated as ���� (�, �) according to Eq. 7.

After the calculation of the entire state transition matrix,

we traceback along the minimum energy path, as shown

Algorithm 1 Contour Correspondence

Input: � = {�1, �2, ..., ��}
Output: �′ = {�1

′, �2
′, ..., ��

′}
1: // State transition matrix calculation

2: for each cell (�, �) in ��×� do

3: ��,� = �(��, ��)
4: end for

5: for � = 2 to � do

6: for � = 1 to � do

7: ��,� = min(��−1,�−1 + ��,��−1,� ,

8: ��−1,�+1 + ��) +��,�

9: end for

10: end for

11: // Minimum energy path traceback

12: �� = index(min (��,1,��,2, ...,��,�))
13: ��

′ = �� − ��
14: for � = �− 1 to 1 do

15: �� = index(min (��,��+1−1,��,��+1
,��,��+1+1))

16: ��
′ = �� − ��

17: end for

in blue. Each node (�, �) in the path can be mapped to a

pixel �� − �� in the right view, as shown in the rightmost.

Obviously, the complexity for our contour correspondence

algorithm is �(��).

Implementation details. In our implementation, we set ��
as 1 since generally the contour disparities vary smooth-

ly. The possible disparity range [����, ����] could be

assigned experimentally, or roughly estimated using sparse

feature point matching [4]. We give the complete process

of our contour correspondence method in Algorithm. 1.

The corresponding contour �′ may be discontinuous due

to disparity changes. So we link every two discontinuous

pixels using a line to get a closed contour. At last, the object

mask is recovered from the contour using [14].

4. Experiments and Analysis

4.1. Experimental settings

We evaluate our method on the Adobe open dataset [24],

which is a benchmark designed for testing object extraction

methods for stereo images. The dataset includes 31 stereo

image pairs and manually labeled ground truth masks.

The parameters of our method are set as {��, �� , �} =
{0.6, 30, 13} throughout the experiments. We use 83 bins

for color histograms, 8 bins per channel. All the experi-

ments are conducted on a machine with a 3.4GHz Intel i7-

4770 CPU and 16GB memory.

We first compare our method with state-of-the-art meth-

ods related to stereo image segmentation. After that, we

show the capability of our method that extends current

single-image methods to stereo scenarios. At last, we give
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Table 1. Evaluation results on the Adobe open dataset. The first

two rows show the number and percentage of mislabeled pixels

of different methods. The last row gives the average runtimes of

different methods.

Method ST [24] CT [9] CO [3] SN [2] Ours

Errors (#) 481 1277 2995 1094 439

Errors (%) 0.23 0.61 1.43 0.53 0.21

Runtime (s) 0.650 0.413 0.532 0.715 0.031

Left image Right image Left mask

Right mask ST [24] CT [9]

CO [3] SN [2] Ours

Figure 6. Comparison results on the stereo image “Lamppost1”

from the Adobe open dataset. The results show the extractions on

the right view with the left ground truth mask as input.

some applications of our method in stereo image editing.

4.2. Comparison with related methods

We compare our method to four state-of-the-art methods

related to stereo image segmentation: stereocut (ST) [24],

contour tracking (CT) [9], iCoseg [3] (CO), and Snapcut [2]

(SN) [2]. We choose them according to a full coverage

of related directions: stereo image segmentation, contour

tracking, co-segmentation and video object extraction. S-

ince our major concern is about consistent object extraction,

for all the compared methods we input with ground truth

masks of one view and compare the consistent extraction

results on the other view. We employ the number and

percentage of mislabeled pixels as evaluation metrics [24].

The quantitative evaluation results are shown in Table. 1.

The performances of the methods could be divided into

three tiers: first the stereo methods (ST and ours), second

the contour tracking and video methods (CT and SN),

and last the co-segmentation method (CO). This can be

explained by the fact that more strict constraints could lead

to more accurate extractions. As we know, stereo epipolar

constraint is stronger than temporal optical flow in videos,

and further tighter than common object correlation in co-

Left image Right image Left mask

Right mask ST [24] CT [9]

CO [3] SN [2] Ours

Figure 7. Comparison results on the stereo image “Toys2” from

the Adobe open dataset.

segmentation. As a result, the powerful cue makes stere-

ocut and our method perform the best in the benchmark.

However, stereocut is time expensive because it performs

global optimization on both images with dense matching

links between two views. The other methods are also time

consuming due to similar reasons. In contrast, our method

performs much more efficient because we eliminate the

computation redundancy in those regions far from object

contours. Besides, we implement a few efficient methods

for acceleration, e.g. integral image for cost aggregation,

histogram for color modeling, and dynamic programming

for optimization. As a result, our method is able to

efficiently work at more than 30fps in the Adobe open

dataset, whose average image resolution is 416× 502.

Fig. 6 and 7 show two examples of the results generated

by different methods. In Fig. 6, ST and CT both recall

extra parts due to occlusion and the high similarity between

object and background. CO misses the post because it

does not force strong spatial coherency between views. SN

erroneously captures a background region while missing the

post. In Fig. 7, ST captures a background region in occluded

area. CT fails to track the object boundary in the upper

left. CO detects an extra object that is similar to the desired

extraction. In contrast, our method handles both the two

cases well owing to a combination of stereo correspondence

and object boundary constraints. We give more results to

show the performance of the proposed method in Fig 8.

4.3. Combination with single-image methods

We extend single-image segmentation methods to stereo

tasks with our method. Due to space limitation we only

select a few typical works for illustration. We first show the

effects of our method combined with graph cuts [6], random
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Figure 8. Consistent extractions. Our method is capable of handling occlusions (1st row), small or elongated objects (2nd and 3rd row),

indistinct boundaries (3rd row), objects similar to backgrounds (3th and 4th row) and topologically complicated contours (5th row).

(a) Graph cuts [6] (b) Random walks [11]

(c) Geodesic star [12] (d) Branch-and-mincut [20]

Figure 9. Our method extends current single-image segmentation

methods to stereo scenarios.

walks [11], geodesic star [12], and branch-and-mincut [20]

in Fig. 9. The objects in the stereo images are first extracted

in one view using the above methods. Then our method

produces consistent extractions on the other view.

Next we show two examples using different interaction

styles from above. In Fig. 10 we show the effects of

combining the Magnetic Lasso tool [22] with our method.

The Magnetic Lasso is a single-image object selection tool

which traces object contours under rough user indications.

With our method, the contour paths for both views can

be simultaneously and consistently traced as shown in the

intermediate results. Note open contours are treated as

closed ones by linking the start and end point during the

interaction. Another example is give in Fig. 11, where

our method is combined with GrabCut [27] that employs

bounding box selection as a first operation and scribbling as

following refinement editing. The intermediate steps also

show consistent extractions between views. Both the two

examples show that our method could be of great help to

improve user experience.

4.4. Applications

Consistent object extraction contributes a lot in stereo

image editing. We give two demonstrations as follows.

Stereo image composition. In advertising and film indus-

tries it is popular to extract objects from one photograph and

composite to another one. With several basic copy&paste

operations and post processing, people can get novel photo-

realistic pictures. Object extraction plays as an essential

step in image composition, which needs to be performed

on both views for stereo case. We show an example using

our method in Fig. 12. Given the input stereo images, we

employ the Magnetic Lasso tool [22] and our method to

consistently select the girl in both views. Then we paste

the extracted person to another stereo image. Brightness
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Step 1 Step 2

Step 3 Step 4

Figure 10. Magnetic Lasso adopts our method to handle stereo

images. The intermediate results show consistent contour tracing

results for both views.

Step 1 Step 2

Step 3 Step 4

Figure 11. GrabCut extended to stereo scenarios with our method.

adjustment and linear alpha matting are consistently per-

formed on both views. The composed result is shown in

Fig. 12 (b) and the anaglyph is given in Fig. 12 (c), which

is best viewed with red (left) - cyan (right) glasses.

Stereo image resizing. Content-aware image resizing are

usually employed to change the size of an image to fit

different displays while preserving important image content

well. A simple and effective solution is to extract the

important objects from background as a significance map to

guide the resizing [30]. For stereo scenarios it is important

to keep the content consistency between views during image

resizing, where our method can be of service. We show

an example of resizing a stereo image to 50% width in

Fig. 13. Given the input stereo images, we first segment

the important objects on both views as significance maps

using the proposed method. Then we resize the background

after inpainting and paste the objects onto the background.

The results of the left and right views, and the red-cyan

anaglyphs both show good 3D experiences owing to the

consistent object selection.

5. Conclusions and Future Work

In this paper we have presented a novel consistent object

extraction method tailored for stereo images. By utiliz-

ing the specific properties of object contour, our method

achieves a superior extraction accuracy and significantly

improved efficiency to state-of-the-art. Furthermore, the

(a) Input stereo image

(b) Synthesized image (c) Red-cyan anaglyph

Figure 12. Stereo image composition.

Figure 13. Content-aware stereo image resizing. First row: left

and right images. Second row: left and right object masks. Third

row: left and right results, red-cyan anaglyph.

proposed method could effortlessly extend current single-

image segmentation methods to work for stereo images.

The experiments and extended applications show that our

method is powerful in stereo image editing.

In the future, we will investigate more sophisticated

stereo image editing tools such as image matting, comple-

tion, upsampling and so on. Consistency remains to be

the focus problem for these applications, which requires

more advanced processing. Besides, we will try to extend

our method to stereo video segmentation to support the

video editing applications. We believe that our method

could be of great help to build the bridge from mono video

segmentation to stereo scenarios.
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