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Abstract

Face alignment aims to estimate the locations of a set

of landmarks for a given image. This problem has received

much attention as evidenced by the recent advancement in

both the methodology and performance. However, most

of the existing works neither explicitly handle face images

with arbitrary poses, nor perform large-scale experiments

on non-frontal and profile face images. In order to address

these limitations, this paper proposes a novel face align-

ment algorithm that estimates both 2D and 3D landmarks

and their 2D visibilities for a face image with an arbitrary

pose. By integrating a 3D point distribution model, a cas-

caded coupled-regressor approach is designed to estimate

both the camera projection matrix and the 3D landmarks.

Furthermore, the 3D model also allows us to automatically

estimate the 2D landmark visibilities via surface normal.

We use a substantially larger collection of all-pose face im-

ages to evaluate our algorithm and demonstrate superior

performances than the state-of-the-art methods.

1. Introduction

This paper aims to advance face alignment in aligning

face images with arbitrary poses. Face alignment is a pro-

cess of applying a supervised learned model to a face image

and estimating the locations of a set of facial landmarks,

such as eye corners, mouth corners, etc [6]. Face alignment

is a key module in the pipeline of most facial analysis algo-

rithms, normally after face detection and before subsequent

feature extraction and classification. Therefore, it is an en-

abling capability with a multitude of applications, such as

face recognition [31], expression recognition [2], face de-

identification [13], etc.

Given the importance of this problem, face alignment

has been extensively studied since Dr. Cootes’ Active Shape

Model (ASM) in the 1990s [6]. Especially in recent years,

face alignment has become one of the most published sub-

jects in vision conferences [1, 21, 35, 36, 38, 43]. The ex-

isting approaches can be categorized into three types: Con-

Figure 1: Given a face image with an arbitrary pose, our pro-

posed algorithm automatically estimates the 2D locations and vis-

ibilities of facial landmarks, as well as 3D landmarks. The dis-

played 3D landmarks are estimated for the image in the center.

Green/red points indicate visible/invisible landmarks.

strained Local Model (CLM)-based approach (e.g., [6,26]),

Active Appearance Model (AAM)-based approach (e.g.,

[16, 17, 22]) and regression-based approach (e.g., [4, 30]),

and an excellent survey can be found in [33].

Despite the continuous improvement on the alignment

accuracy, face alignment is still a very challenging problem,

due to the non-frontal face pose, low image quality, occlu-

sion, etc. Among all the challenges, we identify the pose

invariant face alignment as the one deserving substantial re-

search efforts, for a number of reasons. First, face detection

has substantially advanced its capability in detecting faces

in all poses, including profiles [42], which calls for the sub-

sequent face alignment to handle faces with arbitrary poses.

Second, many facial analysis tasks would benefit from the

robust alignment of faces at all poses, such as expression

recognition and 3D face reconstruction [24]. Third, there

are very few existing approaches that can align a face with

any view angle, or have conducted extensive evaluations on

face images across ±90◦ yaw angles [40, 48], which is a

clear contrast with the vast face alignment literature [33].

Motivated by the needs to address the pose variation, and

the lack of prior work in handling poses, as shown in Fig. 1,
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Table 1: The comparison of face alignment algorithms in pose handling (estimation errors may have different definitions).

Method
3D

Visibility Pose-related database
Pose Training Testing Landmark Estimation

landmark range face # face # # errors

RCPR [3] No Yes COFW frontal w. occlu. 1, 345 507 19 8.5
CoR [41] No Yes COFW; LFPW-O; Helen-O frontal w. occlu. 1, 345; 468; 402 507; 112; 290 19; 49; 49 8.5
TSPM [48] No No AFW all poses 2, 118 468 6 11.1
CDM [40] No No AFW all poses 1, 300 468 6 9.1
OSRD [35] No No MVFW < ±40◦ 2, 050 450 68 N/A

TCDCN [46] No No AFLW, AFW < ±60◦ 10, 000 3, 000;∼313 5 8.0; 8.2
PIFA Yes Yes AFLW, AFW all poses 3, 901 1, 299; 468 21, 6 6.5; 8.6

this paper proposes a novel regression-based approach for

pose-invariant face alignment, which aims to estimate the

2D and 3D locations of face landmarks, as well as their

visibilities in the 2D image, for a face with arbitrary pose

(e.g., ±90◦ yaw). By extending the popular cascaded re-

gressor for 2D landmark estimation, we learn two regres-

sors for each cascade layer, one for predicting the update

for the camera projection matrix, and the other for predict-

ing the update for the 3D shape parameter. The learning

of two regressors is conducted alternatively with the goal

of minimizing the difference between the ground truth up-

dates and the predicted updates. By using the 3D surface

normals of 3D landmarks, we can automatically estimate

the visibilities of their 2D projected landmarks by inspect-

ing whether the transformed surface normal has a positive

z coordinate, and these visibilities are dynamically incor-

porated into the regressor learning such that only the local

appearance of visible landmarks contribute to the learning.

Finally, extensive experiments are conducted on a large sub-

set of AFLW dataset [15] with a wide range of poses, and

the AFW dataset [48], with the comparison with a num-

ber of state-of-the-art methods. We demonstrate superior

2D alignment accuracy and quantitatively evaluate the 3D

alignment accuracy.

In summary, the main contributions of this work are:

• To the best of our knowledge, this is the first face align-

ment that can estimate 2D/3D landmarks and their vis-

ibilities for a face image with an arbitrary pose.

• By integrating with a 3D point distribution model, a

cascaded coupled-regressor approach is developed to

estimate both the camera projection matrix and the 3D

landmarks, where 3D model enables the automatically

computed landmark visibilities via surface normal.

• A substantially larger number of non-frontal view face

images are utilized in evaluation with demonstrated su-

perior performances than the state of the art.

2. Prior Work

We now review the prior work in generic face alignment,

pose-invariant face alignment, and 3D face alignment.

The first type of face alignment approach is based on

Constrained Local Model (CLM), where an early example

is ASM [6]. The basic idea is to learn a set of local ap-

pearance models, one for each landmark, and the decisions

from the local models are fused with a global shape model.

There are generative or discriminative [8] approaches in

learning the local model, and various approaches in utiliz-

ing the shape constraint [1]. While the local models are

favored for higher estimation precision, it also creates dif-

ficulty for alignment on low-resolution images due to lim-

ited local appearance. In contrast, the AAM method [5, 22]

and its extension [20, 25] learn a global appearance model,

whose similarity to the input image drives the landmark

estimation. While AAM is known to have difficulty with

unseen subjects [10], the recent development has substan-

tially improved its generalization capability [29]. Motivated

by the Shape Regression Machine [44, 47] in the medical

domain, cascaded regressor-based methods have been very

popular in recent years [4, 30]. On one hand, the series

of regressors progressively reduce the alignment error and

lead to a higher accuracy. On the other hand, advanced fea-

ture learning also renders ultra-efficient alignment proce-

dures [14, 23]. Other than the three major types of algo-

rithms, there are also works based on deep learning [46],

graph-model [48], and semi-supervised learning [28].

Despite the explosion of methodology and efforts on

face alignment, the literature on pose-invariant face align-

ment is rather limited, as shown in Tab. 1. There are four

approaches explicitly handling faces with a wide range of

poses. Zhu and Ranaman propose the TSPM approach

for simultaneous face detection, pose estimation and face

alignment [48]. An AFW dataset of in-the-wild faces with

all poses is labeled with 6 landmarks and used for experi-

ments. The cascaded deformable shape model (CDM) is a

regression-based approach and probably the first approach

claiming to be “pose-free” [40], therefore it is the most rel-

evant work to ours. However, most of the experimental

datasets contain near-frontal view faces, except the AFW

dataset with improved performance than [48]. Also, there

is no visibility estimation of the 2D landmarks. Zhang

et al. develop an effective deep learning based method to es-

timate 5 landmarks. While accurate results are obtained, all
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Figure 2: Overall architecture of our proposed PIFA method, with three main modules (3D modeling, cascaded coupled-regressor

learning, and 3D surface-enabled visibility estimation). Green/red arrows indicate surface normals pointing toward/away from the camera.

testing images appear to be within ∼±60◦ so that all 5 land-

marks are visible and there is no visibility estimation. The

OSRD approach has the similar experimental constraint in

that all images are within ±40◦ [35]. Other than these four

works, the work on occlusion-invariant face alignment are

also relevant since non-frontal faces can be considered as

one type of occlusions, such as RCPR [3] and CoR [41].

Despite being able to estimate visibilities, neither method

has been evaluated on faces with large pose variations. Fi-

nally, all aforementioned methods in this paragraph do not

explicitly estimate the 3D locations of landmarks.

3D face alignment aims to recover the 3D locations

of facial landmarks given a 2D image [11, 32]. There

is also a very recently work on 3D face alignment from

videos [12]. However, almost all methods take near-frontal-

view face images as input, while our method can handle

faces at all poses. A relevant but different problem is 3D

face reconstruction, which recovers the detailed 3D surface

model from one image, multiple images, or an image col-

lection [9, 27]. Finally, 3D face model has been used in

assisting 2D face alignment [34]. However, it has not been

explicitly integrated into the powerful cascaded regressor

framework, which is one of the main technical novelties of

our approach.

3. Pose-Invariant 3D Face Alignment

This section presents the details of our proposed Pose-

Invariant 3D Face Alignment (PIFA) algorithm, with em-

phasis on the training procedure. As shown in Fig. 2, we

first learn a 3D Point Distribution Model (3DPDM) [7] from

a set of labeled 3D scans, where a set of 2D landmarks on

an image can be considered as a projection of a 3DPDM

instance (i.e., 3D landmarks). For each 2D training face

image, we assume that there exists the manual labeled 2D

landmarks and their visibilities, as well as the correspond-

ing 3D ground truth– 3D landmarks and the camera projec-

tion matrix. Given the training images and 2D/3D ground

truth, we train a cascaded coupled-regressor that is com-

posed of two regressors at each cascade layer, for the es-

timation of the update of the 3DPDM coefficient and the

projection matrix respectively. Finally, the visibilities of the

projected 3D landmarks are automatically computed via the

domain knowledge of the 3D surface normals, and incorpo-

rated into the regressor learning procedure.

3.1. 3D Face Modeling

Face alignment concerns the 2D face shape, represented

by the locations of N 2D landmarks, i.e.,

U =

(

u1 u2 · · · uN

v1 v2 · · · vN

)

. (1)

A 2D face shape U is a projection of a 3D face shape S,

similarly represented by the homogeneous coordinates of

N 3D landmarks, i.e.,

S =









x1 x2 · · · xN

y1 y2 · · · yN
z1 z2 · · · zN
1 1 · · · 1









. (2)

Similar to the prior work [34], a weak perspective model is

assumed for the projection,

U = MS, (3)

where M is a 2× 4 projection matrix with seven degrees of

freedom (yaw, pitch, roll, two scales and 2D translations).

Following the basic idea of 3DPDM [7], we assume a 3D

face shape is an instance of the 3DPDM,

S = S0 +

Ns
∑

i=1

piSi, (4)
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where S0 and Si is the mean shape and ith shape basis of

the 3DPDM respectively, Ns is the total number of shape

bases, and pi is the ith shape coefficient. Given a dataset of

3D scans with manual labels on N 3D landmarks per scan,

we first perform procrustes analysis on the 3D scans to re-

move the global transformation, and then conduct Principal

Component Analysis (PCA) to obtain the S0 and {Si} (see

the top-left part of Fig. 2).

The set of all shape coefficients p = (p1, p2, · · · , pNs
)

is termed as the 3D shape parameter of an image. At this

point, the face alignment for a testing image I has been

converted from the estimation of U to the estimation of

P = {M,p}. The conversion is motivated by a few fac-

tors. First, without the 3D modeling, it is very difficult to

model the out-of-plane rotation, which has a varying num-

ber of landmarks depending on the rotation angle and the in-

dividual 3D face shape. Second, as pointed out by [34], by

only using 1

6
of the number of the shape bases, 3DPDM can

have an equivalent representation power as its 2D counter-

part. Hence, using 3D model might lead to a more compact

representation of unknown parameters.

Ground truth P Estimating P for a testing image implies

the existence of ground truth P for each training image.

However, while U can be manually labeled on a face im-

age, P is normally unavailable unless a 3D scan is captured

along with a face image. Therefore, in order to leverage the

vast amount of existing 2D face alignment datasets, such as

the AFLW dataset [15], it is desirable to estimate P for a

face image and use it as the ground truth for learning.

Given a face image I, we denote the manually labeled

2D landmarks as U and the landmark visibility as v, an

N -dim vector with binary elements indicating visible (1)

or invisible (0) landmarks. Note that it is not necessary to

label the 2D locations of invisible landmarks. We define the

following objective function to estimate M and p,

J(M,p) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

M

(

S0 +

Ns
∑

i=1

piSi

)

−U

)

⊙V

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

, (5)

where V = (v⊺;v⊺) is a 2 × N visibility matrix, ⊙ de-

notes the element-wise multiplication, and || · ||2 is the

sum of the squares of all matrix elements. Basically

J(·, ·) computes the difference between the visible 2D land-

marks and their 3D projections. An alternative estima-

tion scheme is utilized, i.e., by assuming p0 = 0, we

estimate Mk = argminM J(M,pk−1), and then pk =
argminp J(Mk,p) iteratively until the changes of M and

p are small enough. Both minimizations can be efficiently

solved in closed forms via least-square error.

3.2. Cascaded CoupledRegressor

For each training image Ii, we now have its ground

truth as Pi = {Mi,pi}, as well as their initialization, i.e.,

M0
i = g(M̄,bi), p

0
i = 0, and v0

i = 1. Here M̄ is the

average of ground truth projection matrices in the training

set, bi is a 4-dim vector indicating the bounding box loca-

tion, and g(M,b) is a function that modifies the scale and

translation of M based on b. Given a dataset of Nd training

images, the question is how to formulate an optimization

problem to estimate Pi. We decide to extend the success-

ful cascaded regressors framework due to its accuracy and

efficiency [4]. The general idea of cascaded regressors is

to learn a series of regressors, where the kth regressor es-

timates the difference between the current parameter Pk−1

i

and the ground truth Pi, such that the estimated parameter

gradually approximates the ground truth.

Motivated by this general idea, we adopt a cascaded

coupled-regressor scheme where two regressors are learned

at the kth cascade layer, for the estimation of Mi and pi

respectively. Specifically, the first learning task of the kth

regressor is,

Θk
1 = argmin

Θk

1

Nd
∑

i=1

||∆Mk
i −Rk

1(Ii,Ui,v
k−1

i ; Θk
1)||

2, (6)

where

Ui = Mk−1

i

(

S0 +

Ns
∑

i=1

pk−1

i Si

)

, (7)

is the current estimated 2D landmarks, ∆Mk
i = Mi −

Mk−1

i , and Rk
1(·; Θ

k
1) is the desired regressor with the

parameter of Θk
1 . After Θk

1 is estimated, we obtain

∆M̂i = Rk
1(·; Θ

k
1) for all training images and update

Mk
i = Mk−1

i + ∆M̂i. Note that this liner updating may

potentially break the constraint of the projection matrix.

Therefore, we estimate the scales and yaw, pitch, roll angles

(sx, sy, α, β, γ) from Mk
i and compose a new Mk

i based on

these five parameters.

Similarly the second learning task of the kth regressor is,

Θk
2 = argmin

Θk

2

Nd
∑

i=1

||∆pk
i −Rk

2(Ii,Ui,v
k
i ; Θ

k
2)||

2, (8)

where Ui is computed via Eq 7 except Mk−1

i is replaced

with Mk
i . We also obtain ∆p̂i = Rk

2(·; Θ
k
2) for all train-

ing images and update pk
i = pk−1

i + ∆p̂i. This iterative

learning procedure continues for K cascade layers.

Learning Rk(·) Our cascaded coupled-regressor scheme

does not depend on the particular feature representation or

the type of regressors. Therefore, we may define them based

on the prior work or any future development in features and

regressors. Specifically, in this work we adopt the HOG-

based linear regressor [37] and the fern regressor [3].

For the linear regressor, we denote a function f(I,U) to

extract HOG features around a small rectangular region of

each one of N landmarks, which returns a 32N -dim feature

vector. Thus, we define the regressor function as

R(·) = Θ⊺ · Diag∗(vi)f(Ii,Ui), (9)
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where Diag∗(v) is a function that duplicates each element

of v 32 times and converts into a diagonal matrix of size

32N . Note that we also add a constraint, λ||Θ||2, to Eq 6 or

Eq 8 for a more robust least-square solution. By plugging

Eq 9 to Eq 6 or Eq 8, the regressor parameter Θ (e.g., a

Ns × 32N matrix for Rk
2 ) can be easily estimated in the

closed form.

For the fern regressor, we follow the training procedure

of [3]. That is, we divide the face region into a 3 × 3 grid.

At each cascade layer, we choose 3 out of 9 zones with the

least occlusion, computed based on the {vk
i }. For each

selected zone, a depth 5 random fern regressor is learned

from the interpolated shape-indexed features selected by the

correlation-based method [4] from that zone only. Finally

the learned R(·) is a weighted mean voting from the 3 fern

regressors, where the weight is inversely proportional to the

average amount of occlusion in that zone.

3.3. 3D SurfaceEnabled Visibility

Up to now the only thing that has not been explained in

the training procedure is how to estimate the visibility of

the projected 2D landmarks, vi. It is obvious that during

the testing we have to estimate v at each cascade layer for a

testing image, since there is no visibility information given.

As a result, during the training procedure, we also have to

estimate v per cascade layer for each training image, rather

than using the manually labeled ground truth visibility that

is useful for estimating ground truth P as shown in Eq 5.

Depending on the camera projection matrix M, the vis-

ibility of each projected 2D landmark may dynamically

change along different layers of the cascade (see the top-

right part of Fig. 2). In order to estimate v, we decide to

use the 3D face surface information. We start by assum-

ing every individual has a similar 3D surface normal vector

at each of its 3D landmarks. Then, by rotating the surface

normal according to the rotation angle indicated by the pro-

jection matrix, we know that whether the rotated surface

normal is pointing toward the camera (i.e., visible) or away

from the camera (i.e., invisible). In other words, the sign of

the z-axis coordinates indicates visibility.

By taking a set of 3D scans with manually labeled 3D

landmarks, we can compute the landmarks’ average 3D sur-

face normals, denoted as a 3 × N matrix ~N. Then we use

the following equation to compute the visibility vector,

v = ~N⊺ ·

(

m1

||m1||
×

m2

||m2||

)

, (10)

where m1 and m2 are the left-most three elements at the

first and second row of M respectively, and || · || denotes

the L2 norm. For fern regressors, v is a soft visibility within

±1. For linear regressors, we further compute v = 1

2
(1 +

sign(v)), which results in a hard visibility of either 1 or 0.

In summary, we present the detailed training procedure

in Algorithm 1.

Algorithm 1: The training procedure of PIFA.

Data: 3D model {{S}Ns

i=0
, ~N}, labeled data {Ii,Ui,bi}

Nd

i=1

Result: Cascaded regressor parameters {Θk

1 ,Θ
k

2}
K

k=1

/* 3D modeling */

1 foreach i = 1, · · · , Nd do

2 Estimate Mi and pi via Eq. 5;

/* Initialization */

3 foreach i = 1, · · · , Nd do

4 p0

i = 0 ; ⊲ Assuming the mean 3D shape

5 v0

i = 1 ; ⊲ Assuming all landmarks visible

6 M0

i = g(M̄,bi) and Ui = M0

iS0 ;

/* Regressor learning */

7 foreach k = 1, · · · ,K do

8 Estimate Θk

1 via Eq 6 ;

9 Update Mk

i and Ui for all images ;

10 Compute vk

i via Eq 10 for all images ;

11 Estimate Θk

2 via Eq 8 ;

12 Update pk

i and Ui for all images .

Model fitting Given a testing image I with bounding box

b and its initial parameter M0 = g(M̄,b) and p0 = 0,

we can apply the learned cascaded coupled-regressor for

face alignment. Basically we iteratively use Rk
1(·; Θ

k
1) to

compute ∆M̂, update Mk, compute vk, use Rk
2(·; Θ

k
2) to

compute ∆p̂, and update pk. Finally the estimated 3D land-

marks are Ŝ = S0 +
∑

i p
K
i Si, and the estimated 2D land-

marks are Û = MK Ŝ. Note that Ŝ carries the individual

3D shape information of the subject, but not necessary in

the same pose as the 2D testing image.

4. Experimental Results

Datasets The goal of this work is to advance the capabil-

ity of face alignment on in-the-wild faces with all possible

view angles, which is the type of images we desire when se-

lecting experimental datasets. However, very few publicly

available datasets satisfy this characteristic, or have been

extensively evaluated in prior work (see Tab. 1). Neverthe-

less, we identify three datasets for our experiments.

AFLW dataset [15] contains ∼25, 000 in-the-wild face

images, each image annotated with the visible landmarks

(up to 21 landmarks), and a bounding box. Based on our

estimated M for each image, we select a subset of 5, 200
images where the numbers of images whose absolute yaw

angles within [0◦, 30◦], [30◦, 60◦], [60◦, 90◦] are roughly
1

3
each. To have a more balanced distribution of the left

vs. right view faces, we take the odd indexed images among

5, 200 (i.e., 1st, 3rd), flip them horizontally, and use them

to replace the original images. Finally, a random partition

leads to 3, 901 and 1, 299 images for training and testing re-

spectively. As shown in Tab. 1, among the methods that test

on all poses, we have the largest number of testing images.
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AFW dataset [48] contains 205 images and in total 468
faces with different poses within ±90◦. Each image is la-

beled with visible landmarks (up to 6), and a face bounding

box. We only use AFW for testing.

Since we are also estimating 3D landmarks, it is im-

portant to test on a dataset with ground truth, rather

than estimated, 3D landmark locations. We find BP4D-S

database [45] to be the best for this purpose, which con-

tains pairs of 2D images and 3D scans of spontaneous fa-

cial expressions from 41 subjects. Each pair has semi-

automatically generated 83 2D and 83 3D landmarks, and

the pose. We apply a random perturbation on 2D land-

marks (to mimic imprecise face detection) and generate

their enclosed bounding box. With the goal of selecting

as many non-frontal view faces as possible, we choose a

subset where the numbers of faces whose yaw angle within

[0◦, 10◦], [10◦, 20◦], [20◦, 30◦] are 100, 500, and 500 re-

spectively. We randomly select half of 1, 100 images for

training and the rest for testing, with disjoint subjects.

Experiment setup Our PIFA approach needs a 3D model

of {S}Ns

i=0
and ~N. Using the BU-4DFE database [39] that

contains 606 3D facial expression sequences from 101 sub-

jects, we evenly sample 72 scans from each sequence and

gather a total of 72 × 606 scans. Based on the method in

Sec. 3.1, the resultant model has Ns = 30 for AFLW and

AFW, and Ns = 200 for BP4D-S.

During the training and testing, for each image with a

bounding box, we place the mean 2D landmarks (learned

from the training set) on the image such that the landmarks

on the boundary are within the four edges of the box. For

training with linear regressors, we set K = 10, λ = 120,

while K = 75 for fern regressors.

Evaluation metric Given the ground truth 2D landmarks

Ui, their visibility vi, and estimated landmarks Ûi of

Nt testing images, we have two ways of computing the

landmark estimation errors: 1) Mean Average Pixel Error

(MAPE) [40], which is the average of the estimation errors

for visible landmarks, i.e.,

MAPE =
1

∑Nt

i |vi|1

Nt,N
∑

i,j

vi(j)||Ûi(:, j)−Ui(:, j)||,

(11)

where |vi|1 is the number of visible landmarks of image

Ii, and Ui(:, j) is the jth column of Ui. 2) Normalized

Mean Error (NME), which is the average of the normalized

estimation error of visible landmarks, i.e.,

NME =
1

Nt

Nt
∑

i

(
1

di|vi|1

N
∑

j

vi(j)||Ûi(:, j)−Ui(:, j)||),

(12)

where di is the square root of the face bounding box size, as

used by [40]. Note that normally di is the inter-eye distance

in prior face alignment work dealing with near-frontal faces.

Table 2: The NME(%) of three methods on AFLW.

Nt PIFA CDM RCPR

1, 299 6.52 7.15

783 6.08 8.65

Given the ground truth 3D landmarks Si and estimated

landmarks Ŝi, we first estimate the global rotation, trans-

lation and scale transformation so that the transformed Si,

denoted as S′

i, has the minimum distance to Ŝi. We then

compute the MAPE via Eq 11 except replacing U and Ûi

with S′

i and Ŝi, and vi = 1. Thus the MAPE only measures

the error due to non-rigid shape deformation, rather than the

pose estimation.

Choice of baseline methods Given the explosion of face

alignment work in recent years, it is important to choose ap-

propriate baseline methods so as to make sure the proposed

method advances the state of the art. In this work, we se-

lect three recent works as baseline methods: 1) CDM [40]

is a CLM-type method and the first one claimed to per-

form pose-free face alignment, which has exactly the same

objective as ours. On AFW it also outperforms the other

well-known TSPM method [48] that can handle all pose

faces. 2) TCDCN [46] is a powerful deep learning-based

method published in the most recent ECCV. Although it

only estimates 5 landmarks for up to ∼60◦ yaw, it represents

the recent development in face alignment. 3) RCPR [3]

is a regression-type method that represents the occlusion-

invariant face alignment. Although it is an earlier work than

CoR [41], we choose it due to its superior performance on

the large COFW dataset (see Tab. 1 of [41]). It can be seen

that these three baselines not only are most relevant to our

focus on pose-invariant face alignment, but also well rep-

resent the major categories of existing face alignment algo-

rithms based on [33].

Comparison on AFLW Since the source code of RCPR

is publicly available, we are able to perform the training

and testing of RCPR on our specific AFLW partition. We

use the available executable of CDM to compute its per-

formance on our test set. We strive to provide the same

setup to the baselines as ours, such as the initial bounding

box, regressor learning, etc. For our PIFA method, we use

the fern regressor. Because CDM integrates face detection

and pose-free face alignment, no bounding box was given

to CDM and it successfully detects and aligns 783 out of

1, 299 testing images. Therefore, to compare with CDM,

we evaluate the NME on the same 783 testing images. As

shown in Tab. 2, our PIFA shows superior performance to

both baselines. Although TCDCN also reports performance

on a subset of 3, 000 AFLW images within ±60◦ yaw, it

is evaluated with 5 landmarks, based on NME when di is

the inter-eye distance. Hence, without the source code of

TCDCN, it is difficult to have a fair comparison on our sub-

set of AFLW images (e.g., we can not define di as the inter-
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Table 3: The comparison of four methods on AFW.

Nt N Metric PIFA CDM RCPR TCDCN

468 6 MAPE 8.61 9.13

313 5 NME 9.42 9.30 8.20
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Figure 3: The NME of five pose groups for two methods.

eye distance due to profile view faces). On the 1, 299 testing

images, we also test our method with linear regressors, and

achieve a NME of 7.50, which shows the strength of fern

regressors.

Comparison on AFW Unlike our specific subset of

AFLW, the AFW dataset has been evaluated by all three

baselines, but different metrics are used. Therefore, the re-

sults of the baselines in Tab. 3 are from the published pa-

pers, instead of executing the testing code. One note is that

from the TCDCN paper [46], it appears that all 5 landmarks

are visible on all displayed images and no visibility estima-

tion is shown, which might suggest that TCDCN was eval-

uated on a subset of AFW with up to ±60◦ yaw. Hence,

we select the total of 313 out of 468 faces within this pose

range and test our algorithm. Since it is likely that our sub-

set could differ to [46], please take this into consideration

while comparing with TCDCN. Overall, our PIFA method

still performs comparably among the four methods. This is

especially encouraging given the fact that TCDCN utilizes

a substantially larger training set of 10, 000 images - more

than two times of our training set. Note that in addition

to Tab. 2 and 3, our PIFA also has other benefits as shown

in Tab. 1. E.g., we have 3D and visibility estimation, while

RCPR has no 3D estimation and TCDCN does not have vis-

ibility estimation.

Estimation error across poses Just like pose-invariant

face recognition studies the recognition rate across

poses [18,19], we also like to study the performance of face

alignment across poses. As shown in Fig. 3, based on the

estimated projection matrix M and its yaw angles, we parti-

tion all testing images of AFLW into five bins, each around

a specific yaw angle. Then we compute the NME of testing

images within each bin, for our method and RCPR. We can

observe that the profile view images have in general larger

NME than near-frontal images, which shows the challenge

of pose-invariant face alignment. Further, the improvement

of PIFA over RCPR is consistent across most of the poses.

Estimation error across landmarks We are also inter-

Figure 4: The NME of each landmark for PIFA.

Figure 5: 2D and 3D alignment results of the BP4D-S dataset.

Table 4: Efficiency of four methods in FPS.

PIFA CDM RCPR TCDCN

3.0 0.2 3.0 58.8

ested in the estimation error across various landmarks, un-

der a wide range of poses. Hence, for the AFLW test set,

we compute the NME of each landmark for our method. As

shown in Fig. 4, the two eye regions have the least amount

of error. The two landmarks under the ears have the most

error, which is consistent with the intuition. These obser-

vations also align well with prior face alignment study on

near-frontal faces.

3D landmark estimation By performing the training and

testing on the BP4D-S dataset, we can evaluate the MAPE

of 3D landmark estimation, with exemplar results shown

in Fig. 5. Since there are limited 3D alignment work and

many of which do not perform quantitative evaluation, such

as [11], we are not able to find another method as the base-

line. Instead, we use the 3D mean shape, S0, as a baseline

and compute its MAPE with respect to the ground truth 3D

landmarks Si (after global transformation). We find that

the MAPE of S0 baseline is 5.02, while our method has

4.75. Although our method offers a better estimation than

the mean shape, this shows that 3D face alignment is still a

very challenging problem. We hope the effort to quantita-

tively measure the 3D estimation error, which is more diffi-

cult than its 2D counterpart, will encourage more research

activities to address this challenge.

Computational efficiency Based on the efficiency reported

in the publications of baseline methods, we compare the
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Figure 6: Testing results of AFLW (top) and AFW (bottom). As shown in the top row, we initialize face alignment by placing a 2D mean

shape in the given bounding box of each image. Note the disparity between the initial landmarks and the final estimated ones, as well as

the diversity in pose, illumination and resolution among the images. Green/red points indicate visible/invisible estimated landmarks.

computational efficiency of four methods in Tab. 4. Only

TCDCN is measured based on the C implementation while

other three are all based on Matlab implementation. It can

be observed that TCDCN is the most efficient one. Con-

sider that we estimate both 2D and 3D landmarks, at 3 FPS

our unoptimized implementation is reasonably efficient. In

our algorithm, the most computational demanding part is

feature extraction, while estimating the updates for the pro-

jection matrix and 3D shape parameter has closed-form so-

lutions and is very efficient.

Qualitative results We now show the qualitative face

alignment results for images in two datasets. As shown

in Fig. 6, despite the large pose range of ±90◦ yaw, our

algorithm does a good job of aligning the landmarks, and

correctly predict the landmark visibilities. These results are

especially impressive if you consider the same mean shape

(2D landmarks) is used as the initialization of all testing

images, which has very large deformations with respect to

their final landmark estimation.

5. Conclusions

Motivated by the fast progress of face alignment tech-

nologies and the need to align faces at all poses, this paper

draws attention to a relatively less explored problem of face

alignment robust to poses variation. To this end, we propose

a novel approach to tightly integrate the powerful cascaded

regressor scheme and the 3D face model. The 3D model not

only serves as a compact constraint, but also offers an auto-

matic and convenient way to estimate the visibilities of 2D

landmarks - a key for successful pose-invariant face align-

ment. As a result, for a 2D image, our approach estimates

the locations of 2D and 3D landmarks, as well as their 2D

visibilities. We conduct an extensive experiment on a large

collection of all-pose face images and compare with three

state-of-the-art methods. While superior 2D landmark esti-

mation has been shown, the performance on 3D landmark

estimation indicates the future direction to improve this line

of research.
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