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Abstract

We present a novel approach to relative pose estima-

tion which is tailored to 4D light field cameras. From the

relationships between scene geometry and light field struc-

ture and an analysis of the light field projection in terms

of Plücker ray coordinates, we deduce a set of linear con-

straints on ray space correspondences between a pair of

light field cameras. These can be applied to infer relative

pose of the light field cameras and thus obtain a point cloud

reconstruction of the scene. While the proposed method has

interesting relationships to pose estimation for generalized

cameras based on ray-to-ray correspondence, our experi-

ments demonstrate that our approach is both more accurate

and computationally more efficient. It also compares fa-

vorably to direct linear pose estimation based on aligning

the 3D point clouds obtained by reconstructing depth for

each individual light field. To further validate the method,

we employ the pose estimates to merge light fields captured

with hand-held consumer light field cameras into refocus-

able panoramas.

1. Introduction

While the concept of light field cameras has been known

since the beginning of the 20th century [19, 10], only re-

cent progress in sensor technology and computing power

paved the way to implementations in the form of market-

ready digital cameras [21, 23, 31]. In contrast to conven-

tional cameras, a light field camera records both spatial as

well as angular information about incident light. This en-

ables sophisticated post-processing, and one can for exam-

ple virtually change focus or perspective [21], or estimate

depth maps from a single shot [32, 14].

Given this emerging paradigm for digital photography, it

is interesting to compare the alignment problem for tradi-

tional 2D images and 4D light fields. Per-pixel alignment

of 2D images requires per-pixel depth, and it is impossible

to find the complete 2D to 2D image transformation from

sparse feature correspondence alone. In contrast, it is easy
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Figure 1. One application of the proposed method is efficient align-

ment of light fields obtained with a hand-held consumer plenoptic

camera into a common light field panorama. Given enough views,

high-quality refocusing of the panorama is possible.

to see that the individual rays in a light field can be trans-

formed into the ray space of a second light field using only

information about relative pose, see figure 3. Not only will

this allow for particularly robust pose estimation, but cre-

ating refocusable light field panoramas is also an excellent

visual verification of the accuracy of the pose estimate.

Work on plenoptic camera calibration was so far mostly

devoted to obtaining a calibration of the intrinsic param-

eters, which assigns recorded luminance information to ac-

tual rays in 3D space [6, 12, 2]. In this work, we will thus as-

sume to have an internal calibration performed. While after

calibration, camera pose with respect to a fixed camera co-

ordinate system is usually known, the problem of comput-

ing light field camera pose given two arbitrary light fields of

the same scene has so far not been dealt with explicitly. For

small motion, tracking camera pose for visual odometry via

the plenoptic flow was discussed in [5], while our approach

is also suitable for wide-angle matching.

Nevertheless, a lot of previous work on structure-from-

motion still applies to our scenario as well. We will give a

short outline of the most relevant methods now, and delve

into their technical details in the main part of the paper.

Related work on structure-from-motion. Techniques

for estimating camera motion and scene structure from

multiple images have been perfected over the past three

decades [8, 25], up to the point that it now works on large
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scale internet photo collections [1]. Reliable technology is

available that can serve as a starting point to produce re-

lightable models which are getting close to being indistin-

guishable from their real-world counterparts for human ob-

servers [27]. However, these frameworks are tailored to 2D

perspective projections, and thus not directly applicable to

correspondences between the ray spaces of light field cam-

era views.

There has been comparatively less work on pose esti-

mation beyond pinhole cameras. The maybe most general

linear framework defines a generalized camera as an un-

ordered collection of rays which is captured by its sensor

elements [24]. Correspondences need to be established be-

tween rays which are assumed to intersect the same scene

point, leading to a generalized epipolar constraint in terms

of Plücker ray coordinates. In general configurations, 17
ray-to-ray correspondences are sufficient to allow a pose

estimate [30, 18]. This also can be applied to light field

cameras of course, however, we will see that we can obtain

more accurate results using our approach. The main reason

is that we also take into account the relationships between

projections within a single light field, which contain inher-

ent information about the 3D scene structure.

In fact, it is already possible to obtain quite accu-

rate dense depth maps from a single light field [32, 14],

and pose estimation can be performed by aligning point

clouds, as common for RGB+D cameras like the Microsoft

Kinect [11]. In this paper, however, the focus is on sparse

methods, where we wish to avoid an expensive dense re-

construction step. Thus, we only work with a sparse set of

reliable feature matches. We require multiple occurrences

of each feature in both light fields, so that in principle,

sparse 3D point clouds with one-to-one correspondence in-

formation can be reconstructed directly. While linear pose

estimation from these registered 3D point clouds is straight-

forward [13, 9, 22], we show that our proposed framework

easily beats this approach in accuracy.

Contributions. We investigate the problem of estimat-

ing relative pose for light field cameras, and formulate a

mathematical framework for linear structure-from-motion.

It is based on two key observations. First, when describ-

ing rays in Pluecker coordinates, the projection into ho-

mogeneous light field coordinates is a linear map. Sec-

ond, a projection of a 3D scene point in a 4D light field

is a two-dimensional linear subspace. Together, these two

yield linear correspondence constraints between rays in the

first light field and subspaces in the second. As far as we

are aware, this is both a previously unexplored insight and

the first systematic treatment of the structure-from-motion

problem which is tailored to 4D light fields.

While pose estimation is in principle also possible us-

ing any of the previously existing approaches for pinhole

or generalized cameras, we experimentally validate that us-

ing our approach, which takes into account the specific light

field geometry, leads to significant increase in accuracy and

robustness. Of the many possible applications, we inves-

tigate creating panoramic light fields from individual ones

captured with a hand-held Lytro consumer camera, see fig-

ure 1. This type of problem ideally fits the metric we min-

imize for pose estimation, and gives visual confirmation of

the alignment accuracy.

2. Light field correspondence

We first give a more detailed outline of our work and

its contributions to establish notation and context for the

remainder of the paper.

Light field cameras and coordinates. A calibrated

light field camera samples luminance for a known subset

of the rays passing through its aperture. We parametrize

the rays which are recorded in the 4D light field captured

by the camera in relative two-plane coordinates [4, 17]. In

this parametrization, each ray r is described by coordinates

l = [u, v, s, t]T ∈ R
4, which encode the intersection of r

with two distinct planes Π and Ω in space. Points in 3D

space are denoted by X = [X,Y, Z]T .

In the standardized reference frame of the light field

camera, we consider the focal plane Π to be the XY -plane,

while the image plane Ω lies parallel to Π at a distance equal

to the focal length f in positive Z-direction. The pair (s, t)
is given by the first two coordinates of the intersection of r

with Π. The pair (u, v) are the first two coordinates of the

intersection of r with Ω, but are relative to (s, t) in the sense

that the origin on Ω lies at (s, t, f), see figure 2. This corre-

sponds to image coordinates of a pinhole camera with cen-

ter of projection at (s, t, 0) and optical axis parallel to the

Z-axis. A view from such a camera is called a subaperture

image, and a light field can be considered as a collection of

subaperture images, i.e. standard perspective images, with

slightly shifted view points.

In case we consider two light field cameras, we assume

the coordinate system of the first camera to be aligned with

world space. All objects related to the second camera are

written with a prime symbol. We assume that the coordinate

frame X ′ of the second camera is related to the first by a

rigid motion, X ′ = RX + t, with rotation R ∈ SO(3)
and t ∈ R

3.

Light field correspondence. In a classical pinhole cam-

era image, a single 3D point is projected onto a unique 2D

point. Thus, a correspondence between two views is a re-

lation between one 2D point in the first view and a second

2D point in the second view. In contrast, a light field cam-

era samples many subaperture views, and thus multiple rays

emanating from the same scene point. In consequence, a

light field correspondence consists of a list of light field co-
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ordinates for each of the recorded light fields,

{li}i=1,...n ↔ {l′j}j=1,...,m. (1)

For a valid correspondence, all rays in both lists must come

from the same scene point, so given two light fields, candi-

dates are for example SIFT feature matches across all sub-

aperture images. Note that if the light field cameras are in-

ternally calibrated and n,m ≥ 2, it is already possible to

triangulate a 3D point in camera coordinates for both sides

of the correspondence.

Strategies for structure-from-motion. From a set of

correspondences of the form (1), one can immediately for-

mulate two promising strategies in order to recover relative

camera pose:

(i) Consider each ray-to-ray correspondence individually,

and apply a method based on the framework of gener-

alized cameras [18]. This is discussed in section 3.

(ii) From the left hand and right hand side of (1), com-

pute corresponding 3D scene points for each individ-

ual light field, then determine pose by aligning the two

point clouds. This is discussed in section 4.

In section 5, we will establish a third possibility and then

demonstrate its merits. We transform each ray into the re-

spective other light field and derive a linear set of constraints

from all the corresponding rays in this domain. The result-

ing set of equations has interesting similarities to the set of

equations from the generalized epipolar constraint, but im-

plicitly takes into account information on 3D scene struc-

ture inherent in a single light field. Thus, we believe it is

an ideal unification of both ideas - indeed, we will demon-

strate in section 6 that it outperforms both methods sketched

above.

3. Ray correspondence in generalized cameras

A light field camera can be understood in the context of

generalized camera models [24]. In this framework, a cam-

era is described by the set of rays which it samples in its

coordinate frame, and pixel correspondence is generalized

to ray correspondence. It turns out that mathematically el-

egant correspondence equations arise from describing these

rays in terms of Plücker coordinates. We will briefly review

the central parts of the theory leading to the system of equa-

tions for pose estimation. Details and proofs can be found

in the literature [29].

Rays in space. The Plücker coordinates of a ray r are

given by a pair (q:m) of vectors, with direction q ∈ R
3 \

{0} and moment m ∈ R
3. A point X ∈ R

3 lies on the ray

iff

m = X × q.

X

Y
Z

s
t

u
v

r
f

Π

Ω

Figure 2. Light field parametrization. An incident ray r is

parametrized by its intersections with the focal plane Π and the

image plane Ω (red dots). The planes are parallel with distance

equal to the focal length f . The intersection coordinates (s, t) are

given in relation to the origin of the world coordinate system. The

coordinates (u, v) are given relative to the intersection of the opti-

cal axis of a virtual camera placed at (s, t, 0) in Z direction with

the second plane (green dot). Each of these virtual cameras gives

a subaperture view of the light field.

Two sets of coordinates (q:m) and (q′:m′) define the same

ray if there exists w 6= 0 such that

q = wq′ and m = wm′.

Thus, ray coordinates can be considered as homogeneous

coordinates. In upcoming formulas, the symbol r will de-

note the 6D column vector obtained by stacking direction

on top of moment.

Transformations of R3 and ray coordinates. We con-

sider the case that space undergoes a rigid motion given by

rotation R and translation t,

X ′ = RX + t. (2)

In this case, transformed Plücker ray coordinates can be

computed as

(q′:m′) =
(
Rq:Rm+ [t]

×
Rq

)
, (3)

or in block matrix form,

r′ =

[
R 0
E R

]

r =

[
I3 0
[t]

×
I3

] [
R 0
0 R

]

r, (4)

where one can see the decomposition into pure rotation (ap-

plied first) and translation (applied second). The matrix

E := [t]
×
R is called the essential matrix.

Generalized epipolar constraint. Two rays (q1:m1)
and (q2:m2) given in the same coordinate frame intersect

iff

qT
1 m2 + mT

1 q2 = 0. (5)

Consider now the setting of generalized cameras,

with (q:m) a ray in the coordinate frame of the first

camera. If (q:m) is transformed into the coordinate frame

of the second camera according to (3), it should intersect

each corresponding ray (q′:m′) in a single 3D scene point.
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Substituting (3) into (5) applied in the coordinate frame

of the second camera, we obtain the generalized epipolar

constraint [24]

q′TEq + q′TRm + m′TRq = 0. (6)

which needs to be satisfied by every ray-to-ray correspon-

dence (q:m) ↔ (q′:m′).
Light field camera pose from ray correspondence.

Given a list of light field correspondences of the form (1)

with n rays in the first and m rays in the second light field,

we obtain n·m equations from the generalized epipolar con-

straint (6) which are linear in the rotation and essential ma-

trix coefficients. In [18], a method was proposed to recover

the pose parameters R and t from this system of equations.

In section 5, we give an overview of the implementation

and also suggest an improvement regarding the numerical

technique.

4. The light field projection

In this section, we will first show that the projection from

Plücker rays in world space to homogeneous light field co-

ordinates is projective linear. Second, we derive the linear

2D subspace in homogeneous light field coordinates which

is the projection of a single scene point. Together, both re-

sults will be used to construct a set of two linear constraints

on the rigid motion per ray in a light field correspondence

in section 5.

Intersections of rays with the light field planes. Planes

in space can be described by a homogeneous 4D vector â =
(a;α) with a ∈ R

3 and α ∈ R. A point X lies on the plane

iff its homogeneous coordinates X̂ satisfy âT X̂ = 0. One

can show that a Plücker ray (q:m) intersects with the plane

in the point with homogeneous coordinates

X̂ = ([a]
×
m− αq; aq). (7)

Note that the focal plane Π of the light field corresponds

to aΠ = (e3; 0), while the image plane Ω is parametrized

by aΩ = (e3;−f). Substituting into (7), we find the inter-

section points of a Plücker ray with these planes are

XΠ = (−
m2

q3
,
m1

q3
, 0) and XΩ = (

fq1 −m2

q3
,
fq2 +m1

q3
, f)

(8)

in R
3, respectively.

5D homogeneous light field coordinates from a

Plücker ray. Projecting a Plücker ray into the light field

requires divisions by q3. This is analogous to the pinhole

projection, which required division by Z. Just like in this

case, it is advantageous to switch to homogeneous coordi-

nates in order to obtain linear projection equations. Thus,

we parametrize a single ray in the light field with homoge-

neous 5D light field coordinates l̂ = (u, v, s, t, 1)T .

One can now read off the projection equation for a light

field camera in the camera coordinate system from (8) as

q3









u

v

s

t

1









=









f 0 0 0 0 0
0 f 0 0 0 0
0 0 0 0 −1 0
0 0 0 1 0 0
0 0 1 0 0 0









[
q

m

]

. (9)

Note that in order to obtain (u, v)-coordinates in the ref-

erence frame relative to (s, t), one needs to subtract XΠ

from XΩ. We call the 5 × 6 matrix above the light field

projection P (f). It depends only on the focal length.

Projections of a single scene point. Consider a point X

in world space. For fixed (s, t), the coordinates (u, v)
are computed according to a pinhole projection though a

camera located at (s, t, 0) with image plane Ω. The pin-

hole projection equations impose an affine relationship be-

tween (u, v) and (s, t), see figure 2 and e.g. [8, 7], which

can be written in homogeneous light field coordinates as




1 0 f

Z
0 − fX

Z

0 1 0 f
Z

− fY
Z





︸ ︷︷ ︸

=:M(X,f)









u

v

s

t

1









= 0. (10)

In particular, the set of all rays intersecting a single scene

point forms a linear 2D subspace of the homogeneous light

field coordinate domain.

Recovering the 2D subspace from correspondences.

From a set of feature correspondences of the form (1), it is

straight-forward to obtain an estimate of the subspace ma-

trices for both light fields. We solve (10) for the three un-

known coefficients of M or M ′ given the lists of ray cor-

respondences {li}i=1,...n or {l′j}j=1,...,m, respectively, in a

least-squares sense. For greater robustness, it is advisable

to employ a RANSAC scheme when using real-world data.

Some outliers can also be efficiently discarded in advance,

as all matches within a given light field must lie in a certain

disparity range.

Recovering and aligning two 3D point clouds. From

estimates of M(X, f) and M ′(X ′, f) for a single corre-

spondence, one immediately obtains a pair of corresponding

3D points X ↔ X ′. An obvious way to estimate camera

pose is thus to align the two corresponding 3D point clouds

estimated from the list of correspondences. For this align-

ment problem, several algorithms have been proposed in the

literature [13, 9, 22]. However, pose estimation via point

cloud alignment turns out to be not very robust, as due to

the small baseline, the estimate of 3D points is very sensi-

tive to small errors in feature locations. Both the framework

of generalized cameras as well as our novel method intro-

duced in the next section easily beats it in terms of accuracy.
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Figure 3. Ray transformation. A ray r given in coordinates of one

light field (red dots) will also intersect the two planes describing

another light field in general orientation (green dots). A key ob-

servation leading to the proposed method is that if the ray is given

in Plücker coordinates, then the projection into the coordinates of

the second light field is projective linear, see equations (4) and (9).

5. Recovering light field camera pose

In this section, we first describe the proposed system of

equations to recover pose given a set of light field corre-

spondences of the form (1). Although arising from a dif-

ferent principle, it will turn out to be of the same structure

as system (6) in the related works on generalized cameras.

In the second part of the section, we therefore describe how

this type of system can be solved for R and t. While we

could in principle employ the exact algorithm from previ-

ous work, we introduce a variant which turns out to sub-

stantially improve numerical accuracy.

Let us now consider a single correspondence, and as-

sume we have estimated subspaces M and M ′ for both light

fields from (10) in the last section. If a fixed ray l on the left

hand side is transformed into a ray l̂′ by computing the pro-

jection in the second light field, then the projection must

also satisfy the subspace constraint (10), i.e. M ′l̂′ = 0,

as all corresponding rays intersect in the same scene point.

Writing l in Plücker coordinates (q:m), using the ray trans-

formation (4) and projection (9), this expands to

M ′P (f)

[
R 0
E R

] [
q

m

]

= 0. (11)

We abbreviate with M1 the first three and with M2 the sec-

ond three columns of the 2×6 matrix M ′P (f), which leads

to the simplified form

M1Rq + M2Rm + M1Eq = 0. (12)

Accordingly, each ray in the correspondence yields two ho-

mogeneous linear equations in the components of R and E.

Discussion, relation to previous work. Both the gen-

eralized epipolar constraint (6) and the new proposed sub-

space constraint (12) leads to a linear system of the form

AEvec(E) +ARvec(R) = 0, (13)

where vec(E) and vec(R) are vectors of all components

in E and R, respectively, and AE and AR the coefficient

matrices resulting from the set of all correspondence con-

straints. The correct solution for R is a rotation and the

essential matrix is of the form E = [t]
×
R.

Previous work [18] on pose estimation from generalized

cameras proposes a numerical method where first the essen-

tial matrix E is recovered, from which one obtains the rota-

tion R using a decomposition step [8]. The arising twisted

pair ambiguity can be resolved uniquely by choosing the

solution which leads to a smaller residual in (13). The

reason given in [18] for solving for E instead of R is to

avoid degeneracies from certain camera configurations. In

the case of typical feature matches from light field cameras,

we found that these degeneracies do not arise in our setting,

and it turns out that is much more robust to recover R di-

rectly and completely ignore E. The numerical technique is

the same as in [18], but applied to the other variable.

Solving for R and t. The discussion in [8] (section

9.6), shows that finding the solution to (13) subject to

||vec(R)|| = 1 is equivalent to solving

(AEA
+
E − I)ARvec(R) = 0. (14)

Thus, to recover R, we first compute the last column of V

in the SVD of (AEA
+
E − I)AR, rearrange it into a matrix,

and project the result onto the space of rotation matrices us-

ing the method in [9]. Upon publication, source code will

be provided on our web page for implementation details.

Substituting the resulting R into (13) now leads to a linear

system in t. The least squares solution is computed again

with the SVD technique, after which the initial pose esti-

mate is complete.

Refinement iterations. The initial linear esti-

mate (R0, t0) for rotation and translation usually does not

exactly solve (13), since the correct solution for R and t is

subject to a non-linear set of constraints. As also suggested

in [18], we therefore use (R0, t0) as an initial estimate for

the solution of the minimization problem

min
R∈SO(3),r∈R3

{
AE [t]

×
vec(R) + ARvec(R)

}
, (15)

and iterate the following two steps until convergence:

1. Minimize the energy with fixed tn for unconstrained

unknown R. The solution is then projected onto

SO(3) to obtain Rn+1.

2. Minimize the energy with fixed Rn+1 for unknown t

to obtain tn+1.

All sub-problems are simple linear problems, which can be

solved e.g. with the SVD technique above. The iteration

sequence leads to a local minimizer of the energy, which

fits the correspondence constraints more accurately than the

linear solution.
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Correspondences 10 matches, 10 rays per point 40 matches, 10 rays per point 10 matches, 20 rays per point

Noise level σuv 0.2 0.4 0.6 0.8 time[s] 0.2 0.4 0.6 0.8 time[s] 0.2 0.4 0.6 0.8 time[s]

A
n

g
u

la
r

ro
t.

er
ro

r
[d

eg
]

linear methods

3DPC 1.31 4.23 5.78 9.30 0.00 1.01 2.96 5.24 7.55 0.01 1.38 2.18 5.38 7.76 0.00

R2R-O 1.55 4.81 7.31 11.65 0.07 0.70 1.35 2.68 3.55 0.51 1.34 2.38 7.11 9.34 0.56

R2R-I 0.69 1.73 2.59 4.29 0.09 0.38 0.88 1.91 3.29 0.57 0.49 1.17 2.37 4.17 0.59

Proposed 0.58 1.27 1.59 2.20 0.04 0.27 0.40 0.78 1.14 0.18 0.29 0.78 1.14 1.65 0.07

iterative methods

3DPC-RANSAC 1.31 3.24 5.13 5.93 0.03 0.79 1.79 2.31 4.84 0.12 0.88 1.70 3.93 6.12 0.13

MIN-RANSAC 1.40 3.27 3.91 6.36 49.18 1.02 2.21 3.09 3.86 194.89 1.20 2.55 4.41 4.27 197.11

R2R-O-R20 0.68 1.63 3.13 4.27 1.51 0.37 0.91 1.79 3.54 9.48 0.49 1.17 2.49 4.42 10.62

R2R-I-R20 0.66 1.62 2.79 4.07 1.69 0.37 0.91 1.80 3.55 10.06 0.53 1.11 2.56 4.26 10.32

Proposed-R20 0.49 1.22 1.54 2.13 0.99 0.23 0.42 0.74 1.05 3.65 0.33 0.87 1.00 1.62 1.97

A
n

g
u

la
r

tr
an

sl
.

er
ro

r
[d

eg
]

linear methods

3DPC 9.49 13.84 25.72 24.31 0.00 7.50 15.58 18.54 33.27 0.01 9.85 15.43 16.62 23.45 0.00

R2R-O 2.37 4.73 6.53 15.45 0.07 0.87 1.90 4.59 3.95 0.51 1.49 1.96 6.68 13.08 0.56

R2R-I 1.25 2.32 3.98 6.81 0.09 0.67 1.05 3.64 4.11 0.57 0.96 2.11 2.92 5.60 0.59

Proposed 1.22 1.95 2.36 3.32 0.04 0.52 1.13 1.39 1.99 0.18 0.59 1.29 2.13 2.79 0.07

iterative methods

3DPC-RANSAC 7.55 8.72 11.27 16.67 0.03 3.22 5.88 9.06 14.33 0.12 7.05 5.06 10.99 11.48 0.13

MIN-RANSAC 3.03 4.77 5.42 10.98 49.18 2.11 3.83 4.23 5.22 194.89 2.56 4.35 6.58 6.79 197.11

R2R-O-R20 1.19 2.27 4.47 7.41 1.51 0.61 1.26 3.40 4.76 9.48 0.86 1.94 3.45 6.23 10.62

R2R-I-R20 1.16 2.22 3.95 6.89 1.69 0.61 1.26 3.42 4.78 10.06 0.90 1.78 3.06 5.75 10.32

Proposed-R20 1.15 1.83 2.58 3.57 0.99 0.55 1.01 1.52 1.87 3.65 0.66 1.33 2.05 2.62 1.97

Figure 4. Accuracy of the different methods both before and after non-linear refinement. Different numbers of correspondences N , projec-

tions per correspondence K, and levels of noise σuv on the (u, v)-coordinates are compared. Error metrics are the mean angular deviation

from the ground truth in degrees for the estimated rotation as well translation vector for 50 random data sets. Noise standard deviation is

given in units of pixels on the subaperture images. In all cases, the most accurate method (highlighted in bold) is the one proposed in this

paper. Note that iterative refinement can only marginally improve the result for the methods which employ the proposed numerical scheme,

while it makes a huge difference for the previous method R2R-O.

Of course, if we require more accuracy, the results of the

initial estimate can be used to initialize further iterative re-

finement via non-linear bundle adjustment. Since this step

can likewise be applied to all methods, it is not further eval-

uated in this paper.

6. Experimental comparison

For the experimental comparison, we generate random

sets of feature matches for two light fields. We vary the

number N of available correspondences of the form (1) as

well as number of projections per light field K, which we

assume to be the same for both light fields, i.e. K = n = m

in (1). The light field geometry is set to be similar to the in-

ternal calibration data of the Lytro camera, so that we obtain

plausible input close to real-world scenarios. We perturb the

exact light field projections with additive Gaussian noise,

however only on the (u, v) domain, as correspondences are

always estimated in fixed subaperture images. Rotation be-

tween the two light fields is chosen at random with a max-

imum angle of 45 degrees, while translation is also chosen

randomly, but with the additional constraint that observa-

tion of common scene points in both light fields is possible.

For each parameter set, we average results from 50 different

random data sets generated in this way.

Comparison of overall accuracy. In the first run of

experiments, we compare the complete set of algorithms

which have been described in the previous sections. First,

these are the purely linear ones denoted as follows:

3DPC 3D point cloud alignment via [13],

as discussed in section 4.

R2R-O Ray-to-ray matching, section 3,

implemented as in [18].

R2R-I Ray-to-ray matching, section 3,

with our numerical improvements.

Proposed Our proposed method, section 5.

Figure 5. The four linear methods we compare against.

For all except 3DPC, we also tested the improvement

from 20 additional refinement iterations. These variants

are denoted by an additional “-R20” after their descriptor.

Complete results for a variety of different parameters can be

found in figure 4. Note that the maximum amount of noise

is quite high and usually above what one would expect, but

it allows testing the limits of the methods.

Finally, we compare against two minimal estimators em-

bedded in a RANSAC framework. The first one uses [13]

with three 3D points (3DPC-RANSAC). As an example

for a non-linear minimal algorithm [28, 15], we use [28]

based on six ray correspondences. Source code for the core

method is provided by the authors, we re-implemented the
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Figure 6. The graphs show how the angular error in rotation de-

pends on the number of matches (left) and the number of rays per

match (right). Compared are the four linear methods in table 5:

3DPC [13] (red) and R2R-O [18] (cyan), R2R-I with our proposed

numerical improvements (blue), and finally the novel proposed

method for 4D light fields (green). Top row: small amount of

noise (σ = 0.2), bottom: large amount of noise (σ = 1.0).

suggested 100 RANSAC iterations (MIN-RANSAC).

For each and every parameter combination, the proposed

method was the most accurate, often by a large margin. In-

terestingly, already the linear variant is usually sufficient.

The non-linear refinement iterations, while substantially

improving the results for the original method R2R-O, of-

ten give only marginal improvement and sometimes even

reduce final accuracy. This is also the case for R2R-I, so we

believe it is the improved numerical scheme which makes

non-linear refinement obsolete and our proposed method

thus much more efficient.

The closest competitor to our proposed method is match-

ing based on the generalized epipolar constraint. The sug-

gested numerical variant R2R-I consistently leads to much

better results than R2R-O if used as a purely linear method.

However, if enough matches are available, then non-linear

refinement corrects the initial results from R2R-O, so that

both lead to almost the same results.

Somewhat surprisingly, matching based on 3D point

cloud alignment is no contender and completely breaks

down in the presence of noise and for smaller rotation an-

gles. In both cases, it fails to recover remotely accurate

translation.

Influence of number of matches on accuracy. In a sec-

ond run of experiments, we investigate how accuracy in-

creases with the number of available correspondences. We

plot angular error over the number N of available corre-

spondences as well as over the number of projections per

light field K. The results for the four linear algorithms in

Figure 7. Rendering of a point cloud of the scene captured in fig-

ure 8. For two of the frames used for the panorama depth maps

were computed. Points from the reference frame are visualized

with a ∗-symbol, points from the aligned second frame with cir-

cles. See additional material for an animated high resolution ver-

sion of the point cloud and further visualizations of the geometry.

table 5 for two different levels of noise can be observed in

figure 6. In the case that we vary N , we set K = 10, when

we vary K, we set N = 20, as indicated by the dotted lines

in the graphs.

Our proposed method is again the most accurate, again

followed by R2R-I, i.e. [18] augmented by the suggested

numerical improvements. The methods from previous work

are significantly outclassed by these two. In general, it can

be said that it is preferable to have fewer but more precise

matches. However, with less than around 15-20 correspon-

dences available, results become significantly less robust,

even if there are in theory enough pairs of rays available -

the likely reason is that all rays within the same light field

belonging to a single correspondence (1) lie very close to

each other in ray space due to the small baseline between

the subaperture views.

Computational efficiency. Although we attain higher

accuracy, for the purpose light field cameras the proposed

method is computationally also more efficient than previous

work on ray-to-ray correspondence [18]. For one, thanks

to the change in numerical method, there is usually no real

need for non-linear refinement iterations anymore, as shown

above. More importantly, though, a single correspondence

of the form (1) leads to n ·m linear equations in the frame-

work in [18], but only 2(n + m) linear equations for the

proposed method. Thus, our method scales much better

with the number of projections per correspondence, as it

naturally removes a lot of the redundancy which ray-to-ray

matching causes in this scenario.

7. Living panoramas with the Lytro camera

In this section, we show how to employ the pose esti-

mates from our light field structure-from-motion pipeline

to create refocusable panoramas out of several light fields
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Figure 8. Living panorama from 21 light field images. In the regions which are in focus, one can observe the precise alignment of the

individual rays. Note that a ghosting effect becomes visible in some out of focus regions, which is caused by undersampling of rays in the

(s, t) domain. Without more sophisticated post-processing beyond the scope of this work, these artifacts can only be reduced by capturing

more data. Since many light fields from only slightly different view points overlap, it is also possible to virtually increase the aperture.

This can be observed at the center of the panorama, where the effect of depth-of-field is stronger than on the borders, where data from only

one light field is available. See additional material for a video with an animated focus plane.

recorded with the Lytro Illum consumer plenoptic camera.

Lytro dubbed their light fields “living pictures”, so we refer

to these as “living panoramas”.

As far as we are aware, existing work on light field

panorama stitching is so far not built on structure-from-

motion principles for light field cameras. Instead, brute

force search over the parameter space is performed to opti-

mally align the individual light fields according to a photo-

consistency score [3]. Often, large light fields are assembled

from sequences of regular 2D images, where camera pose

can be estimated by structure from motion approaches for

conventional cameras [16, 26].

Determining light field features. In order to detect

the necessary feature correspondences, we employ the well

known SIFT algorithm [20]. We first compute SIFT fea-

tures for each subaperture view of each light field individ-

ually. By searching for matches of the descriptors, we can

assemble the feature locations into correspondences of the

form (1) which we require for further processing. The in-

put light field with the most overlap (measured in number

of feature matches) to the other ones is selected as the ref-

erence light field.

Alignment and refocusing. After obtaining corre-

spondences, we can run the proposed pose reconstruction

pipeline, first estimating the 2D projection subspaces in

equation (10) for all of the input light fields and correspon-

dences, then estimating rotation and translation for each

light field compared to the reference frame as explained

in section 5. After this, we can transform each individual

measured ray into a single reference coordinate system via

equations (4) and (9), see figure 3.

This allows us to generate views of the assembled light

field panorama with a synthetic focus setting. To create such

a view, we consider a focus plane parallel to the parameter-

ising planes Ω and Π. In order to assign a color to a pixel on

this plane, we sample all available rays which pass though

its area. If a point on the focus plane lies on the surface of an

object, all the individual rays agree with each other, result-

ing in a sharp image of the scene. However, if the point lies

in front or behind of a surface, the intersecting rays belong

to different scene points, resulting in a blurred rendering.

Refocused views can be observed in figure 8, as well as

in the videos in the additional material. See also figure 7 for

a visualization of the corresponding 3D point cloud.

8. Conclusion

In this paper, we present a novel framework for linear

structure-from-motion for light field cameras. In contrast to

previous work on generalized cameras [24, 18], which em-

ploys an epipolar constraint based on ray-to-ray matches,

we make use of the inherent 3D information encoded in the

light field structure, and obtain a linear set of constraints

from the transformation of rays in the first light field onto

corresponding 2D subspaces within the ray space of the sec-

ond light field.

The proposed approach not only reduces computational

complexity, but also leads to pose estimates which are more

accurate and more robust to noise, as can be observed in

numerous numerical experiments. In addition, the precise

alignment of multiple individual light fields captured with

a consumer plenoptic camera is verified by stitching them

into a refocusable “living panorama”, which also increases

the virtual aperture and the effect of depth-of-field.
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