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Abstract

Understanding how images of objects and scenes be-

have in response to specific ego-motions is a crucial as-

pect of proper visual development, yet existing visual learn-

ing methods are conspicuously disconnected from the phys-

ical source of their images. We propose to exploit propri-

oceptive motor signals to provide unsupervised regulariza-

tion in convolutional neural networks to learn visual repre-

sentations from egocentric video. Specifically, we enforce

that our learned features exhibit equivariance i.e. they re-

spond predictably to transformations associated with dis-

tinct ego-motions. With three datasets, we show that our

unsupervised feature learning approach significantly out-

performs previous approaches on visual recognition and

next-best-view prediction tasks. In the most challenging

test, we show that features learned from video captured on

an autonomous driving platform improve large-scale scene

recognition in static images from a disjoint domain.

1. Introduction

How is visual learning shaped by ego-motion? In their

famous “kitten carousel” experiment, psychologists Held

and Hein examined this question in 1963 [10]. To analyze

the role of self-produced movement in perceptual develop-

ment, they designed a carousel-like apparatus in which two

kittens could be harnessed. For eight weeks after birth, the

kittens were kept in a dark environment, except for one

hour a day on the carousel. One kitten, the “active” kit-

ten, could move freely of its own volition while attached.

The other kitten, the “passive” kitten, was carried along in

a basket and could not control his own movement; rather,

he was forced to move in exactly the same way as the ac-

tive kitten. Thus, both kittens received the same visual ex-

perience. However, while the active kitten simultaneously

experienced signals about his own motor actions, the pas-

sive kitten did not. The outcome of the experiment is re-

markable. While the active kitten’s visual perception was

indistinguishable from kittens raised normally, the passive

kitten suffered fundamental problems. The implication is

Figure 2. We learn visual features from egocentric video that re-

spond predictably to observer egomotion.

clear: proper perceptual development requires leveraging

self-generated movement in concert with visual feedback.

We contend that today’s visual recognition algorithms

are crippled much like the passive kitten. The culprit: learn-

ing from “bags of images”. Ever since statistical learning

methods emerged as the dominant paradigm in the recog-

nition literature, the norm has been to treat images as i.i.d.

draws from an underlying distribution. Whether learning

object categories, scene classes, body poses, or features

themselves, the idea is to discover patterns within a col-

lection of snapshots, blind to their physical source. So is

the answer to learn from video? Only partially. Without

leveraging the accompanying motor signals initiated by the

videographer, learning from video data does not escape the

passive kitten’s predicament.

Inspired by this concept, we propose to treat visual learn-

ing as an embodied process, where the visual experience

is inextricably linked to the motor activity behind it.1 In

particular, our goal is to learn representations that exploit

the parallel signals of ego-motion and pixels. We hypothe-

size that downstream processing will benefit from a feature

space that preserves the connection between “how I move”

and “how my visual surroundings change”.

To this end, we cast the problem in terms of unsuper-

vised equivariant feature learning. During training, the in-

put image sequences are accompanied by a synchronized

stream of ego-motor sensor readings; however, they need

1Depending on the context, the motor activity could correspond to ei-

ther the 6-DOF ego-motion of the observer moving in the scene or the

second-hand motion of an object being actively manipulated, e.g., by a

person or robot’s end effectors.
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Figure 1. Our goal is to learn a feature space equivariant to ego-motion. We train with image pairs from video accompanied by their sensed

ego-poses (left and center), and produce a feature mapping such that two images undergoing the same ego-pose change move similarly

in the feature space (right). Left: Scatter plot of motions (yi − yj) among pairs of frames ≤ 1s apart in video from KITTI car-mounted

camera, clustered into motion patterns pij . Center: Frame pairs (xi,xj) from the “right turn”, “left turn” and “zoom” motion patterns.

Right: An illustration of the equivariance property we seek in the learned feature space. Pairs of frames corresponding to each ego-motion

pattern ought to have predictable relative positions in the learned feature space. Best seen in color.

not possess any semantic labels. The ego-motor signal

could correspond, for example, to the inertial sensor mea-

surements received alongside video on a wearable or car-

mounted camera. The objective is to learn a feature map-

ping from pixels in a video frame to a space that is equiv-

ariant to various motion classes. In other words, the learned

features should change in predictable and systematic ways

as a function of the transformation applied to the original

input. See Fig 1. We develop a convolutional neural net-

work (CNN) approach that optimizes a feature map for the

desired egomotion-based equivariance. To exploit the fea-

tures for recognition, we augment the network with a clas-

sification loss when class-labeled images are available. In

this way, ego-motion serves as side information to regular-

ize the features learned, which we show facilitates category

learning when labeled examples are scarce.

In sharp contrast to our idea, previous work on visual

features—whether hand-designed or learned—primarily

targets feature invariance. Invariance is a special case of

equivariance, where transformations of the input have no

effect. Typically, one seeks invariance to small transforma-

tions, e.g., the orientation binning and pooling operations

in SIFT/HOG and modern CNNs both target invariance to

local translations and rotations. While a powerful con-

cept, invariant representations require a delicate balance:

“too much” invariance leads to a loss of useful information

or discriminability. In contrast, more general equivariant

representations are intriguing for their capacity to impose

structure on the output space without forcing a loss of infor-

mation. Equivariance is “active” in that it exploits observer

motor signals, like Hein and Held’s active kitten.

Our main contribution is a novel feature learning ap-

proach that couples ego-motor signals and video. To our

knowledge, ours is the first attempt to ground feature learn-

ing in physical activity. The limited prior work on unsu-

pervised feature learning with video [21, 23, 20, 8] learns

only passively from observed scene dynamics, uninformed

by explicit motor sensory cues. Furthermore, while equiv-

ariance is explored in some recent work, unlike our idea,

it typically focuses on 2D image transformations as op-

posed to 3D ego-motion [13, 25] and considers existing

features [29, 16]. Finally, whereas existing methods that

learn from image transformations focus on view synthesis

applications [11, 14, 20], we explore recognition applica-

tions of learning jointly equivariant and discriminative fea-

ture maps.

We apply our approach to three public datasets. On pure

equivariance as well as recognition tasks, our method con-

sistently outperforms the most related techniques in feature

learning. In the most challenging test of our method, we

show that features learned from video captured on a vehicle

can improve image recognition accuracy on a disjoint do-

main. In particular, we use unlabeled KITTI [6, 7] car data

to regularize feature learning for the 397-class scene recog-

nition task for the SUN dataset [33]. Our results show the

promise of departing from the “bag of images” mindset, in

favor of an embodied approach to feature learning.

2. Related work

Invariant features Invariance is a special case of equiv-

ariance, wherein a transformed output remains identical to

its input. Invariance is known to be valuable for visual rep-

resentations. Descriptors like SIFT, HOG, and aspects of

CNNs like pooling and convolution, are hand-designed for

invariance to small shifts and rotations. Feature learning

work aims to learn invariances from data [26, 27, 30, 28, 5].

Strategies include augmenting training data by perturbing

image instances with label-preserving transformations [27,

30, 5], and inserting linear transformation operators into the

feature learning algorithm [28].

Most relevant to our work are feature learning meth-
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ods based on temporal coherence and “slow feature anal-

ysis” [31, 9, 21]. The idea is to require that learned features

vary slowly over continuous video, since visual stimuli can

only gradually change between adjacent frames. Temporal

coherence has been explored for unsupervised feature learn-

ing with CNNs [21, 36, 8, 3, 18], with applications to di-

mensionality reduction [9], object recognition [21, 36], and

metric learning [8]. Temporal coherence of inferred body

poses in unlabeled video is exploited for invariant recogni-

tion in [4]. These methods exploit video as a source of free

supervision to achieve invariance, analogous to the image

perturbations idea above. In contrast, our method exploits

video coupled with ego-motor signals to achieve the more

general property of equivariance.

Equivariant representations Equivariant features can

also be hand-designed or learned. For example, equivari-

ant or “co-variant” operators are designed to detect repeat-

able interest points [29]. Recent work explores ways to

learn descriptors with in-plane translation/rotation equivari-

ance [13, 25]. While the latter does perform feature learn-

ing, its equivariance properties are crafted for specific 2D

image transformations. In contrast, we target more complex

equivariances arising from natural observer motions (3D

ego-motion) that cannot easily be crafted, and our method

learns them from data.

Methods to learn representations with disentangled la-

tent factors [11, 14] aim to sort properties like pose, il-

lumination etc. into distinct portions of the feature space.

For example, the transforming auto-encoder learns to ex-

plicitly represent instantiation parameters of object parts in

equivariant hidden layer units [11]. Such methods target

equivariance in the limited sense of inferring pose param-

eters, which are appended to a conventional feature space

designed to be invariant. In contrast, our formulation en-

courages equivariance over the complete feature space; we

show the impact as an unsupervised regularizer when train-

ing a recognition model with limited training data.

The work of [16] quantifies the invariance/equivariance

of various standard representations, including CNN fea-

tures, in terms of their responses to specified in-plane 2D

image transformations (affine warps, flips of the image). We

adopt the definition of equivariance used in that work, but

our goal is entirely different. Whereas [16] quantifies the

equivariance of existing descriptors, our approach learns a

feature space that is equivariant.

Learning transformations Other methods train with

pairs of transformed images and infer an implicit represen-

tation for the transformation itself. In [19], bilinear models

with multiplicative interactions are used to learn content-

independent “motion features” that encode only the trans-

formation between image pairs. One such model, the “gated

autoencoder” is extended to perform sequence prediction

for video in [20]. Recurrent neural networks combined with

a grammar model of scene dynamics can also predict future

frames in video [23]. Whereas these methods learn a repre-

sentation for image pairs (or tuples) related by some trans-

formation, we learn a representation for individual images

in which the behavior under transformations is predictable.

Furthermore, whereas these prior methods abstract away the

image content, our method preserves it, making our features

relevant for recognition.

Egocentric vision There is renewed interest in egocen-

tric computer vision methods, though none perform fea-

ture learning using motor signals and pixels in concert as

we propose. Recent methods use ego-motion cues to sepa-

rate foreground and background [24, 34] or infer the first-

person gaze [35, 17]. While most work relies solely on ap-

parent image motion, the method of [34] exploits a robot’s

motor signals to detect moving objects and [22] uses re-

inforcement learning to form robot movement policies by

exploiting correlations between motor commands and ob-

served motion cues.

3. Approach

Our goal is to learn an image representation that is equiv-

ariant with respect to ego-motion transformations. Let

xi ∈ X be an image in the original pixel space, and let

yi ∈ Y be its associated ego-pose representation. The ego-

pose captures the available motor signals, and could take a

variety of forms. For example, Y may encode the complete

observer camera pose (its position in 3D space, pitch, yaw,

roll), some subset of those parameters, or any reading from

a motor sensor paired with the camera.

As input to our learning algorithm, we have a training

set U of Nu image pairs and their associated ego-poses,

U = {〈(xi,xj), (yi,yj)〉}
Nu

(i,j)=1. The image pairs origi-

nate from video sequences, though they need not be adja-

cent frames in time. The set may contain pairs from multi-

ple videos and cameras. Note that this training data does not

have any semantic labels (object categories, etc.); they are

“labeled” only in terms of the ego-motor sensor readings.

In the following, we first explain how to translate ego-

pose information into pairwise “motion pattern” annota-

tions (Sec 3.1). Then, Sec 3.2 defines the precise nature

of the equivariance we seek, and Sec 3.3 defines our learn-

ing objective. Sec 3.4 shows how our equivariant feature

learning scheme may be used to enhance recognition with

limited training data. Finally, in Sec 3.5, we show how a

feedforward neural network architecture may be trained to

produce the desired equivariant feature space.

3.1. Mining discrete egomotion patterns

First we want to organize training sample pairs into a

discrete set of ego-motion patterns. For instance, one ego-
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motion pattern might correspond to “tilt downwards by ap-

proximately 20°”. While one could collect new data ex-

plicitly controlling for the patterns (e.g., with a turntable

and camera rig), we prefer a data-driven approach that can

leverage video and ego-pose data collected “in the wild”.

To this end, we discover clusters among pose difference

vectors yi − yj for pairs (i, j) of temporally close frames

from video (typically /1 second apart; see Sec 4.1 for de-

tails). For simplicity we apply k-means to find G clus-

ters, though other methods are possible. Let pij ∈ P =
{1, . . . , G} denote the motion pattern ID, i.e., the cluster to

which (yi,yj) belongs. We can now replace the ego-pose

vectors in U with motion pattern IDs: 〈(xi,xj), pij〉.
2

The left panel of Fig 1 illustrates a set of motion patterns

discovered from videos in the KITTI [6] dataset, which are

captured from a moving car. Here Y consists of the posi-

tion and yaw angle of the camera. So, we are clustering a

2D space consisting of forward distance and change in yaw.

As illustrated in the center panel, the largest clusters corre-

spond to the car’s three primary ego-motions: turning left,

turning right, and going forward.

3.2. Egomotion equivariance

Given U , we wish to learn a feature mapping function

zθ(.) : X → RD parameterized by θ that maps a single

image to a D-dimensional vector space that is equivariant

to ego-motion. To be equivariant, the function zθ must re-

spond systematically and predictably to ego-motion:

zθ(xj) ≈ f(zθ(xi),yi,yj), (1)

for some function f . We consider equivariance for linear

functions f(.), following [16]. In this case, zθ is said to be

equivariant with respect to some transformation g if there

exists a D ×D matrix3 Mg such that:

∀x ∈ X : zθ(gx) ≈ Mgzθ(x). (2)

Such an Mg is called the “equivariance map” of g on the

feature space zθ(.). It represents the affine transformation

in the feature space that corresponds to transformation g in

the pixel space. For example, suppose a motion pattern g
corresponds to a yaw turn of 20°, and x and gx are the im-

ages observed before and after the turn, respectively. Equiv-

ariance demands that there is some matrix Mg that maps the

pre-turn image to the post-turn image, once those images

are expressed in the feature space zθ . Hence, zθ “orga-

nizes” the feature space in such a way that movement in a

particular direction in the feature space (here, as computed

by multiplication with Mg) has a predictable outcome. The

linear case, as also studied in [16], ensures that the struc-

ture of the mapping has a simple form, and is convenient

2For movement with d degrees of freedom, setting G ≈ d should suf-

fice (cf. Sec 3.2). We chose small G for speed and did not vary it.
3bias dimension assumed to be included in D for notational simplicity

for learning since Mg can be encoded as a fully connected

layer in a neural network.

While prior work [13, 25] focuses on equivariance where

g is a 2D image warp, we explore the case where g ∈ P is an

ego-motion pattern (cf. Sec 3.1) reflecting the observer’s 3D

movement in the world. In theory, appearance changes of an

image in response to an observer’s ego-motion are not de-

termined by the ego-motion alone. They also depend on the

depth map of the scene and the motion of dynamic objects

in the scene. One could easily augment either the frames xi

or the ego-pose yi with depth maps, when available. Non-

observer motion appears more difficult, especially in the

face of changing occlusions and newly appearing objects.

However, our experiments indicate we can learn effective

representations even with dynamic objects. In our imple-

mentation, we train with pairs relatively close in time, so as

to avoid some of these pitfalls.

While during training we target equivariance for the dis-

crete set of G ego-motions, the learned feature space will

not be limited to preserving equivariance for pairs originat-

ing from the same ego-motions. This is because the linear

equivariance maps are composable. If we are operating in

a space where every ego-motion can be composed as a se-

quence of “atomic” motions, equivariance to those atomic

motions is sufficient to guarantee equivariance to all mo-

tions. To see this, suppose that the maps for “turn head right

by 10°” (ego-motion pattern r) and “turn head up by 10°”

(ego-motion pattern u) are respectively Mr and Mu, i.e.,

z(rx) = Mrz(x) and z(ux) = Muz(x) for all x ∈ X .

Now for a novel diagonal motion d that can be composed

from these atomic motions as d = r ◦ u, we have

z(dx) = z((r ◦ u)x) = Mrz(ux) = MrMuz(x), (3)

so that Md = MrMu is the equivariance map for novel

ego-motion d, even though d was not among 1, . . . , G. This

property lets us restrict our attention to a relatively small

number of discrete ego-motion patterns during training, and

still learn features equivariant w.r.t. new ego-motions.

3.3. Equivariant feature learning objective

We now design a loss function that encourages the

learned feature space zθ to exhibit equivariance with re-

spect to each ego-motion pattern. Specifically, we would

like to learn the optimal feature space parameters θ∗ jointly

with its equivariance maps M∗ = {M∗
1 , . . . ,M

∗
G} for the

motion pattern clusters 1 through G (cf. Sec 3.1).

To achieve this, a naive translation of the definition of

equivariance in Eq (2) into a minimization problem over

feature space parameters θ and the D×D equivariance map

candidate matrices M would be as follows:

(θ∗,M∗) = argmin
θ,M

∑

g

∑

{(i,j):pij=g}

d (Mgzθ(xi), zθ(xj)) ,

(4)

1416



where d(., .) is a distance measure. This problem can be de-

composed into G independent optimization problems, one

for each motion, corresponding only to the inner summation

above, and dealing with disjoint data. The g-th such prob-

lem requires only that training frame pairs annotated with

motion pattern pij = g approximately satisfy Eq (2).

However, such a formulation admits problematic so-

lutions that perfectly optimize it, e.g. for the trivial all-

zero feature space zθ(x) = 0, ∀x ∈ X with Mg set to

the all-zeros matrix for all g, the loss above evaluates to

zero. To avoid such solutions, and to force the learned

Mg’s to be different from one another (since we would like

the learned representation to respond differently to differ-

ent ego-motions), we simultaneously account for the “neg-

atives” of each motion pattern. Our learning objective is:

(θ∗,M∗) = argmin
θ,M

∑

g,i,j

dg (Mgzθ(xi), zθ(xj), pij) ,

(5)

where dg(., ., .) is a “contrastive loss” [9] specific to motion

pattern g:

dg(a, b, c) = ✶(c = g)d(a, b)+

✶(c 6= g)max(δ − d(a, b), 0), (6)

where ✶(.) is the indicator function. This contrastive loss

penalizes distance between a and b in “positive” mode

(when c = g), and pushes apart pairs in “negative” mode

(when c 6= g), up to a minimum margin distance speci-

fied by the constant δ. We use the ℓ2 norm for the distance

d(., .).
In our objective in Eq (5), the contrastive loss operates

in the latent feature space. For pairs belonging to cluster

g, the contrastive loss dg penalizes feature space distance

between the first image and its transformed pair, similar to

Eq (4) above. For pairs belonging to clusters other than

g, dg requires that the transformation defined by Mg must

not bring the image representations close together. In this

way, our objective learns the Mg’s jointly. It ensures that

distinct ego-motions, when applied to an input zθ(x), map

it to different locations in feature space.

We want to highlight the important distinctions between

our objective and the “temporal coherence” objective of

[21] for slow feature analysis. Written in our notation, the

objective of [21] may be stated as:

θ∗ = argmin
θ

∑

i,j

d1(zθ(xi), zθ(xj),✶(|ti − tj | ≤ T )),

(7)

where ti, tj are the video time indices of xi, xj and T is a

temporal neighborhood size hyperparameter. This loss en-

courages the representations of nearby frames to be simi-

lar to one another. However, crucially, it does not account

for the nature of the ego-motion between the frames. Ac-

cordingly, while temporal coherence helps learn invariance

to small image changes, it does not target a (more gen-

eral) equivariant space. Like the passive kitten from Hein

and Held’s experiment, the temporal coherence constraint

watches video to passively learn a representation; like the

active kitten, our method registers the observer motion ex-

plicitly with the video to learn more effectively, as we will

demonstrate in results.

3.4. Regularizing a recognition task

While we have thus far described our formulation for

generic equivariant image representation learning, it can

optionally be used for visual recognition tasks. Suppose

that in addition to the ego-pose annotated pairs U we are

also given a small set of Nl class-labeled static images,

L = {(xk, ck}
Nl

k=1, where ck ∈ {1, . . . , C}. Let Le de-

note the unsupervised equivariance loss of Eq (5). We can

integrate our unsupervised feature learning scheme with the

recognition task, by optimizing a misclassification loss to-

gether with Le. Let W be a D × C matrix of classifier

weights. We solve jointly for W and the maps M:

(θ∗,W ∗,M∗) = argmin
θ,W,M

Lc(θ,W,L) + λLe(θ,M,U),

(8)

where Lc denotes the softmax loss over the learned features,

Lc(W,L) = − 1
Nl

∑Nl

i=1 log(σck(Wzθ(xi)), and σck(.) is

the softmax probability of the correct class. The regularizer

weight λ is a hyperparameter. Note that neither the super-

vised training data L nor the testing data for recognition are

required to have any associated sensor data. Thus, our fea-

tures are applicable to standard image recognition tasks.

In this use case, the unsupervised ego-motion equivari-

ance loss encodes a prior over the feature space that can im-

prove performance on the supervised recognition task with

limited training examples. We hypothesize that a feature

space that embeds knowledge of how objects change un-

der different viewpoints / manipulations allows a recogni-

tion system to, in some sense, hallucinate new views of an

object to improve performance.

3.5. Form of the feature mapping function zθ(.)

For the mapping zθ(.), we use a convolutional neural

network architecture, so that the parameter vector θ now

represents the layer weights. The loss Le of Eq (5) is opti-

mized by sharing the weight parameters θ among two iden-

tical stacks of layers in a “Siamese” network [2, 9, 21], as

shown in the top two rows of Fig 3. Image pairs from U are

fed into these two stacks. Both stacks are initialized with

identical random weights, and identical gradients are passed

through them in every training epoch, so that the weights re-

main tied throughout. Each stack encodes the feature map

that we wish to train, zθ .

To optimize Eq (5), an array of equivarance maps M,

each represented by a fully connected layer, is connected to
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Figure 3. Training setup: (top) “Siamese network” for computing

the equivariance loss of Eq (5), together with (bottom) a third tied

stack for computing the supervised recognition softmax loss as in

Eq (8). See Sec 4.1 and Supp for exact network specifications.

the top of the second stack. Each such equivariance map

then feeds into a motion-pattern-specific contrastive loss

function dg , whose other inputs are the first stack output

and the ego-motion pattern ID pij .

To optimize Eq (8), in addition to the Siamese net that

minimizes Le as above, the supervised softmax loss is min-

imized through a third replica of the zθ layer stack with

weights tied to the two Siamese networks stacks. Labelled

images from L are fed into this stack, and its output is fed

into a softmax layer whose other input is the class label.

The complete scheme is depicted in Fig 3. Optimization

is done through mini-batch stochastic gradient descent im-

plemented through backpropagation with the Caffe pack-

age [12] (more details in Sec 4 and Supp).

4. Experiments

We validate our approach on 3 public datasets and com-

pare to two existing methods, on equivariance (Sec 4.2),

recognition performance (Sec 4.3) and next-best view se-

lection (Sec 4.4). Throughout we compare the following

methods:

• CLSNET: A neural network trained only from the su-

pervised samples with a softmax loss.

• TEMPORAL: The temporal coherence approach

of [21], which regularizes the classification loss with

Eq (7) setting the distance measure d(.) to the ℓ1 dis-

tance in d1. This method aims to learn invariant fea-

tures by exploiting the fact that adjacent video frames

should not change too much.

• DRLIM: The approach of [9], which also regularizes

the classification loss with Eq (7), but setting d(.) to

the ℓ2 distance in d1.

• EQUIV: Our ego-motion equivariant feature learning

approach, combined with the classification loss as in

Eq (8), unless otherwise noted below.

• EQUIV+DRLIM: Our approach augmented with tem-

poral coherence regularization ([9]).

TEMPORAL and DRLIM are the most pertinent baselines

because they, like us, use contrastive loss-based formula-

tions, but represent the popular “slowness”-based family of

techniques ([36, 3, 8, 18]) for unsupervised feature learning

from video, which, unlike our approach, are passive.

4.1. Experimental setup details

Recall that in the fully unsupervised mode, our method

trains with pairs of video frames annotated only by their

ego-poses in U . In the supervised mode, when applied to

recognition, our method additionally has access to a set of

class-labeled images in L. Similarly, the baselines all re-

ceive a pool of unsupervised data and supervised data. We

now detail the data composing these two sets.

Unsupervised datasets We consider two unsupervised

datasets, NORB and KITTI:

(1) NORB [15]: This dataset has 24,300 96×96-pixel im-

ages of 25 toys captured by systematically varying camera

pose. We generate a random 67%-33% train-validation split

and use 2D ego-pose vectors y consisting of camera eleva-

tion and azimuth. Because this dataset has discrete ego-

pose variations, we consider two ego-motion patterns, i.e.,

G = 2 (cf. Sec 3.1): one step along elevation and one step

along azimuth. For EQUIV, we use all available positive

pairs for each of the two motion patterns from the training

images, yielding a Nu = 45, 417-pair training set. For DR-

LIM and TEMPORAL, we create a 50,000-pair training set

(positives to negatives ratio 1:3). Pairs within one step (ele-

vation and/or azimuth) are treated as “temporal neighbors”,

as in the turntable results of [9, 21].

(2) KITTI [6, 7]: This dataset contains videos with reg-

istered GPS/IMU sensor streams captured on a car driv-

ing around 4 types of areas (location classes): “campus”,

“city”, “residential”, “road”. We generate a random 67%-

33% train-validation split and use 2D ego-pose vectors con-

sisting of “yaw” and “forward position” (integral over “for-

ward velocity” sensor outputs) from the sensors. We dis-

cover ego-motion patterns pij (cf. Sec 3.1) on frame pairs

≤ 1 second apart. We compute 6 clusters and automati-

cally retain the G = 3 with the largest motions, which upon

inspection correspond to “forward motion/zoom”, “right

turn”, and “left turn” (see Fig 1, left). For EQUIV, we cre-

ate a Nu = 47, 984-pair training set with 11,996 positives.

For DRLIM and TEMPORAL, we create a 98,460-pair train-

ing set with 24,615 “temporal neighbor” positives sampled

≤2 seconds apart. We use grayscale “camera 0” frames

(see [7]), downsampled to 32×32 pixels, so that we can

adopt CNN architecture choices known to be effective for

tiny images [1].

Supervised datasets In our recognition experiments, we

consider 3 supervised datasets L: (1) NORB: We select

6 images from each of the C = 25 object training splits

at random to create instance recognition training data. (2)

KITTI: We select 4 images from each of the C = 4 location

class training splits at random to create location recognition
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Tasks→ Equivariance error Recognition accuracy % Next-best view

Datasets→ NORB NORB-NORB KITTI-KITTI KITTI-SUN KITTI-SUN NORB

Methods↓ atomic composite [25 cls] [4 cls] [397 cls] [397 cls, top-10] 1-view→ 2-view

random 1.0000 1.0000 4.00 25.00 0.25 2.52 4.00 → 4.00

CLSNET 0.9239 0.9145 25.11±0.72 41.81±0.38 0.70±0.12 6.10±0.67 -

TEMPORAL [21] 0.7587 0.8119 35.47±0.51 45.12±1.21 1.21±0.14 8.24±0.25 29.60→ 31.90

DRLIM [9] 0.6404 0.7263 36.60±0.41 47.04±0.50 1.02±0.12 6.78±0.32 14.89→ 17.95

EQUIV 0.6082 0.6982 38.48±0.89 50.64±0.88 1.31±0.07 8.59±0.16 38.52→43.86

EQUIV+DRLIM 0.5814 0.6492 40.78±0.60 50.84±0.43 1.58±0.17 9.57±0.32 38.46→43.18

Table 1. (Left) Average equivariance error (Eq (9)) on NORB for ego-motions like those in the training set (atomic) and novel ego-motions

(composite). (Center) Recognition result for 3 datasets (mean ± standard error) of accuracy % over 5 repetitions. (Right) Next-best view

selection accuracy %. Our method EQUIV (and augmented with slowness in EQUIV+DRLIM) clearly outperforms all baselines.

training data.(3) SUN [33]: We select 6 images for each of

C = 397 scene categories at random to create scene recog-

nition training data. We preprocess them identically to the

KITTI images above (grayscale, crop to KITTI aspect ra-

tio, resize to 32 × 32). We keep all the supervised datasets

small, since unsupervised feature learning should be most

beneficial when labeled data is scarce. Note that while the

video frames of the unsupervised datasets U are associated

with ego-poses, the static images of L have no such auxil-

iary data.

Network architectures and optimization For KITTI,

we closely follow the cuda-convnet [1] recommended

CIFAR-10 architecture: 32 conv(5x5)-max(3x3)-ReLU

→ 32 conv(5x5)-ReLU-avg(3x3) → 64 conv(5x5)-ReLU-

avg(3x3) →D =64 full feature units. For NORB, we use a

fully connected architecture: 20 full-ReLU→ D =100 full

feature units. Parentheses indicate sizes of convolution or

pooling kernels, and pooling layers have stride length 2.

We use Nesterov-accelerated stochastic gradient descent.

The base learning rate and regularization λs are selected

with greedy cross-validation. The contrastive loss margin

parameter δ in Eq (6) is set to 1.0. We report all results

for all methods based on 5 repetitions. For more details on

architectures and optimization, see Supp.

4.2. Equivariance measurement

First, we test the learned features for equivariance.

Equivariance is measured separately for each ego-motion

g through the normalized error ρg:

ρg = E
[

‖zθ(x)−M
′

gzθ(gx)‖2/‖zθ(x)− zθ(gx)‖2

]

,

(9)

where E[.] denotes the empirical mean, M
′

g is the equiv-

ariance map, and ρg = 0 would signify perfect equivari-

ance. We closely follow the equivariance evaluation ap-

proach of [16] to solve for the equivariance maps of features

produced by each compared method on held-out validation

data, before computing ρg (see Supp).

We test both (1) “atomic” ego-motions matching those

provided in the training pairs (i.e., “up” 5°and “down”

20°) and (2) composite ego-motions (“up+right”, “up+left”,

“down+right”). The latter lets us verify that our method’s

equivariance extends beyond those motion patterns used for

training (cf. Sec 3.2). First, as a sanity check, we quantify

equivariance for the unsupervised loss of Eq (5) in isola-

tion, i.e., learning with only U . Our EQUIV method’s av-

erage ρg error is 0.0304 and 0.0394 for atomic and com-

posite ego-motions in NORB, respectively. In comparison,

DRLIM—which promotes invariance, not equivariance—

achieves ρg = 0.3751 and 0.4532. Thus, without class su-

pervision, EQUIV tends to learn nearly completely equivari-

ant features, even for novel composite transformations.

Next we evaluate equivariance for all methods using fea-

tures optimized for the NORB recognition task. Table 1

(left) shows the results. As expected, we find that the fea-

tures learned with EQUIV regularization are again easily the

most equivariant. We also see that for all methods error

is lower for atomic motions than composite motions, since

they are more equivariant for smaller motions (see Supp).

4.3. Recognition results

Next we test the unsupervised-to-supervised transfer

pipeline of Sec 3.4 on 3 recognition tasks: NORB-NORB,

KITTI-KITTI, and KITTI-SUN. The first dataset in each

pairing is unsupervised, and the second is supervised.

Table 1 (center) shows the results. On all 3 datasets, our

method significantly improves classification accuracy, not

just over the no-prior CLSNET baseline, but also over the

closest previous unsupervised feature learning methods.4

All the unsupervised feature learning methods yield

large gains over CLSNET on all three tasks. However, DR-

LIM and TEMPORAL are significantly weaker than the pro-

posed method. Those methods are based on the “slow

feature analysis” principle [31]—nearby frames must be

close to one another in the learned feature space. We ob-

serve in practice (see Supp) that temporally close frames are

mapped close to each other after only a few training epochs.

This points to a possible weakness in these methods—even

4To verify the CLSNET baseline is legitimate, we also ran a Tiny Image

nearest neighbor baseline on SUN as in [33]. It obtains 0.61% accuracy

(worse than CLSNET, which obtains 0.70%).
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Figure 4. Nearest neighbor image pairs (cols 3 and 4 in each block) in pairwise equivariant feature difference space for various query image

pairs (cols 1 and 2 per block). For comparison, cols 5 and 6 show pixel-wise difference-based neighbor pairs. The direction of ego-motion

in query and neighbor pairs (inferred from ego-pose vector differences) is indicated above each block. See text.

with parameters (temporal neighborhood size, regulariza-

tion λ) cross-validated for recognition, the slowness prior

is too weak to regularize feature learning effectively, since

strengthening it causes loss of discriminative information.

In contrast, our method requires systematic feature space

responses to ego-motions, and offers a stronger prior.

EQUIV+DRLIM further improves over EQUIV, possibly be-

cause: (1) our EQUIV implementation only exploits frame

pairs arising from specific motion patterns as positives,

while DRLIM more broadly exploits all neighbor pairs, and

(2) DRLIM and EQUIV losses are compatible— DRLIM re-

quires that small perturbations affect features in small ways,

and EQUIV requires that they affect them systematically.

The most exciting result is KITTI-SUN. The KITTI data

itself is vastly more challenging than NORB due to its

noisy ego-poses from inertial sensors, dynamic scenes with

moving traffic, depth variations, occlusions, and objects

that enter and exit the scene. Furthermore, the fact we

can transfer EQUIV features learned without class labels on

KITTI (street scenes from Karlsruhe, road-facing camera

with fixed pitch and field of view) to be useful for a su-

pervised task on the very different domain of SUN (“in the

wild” web images from 397 categories mostly unrelated to

streets) indicates the generality of our approach. Our best

recognition accuracy of 1.58% on SUN is achieved with

only 6 labeled examples per class. It is ≈30% better than

the nearest competing baseline TEMPORAL and over 6 times

better than chance. Top-10 accuracy trends are similar.

While we have thus far kept supervised training sets

small to simulate categorization problems in the “long tail”

where training samples are scarce and priors are most use-

ful, new preliminary tests with larger labeled training sets

on SUN show that our advantage is preserved. With N=20

samples for each of 397 classes on KITTI-SUN, EQUIV

scored 3.66+/-0.08% accuracy vs. 1.66+/-0.18 for CLSNET.

4.4. Nextbest view selection for recognition

Next, we show preliminary results of a direct application

of equivariant features to “next-best view selection”. Given

one view of a NORB object, the task is to tell a hypothet-

ical robot how to move next to help recognize the object,

i.e., which neighboring view would best reduce object pre-

diction uncertainty. We exploit the fact that equivariant fea-

tures behave predictably under ego-motions to identify the

optimal next view. Our method for this task, similar in spirit

to [32], is described in detail in Supp. Table 1 (right) shows

the results. On this task too, EQUIV features easily outper-

form the baselines.

4.5. Qualitative analysis

To qualitatively evaluate the impact of equivariant fea-

ture learning, we pose a nearest neighbor task in the feature

difference space to retrieve image pairs related by similar

ego-motion to a query image pair (details in Supp). Fig 4

shows examples. For a variety of query pairs, we show the

top neighbor pairs in the EQUIV space, as well as in pixel-

difference space for comparison. Overall they visually con-

firm the desired equivariance property: neighbor-pairs in

EQUIV’s difference space exhibit a similar transformation

(turning, zooming, etc.), whereas those in the original im-

age space often do not. Consider the first azimuthal rotation

NORB query in row 2, where pixel distance, perhaps domi-

nated by the lighting, identifies a wrong ego-motion match,

whereas our approach finds a correct match, despite the

changed object identity, starting azimuth, lighting etc. The

red boxes show failure cases. For instance, in the KITTI

failure case shown (row 1, column 3), large foreground mo-

tion of a truck in the query image causes our method to

wrongly miss the rotational motion.

5. Conclusion

Over the last decade, visual recognition methods have

focused almost exclusively on learning from “bags of im-

ages”. We argue that such “disembodied” image collec-

tions, though clearly valuable when collected at scale, de-

prive feature learning methods from the informative physi-

cal context of the original visual experience. We presented

the first “embodied” approach to feature learning that gener-

ates features equivariant to ego-motion. Our results on mul-

tiple datasets and on multiple tasks show that our approach

successfully learns equivariant features, which are benefi-

cial for many downstream tasks and hold great promise for

novel future applications.
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