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Abstract

Deep neural network architectures have recently pro-

duced excellent results in a variety of areas in artificial

intelligence and visual recognition, well surpassing tradi-

tional shallow architectures trained using hand-designed

features. The power of deep networks stems both from their

ability to perform local computations followed by pointwise

non-linearities over increasingly larger receptive fields, and

from the simplicity and scalability of the gradient-descent

training procedure based on backpropagation. An open

problem is the inclusion of layers that perform global, struc-

tured matrix computations like segmentation (e.g. normal-

ized cuts) or higher-order pooling (e.g. log-tangent space

metrics defined over the manifold of symmetric positive def-

inite matrices) while preserving the validity and efficiency

of an end-to-end deep training framework. In this paper we

propose a sound mathematical apparatus to formally inte-

grate global structured computation into deep computation

architectures. At the heart of our methodology is the de-

velopment of the theory and practice of backpropagation

that generalizes to the calculus of adjoint matrix variations.

We perform segmentation experiments using the BSDS and

MSCOCO benchmarks and demonstrate that deep networks

relying on second-order pooling and normalized cuts lay-

ers, trained end-to-end using matrix backpropagation, out-

perform counterparts that do not take advantage of such

global layers.

1. Introduction

Recently, the end-to-end learning of deep architectures

using stochastic gradient descent, based on very large

datasets, has produced impressive results in realistic set-
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tings, for a variety of computer vision and machine learning

domains[25, 37, 35]. There is now a renewed enthusiasm

of creating integrated, automatic models that can handle the

diverse tasks associated with an able perceiving system.

One of the most widely used architecture is the con-

volutional network (ConvNet) [26, 25], a deep processing

model based on the composition of convolution and pool-

ing with pointwise nonlinearities for efficient classification

and learning. While ConvNets are sufficiently expressive

for classification tasks, a comprehensive, deep architecture,

that uniformly covers the types of non-linearities required

for other visual calculations has not yet been established.

In turn, matrix factorization plays a central role in classi-

cal (shallow) algorithms for many different computer vision

and machine learning problems, such as image segmenta-

tion [36], feature extraction, descriptor design [18, 6], struc-

ture from motion [38], camera calibration [19], and dimen-

sionality reduction [24, 4], among others. Singular value

decomposition (SVD) in particular, is extremely popular be-

cause of its ability to efficiently produce global solutions to

various problems.

In this paper we propose to enrich the dictionary of deep

networks with layer generalizations and fundamental matrix

function computational blocks that have proved successful

and flexible over years in vision and learning models with

global constraints. We consider layers that are explicitly

structure-aware in the sense that they preserve global in-

variants of the underlying problem. Our paper makes two

main mathematical contributions. The first shows how to

operate with structured layers when learning a deep net-

work. For this purpose we outline a matrix generalization

of backpropagation that offers a rigorous, formal treatment

of global properties. Our second contribution is to further

derive and instantiate the methodology to learn convolu-

tional networks for two different and very successful types

of structured layers: 1) second-order pooling [6] and 2) nor-

malized cuts [36]. An illustration of the resulting deep ar-

chitecture for O2P is given in fig. 1. In challenging datasets
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Figure 1. Overview of the DeepO2P recognition architecture made possible by our methodology. The levels 1 . . . l represent standard

convolutional layers. Layer l+1 is the global matrix logarithm layer presented in the paper. This is followed by fully connected layers and

a logistic loss. The methodology presented in the paper enables analytic computation over both local and global layers, in a system that

remains trainable end-to-end, for all its local and global parameters, using matrix backpropagation.

like BSDS and MSCOCO, we experimentally demonstrate

the feasibility and added value of these two types of net-

works over counterparts that are not using global computa-

tional layers.

Related Work. Our work relates both to the extensive lit-

erature in the area of (deep) neural networks (see [35] for a

review) with particular emphasis on ConvNets[25, 26] and

with (shallow) architectures that have been proven popular

and successful in computer vision[36, 3, 6, 8]. While deep

neural networks models have focused, traditionally, on gen-

erality and scalability, the shallow computer vision archi-

tectures have often been designed with global computation

and visual structure modeling in mind. Our objective in this

work is to provide one possible approach towards formally

marrying these two lines of work.

Bach and Jordan [3] introduced a (shallow) learning for-

mulation for normalized cuts which we build upon in this

work with several important differences. First, we aim to

also learn the rank of the affinity matrix. Moreover while

[3] aims to learn the parameters of their affinity model, we

learn the feature representation of the data. Turaga et al [39]

learn a model end-to-end based on a CNN by optimizing a

standard segmentation criterion. While they used a simple

connected component labeling as the grouping machinery,

we demonstrate here the ability to group using more com-

plex spectral techniques that are broadly applicable to a va-

riety of problems.

Deep architectures have been recently designed for vi-

sual recognition by operating on top of figure-ground re-

gions proposals from object segmentation[7, 40]. R-CNN

[15] uses standard networks (e.g. AlexNet [25] or VGG-

16 [37], which is an improved, deeper AlexNet). SDS

[17] uses two AlexNet streams, one on the original im-

age and the second one on the image with the background

of the region masked. Relevant are also the architectures

of He et al [20, 11], which use a global spatial pyramid

pooling layer before the fully connected layers, in order to

perform max-pooling over pyramid-structured image cells.

Our architecture is also complementary to structured out-

put formulations such as MRFs[5, 33, 8] which have been

demonstrated to provide useful smoothing on top of high-

performing CNN pixel classifier predictions [30]. Models

developed at the same time with this work focus on the

joint, end-to-end training of the deep feature extractor and

the MRF[42, 9, 28]. We also show how a deep architecture

can be trained jointly with structured layers, but in contrast

focus on different models where global dependencies can

be expressed as general matrix functions.

For recognition, we illustrate deep, fully trainable archi-

tectures, with a type of pooling layer that proved dominant

for free-form region description [6], at the time on top of

standard manually designed local features such as SIFT.

In this context, our work is also related to kernel learning

approaches over the manifold of positive-definite matrices

[23]. However, we introduce different mathematical tech-

niques related to matrix backpropagation, which has both

the advantage of scalability and the one of learning compo-

sitional feature maps.

2. Deep Processing Networks

Let D = {(d(i),y(i))}i=1...N be a set of data

points (e.g. images) and their corresponding desired tar-

gets (e.g. class labels) drawn from a distribution p(d,y).
Let L : Rd → R be a loss function i.e. a penalty of mis-

match between the model prediction function f : RD → R
d

with parameters W for the input d i.e. f(d(i),W ) and the

desired output y(i). The foundation of many learning ap-

proaches, including the ones considered here, is the prin-

ciple of empirical risk minimization, which states that un-

der mild conditions, due to concentration of measure, the

empirical risk R̂(W ) = 1
N

∑N
i=1 L(f(d

(i),W ),y(i)) con-

verges to the true risk R(W ) =
∫

L(f(d,W ),y)p(d,y).
This means it suffices to minimize the empirical risk to learn

a function that will do well in general i.e.

argmin
W

1

N

N
∑

i=1

L(f(d(i),W ),y(i)) (1)

If L and f are both continuous (though not necessarily with

continuous derivatives) one can use (sub-)gradient descent
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on (1) for learning the parameters. This supports a general

and effective framework for learning provided that a (sub-)

gradient exists.

Deep networks, as a model, consider a class of functions

f , which can be written as a series of successive function

compositions f = f (K) ◦f (K−1) ◦ . . .◦f (1) with parameter

tuple W = (wK ,wK−1, . . . ,w1), where f (l) are called

layers, wl are the parameters of layer l and K is the number

of layers. Denote by L(l) = L ◦ f (K) ◦ . . . ◦ f (l) the loss

as a function of the layer xl−1. This notation is convenient

because it conceptually separates the network architecture

from the layer design.

Since the computation of the gradient is the only re-

quirement for learning, an important step is the effective

use of the principle of backpropagation (backprop). Back-

prop, as described in the literature, is an algorithm for ef-

ficiently computing the gradient of the loss with respect to

the parameters. The algorithm recursively computes gradi-

ents with respect to both the inputs to the layers and their

parameters (fig. 2) by making use of the chain rule. For a

data tuple (d,y) and a layer l this is computing

∂L(l)(xl−1,y)

∂wl
=

∂L(l+1)(xl,y)

∂xl

∂f (l)(xl−1)

∂wl
(2)

∂L(l)(xl−1,y)

∂xl−1
=

∂L(l+1)(xl,y)

∂xl

∂f (l)(xl−1)

∂xl−1
(3)

where xl = f (l)(xl−1) and x0 = d (data). The first ex-

pression is the gradient we seek (required for updating wl)

whereas the second one is necessary for calculating the gra-

dients in the layers below and updating their parameters.

3. Structured Layers

The existing literature concentrates on layers of the form

f (l) = (f
(l)
1 (xl−1), . . . f

(l)
dl+1

(xl−1)), where f
(l)
j : Rdl →

R, thus f (l) : Rdl → R
dl+1 . This simplifies processing sig-

nificantly because in order to compute
∂L(l)(xl−1,y)

∂xl−1
there

is a well defined notion of partial derivative with respect to

the layer
∂f (l)(xl−1)

∂xl−1
as well as a simple expression for

the chain rule. However this formulation processes spatial

coordinates independently and does not immediately gen-

eralize to more complex mathematical objects. Consider a

matrix view of the (3-dimensional tensor) layer, X = xl−1,

where Xij ∈ R, with i being the spatial coordinate1 and j

the index of the input feature. Then we can define a non-

linearity on the entire X ∈ R
ml×dl , as a matrix, instead of

each (group) of spatial coordinate separately. As the ma-

trix derivative with respect to a vector (set aside to a matrix)

1For simplicity and without loss of generality we reshape (linearize)

the tensor’s spatial indices to one dimension with ml coordinates.

Figure 2. Deep architecture where data x and targets y are fed to a

loss function L, via successively composed functions f (l) with pa-

rameters wl. Backpropagation (blue arrows) recursively expresses

the partial derivative of the loss L w.r.t. the current layer parame-

ters based on the partial derivatives of the next layer, c.f . eq. 2.

is no longer well-defined, a matrix generalization of back-

propation is necessary.

3.1. Computer Vision Models

To motivate the use of structured layers we will consider

the following two models from computer vision:

1. Second-Order Pooling is one of the competitive hand-

designed feature descriptors for regions [6] used in the

top-performing method of the PASCAL VOC seman-

tic segmentation, comp. 5 track [21, 27]. It represents

global high-order statistics of local descriptors inside

each region by computing a covariance matrix X⊤X

then applying a tangent space mapping [2] using the

matrix logarithm, which can be computed using SVD.

Instead of pooling over hand-designed local descrip-

tors, such as SIFT [31], one could learn a ConvNet

end-to-end, with a structured layer of the form

C = log(X⊤X + ǫI) (4)

where ǫI is a regularizer preventing log singularities

around 0 when the covariance matrix is not full rank.

2. Normalized Cuts is an influential global image seg-

mentation method based on pairwise similarities [36].

It constructs a matrix of local interactions e.g. W =
XX⊤, then solves a generalized eigenvalue problem

to determine a global image partitioning. Instead

of manually designed affinities, one could, given a

ground truth target segmentation, learn end-to-end the

deep features that produce good normalized cuts.

3.2. Matrix Backpropagation

We call matrix backpropagation (MBP) the use of matrix

calculus[12, 32, 14] to map between the partial derivatives

∂L(l+1)

∂xl
and

∂L(l)

∂xl−1
at two consecutive layers. We denote

X = xl−1 and Y = xl. The processing can be performed

in 2 steps2:

1. Derive L, the functional describing the variations of

the upper layer variables with respect to the lower layer

2The accompanying paper material[22] covers the background neces-

sary to derive each of these steps.
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variables.

dY = L(dX) (5)

This involves not only the forward mapping of the

layer, f (l), but also the invariants associated to its vari-

ables. If X satisfies certain invariants, these need to be

preserved to first (leading) order when computing dX .

Invariants such as diagonality, symmetry, or orthogo-

nality are explicitly enforced by our methodology.

2. Use the properties of the matrix inner product A : B =
Tr(A⊤B) to obtain partial derivatives with respect to

the lower layer variables. The usefulness of the colon-

product comes from the Taylor expansion for functions

f : Rm×n → R, which can be written as

f(X + dX) = f(X) +
∂f

∂X
: dX +O(‖dX‖2) (6)

with
(

∂f
∂X

)

ij
= ∂f

∂xij
. This holds for a general vari-

ation, e.g. for a non-symmetric dX even if X itself is

symmetric. To remain within a subspace like the one

of symmetric, diagonal or orthogonal matrices, we can

consider a projection of dX onto the space of admissi-

ble variations and then transfer the projection onto the

derivative, to obtain the projected gradient. We use

this technique repeatedly in our derivations.

Since the “:” operator is an inner product on the space

of matrices, this is equivalent to constructively produc-

ing L∗, a non-linear adjoint operator of L

∂L(l+1)

∂Y
: dY =

∂L(l+1)

∂Y
: L(dX) , L∗

(

∂L(l+1)

∂Y

)

: dX

⇒ L∗

(

∂L(l+1)

∂Y

)

=
∂L(l)

∂X
by the chain rule (7)

The formulation is generally applicable to deep archi-

tectures with structured layers, where the processing can

be expressed in matrix form.3 Notice that matrix back-

propagation cannot be derived using existing matrix ‘cook-

book’ methodology[34] that compacts element-wise opera-

tions in matrix form. Our matrix calculus cannot be reduced

to a sugar language constructed bottom-up from element-

wise calculations. For intuition, consider global compu-

tations over arbitrary structured matrices based on eigen-

decomposition. Recoursing to existing methodology, one

3Compared to an algorithmic or an index-by-index description of the

layer (whenever that can be computed), our closed-form partial derivative

calculations simplify both the implementation – since expressions are ob-

tained via matrix operators – and the analysis. Numerical stability becomes

important as the matrix decomposition functions that define the structured

layers might be ill-conditioned, either intrinsically (e.g. SVD is not dif-

ferentiable in the presence of repeated eigenvalues) or because of poorly

chosen numerical schemes. This is true of both the forward and backward

passes [16]. A methodology that provides a formal understanding of the

underlying linear algebra, as given in this work, is thus essential.

would presumably express eigenvalues in closed-form and

then work out their derivatives. However, no closed-form

eigen-decomposition exists for matrices larger than 5 × 5
so that avenue is barred: one can not even write the layer

forward step element-wise, let alone differentiate.

4. Spectral and Non-Linear Layers

When global matrix operations are used in deep net-

works, they compound with other processing layers per-

formed along the way. Such steps are architecture spe-

cific, although calculations like spectral decomposition are

widespread, and central, in many vision and machine learn-

ing models. SVD possesses a powerful structure that allows

one to express complex transformations like matrix func-

tions and algorithms in a numerically stable form. In the

sequel we show how the widely useful singular value de-

composition (SVD) and the symmetric eigenvalue problem

(EIG) can be leveraged towards constructing layers that per-

form global calculations in deep networks.

4.1. Spectral Layers

The first computational block we detail is matrix back-

propagation for SVD problems. In the sequel, we denote

Asym = 1
2 (A

⊤ + A) and Adiag be A with all off-diagonal

elements set to 0.

Proposition 1 (SVD Variations) Let X = UΣV ⊤ with

X ∈ R
m,n and m > n, such that U⊤U = I , V ⊤V = I

and Σ possessing diagonal structure. Then

dΣ = (U⊤dXV )diag (8)

and

dV = 2V
(

K⊤ ◦ (Σ⊤U⊤dXV )sym
)

(9)

with

Kij =







1

σ2
i − σ2

j

, i 6= j

0, i = j

(10)

Consequently the partial derivatives are

∂L

∂X
= U

{

2Σ

(

K⊤ ◦

(

V ⊤
∂L

∂V

))

sym

+

(

∂L

∂Σ

)

diag

}

V ⊤

(11)

Proposition 2 (EIG Variations) Let X = UΣU⊤ with

X ∈ R
m,m, such that U⊤U = I and Σ possessing di-

agonal structure. Then the dΣ is still (8) with V = U but

dU = 2U
(

K⊤ ◦ (U⊤dXU)sym
)

(12)

with

K̃ij =







1

σi − σj
, i 6= j

0, i = j

(13)
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The resulting partial derivatives are

∂L

∂X
= U

{

2

(

K̃⊤ ◦

(

U⊤
∂L

∂V

)

sym

)

+

(

∂L

∂Σ

)

diag

}

U⊤

(14)

4.2. NonLinear Layers

An (analytic) matrix function of a diagonalizable matrix

A = UΣU⊤ can be written as f(A) = Uf(Σ)U⊤. Since Σ
is diagonal this is equivalent to applying f element-wise to

Σ’s diagonal elements. Combining this idea with the SVD

decomposition X = UΣV ⊤, our matrix logarithm C can be

written as an element-wise function C = log(X⊤X+ǫI) =
V log(Σ⊤Σ+ ǫI)V ⊤.

The corresponding variations become

dC = 2
(

dV log(Σ⊤Σ+ ǫI)V ⊤
)

sym

+ 2
(

V (Σ⊤Σ+ ǫI)−1Σ⊤dΣV ⊤
)

sym

Plugging it into ∂L
∂C : dC and manipulating the resulting

formulas we obtain the partial derivatives

∂L

∂V
= 2

(

∂L

∂C

)

sym

V log(Σ⊤Σ+ ǫI) (15)

and

∂L

∂Σ
= 2Σ(Σ⊤Σ+ ǫI)−1V ⊤

(

∂L

∂C

)

sym

V (16)

Plugging (16) and (15) into (11) gives the partial deriva-

tives we seek.

5. Normalized Cut Layers

A central computer vision and machine problem is

grouping (segmentation or clustering) i.e. discovering

which datapoints (or pixels) belong to one of several par-

titions. A successful approach to clustering is normalized

cuts. Let m be the number of pixels in the image and let

V = {1, . . . ,m} be the set of indices. We want to compute

a partition P = {P1, . . . , Pk}, where k = |P|, Pi ⊂ V ,
⋃

i Pi = V and Pj

⋂

Pi = ∅. This is equivalent to produc-

ing a matrix E ∈ {0, 1}m×k such that E(i, j) = 1 if i ∈ Pj

and 0 otherwise. Let X ∈ R
m×d be a feature matrix with

descriptor of size d and let W be a similarity matrix with

positive entries. For simplicity we consider W = XΛX⊤,

where Λ is a d × d parameter matrix. Note that one can

also apply other global non-linearities on top of the seg-

mentation layer, as presented in the previous section. Let

D = [W1], where [v] is the diagonal matrix with main di-

agonal v, i.e. the diagonal elements of D are the sums of the

corresponding rows of W . The normalized cuts criterion is

C(W,E) = Tr(E⊤WE(E⊤DE)−1) (17)

Finding the matrix E that minimizes C(W,E) is equivalent

to finding a partitioning that minimizes the cut energy but

penalizes unbalanced solutions.

It is easy to show[3] that C(W,E) = k −
Tr(Y ⊤D−1/2WD−1/2Y ), where Y is such that a) Y ⊤Y =
I and b) D1/2Y is piecewise constant with respect to E

(i.e. it is equal to E times some scaling for each column).

Ignoring the second condition we obtain a relaxed problem

that can be solved, due to Ky Fan theorem, by an eigen-

decomposition of M = D−1/2WD−1/2. [3] propose to

learn the parameters Λ such that D1/2Y is piecewise con-

stant because then solving the relaxed problem is equivalent

to the original problem. In [3] the input features were fixed

and therefore Λ are the only parameters used for alignment.

This is not our case, as we place a global objective on top

of convolutional network inputs. We can therefore leverage

the network parameters in order to change X directly, thus

training the bottom layers to produce a representation that

is appropriate for normalized cuts.

To obtain a Y that is piecewise constant with respect

to D1/2E we can align the span of M with that of Ω =
D1/2EE⊤D1/2. This can be achieved by minimizing the

Frobenius norm of the corresponding projectors

J1(W,E) =
1

2
‖ΠM −ΠΩ‖

2
F (18)

We will obtain the partial derivatives of an objective with

respect to the matrices it depends on, relying on matrix

backpropagation to compute the derivatives.

Lemma 1 Consider a symmetric matrix A and its orthogo-

nal projection operator ΠA. If dA is a symmetric variation

of A then

dΠA = 2
(

(I −ΠA)dAA+
)

sym
(19)

The derivation, presented in full in our accompanying

paper[22], relies only on basic properties of the projector

with respect to itself and its matrix: Π2
A = ΠA (idempo-

tency of the projector) and ΠAA = A (projector leaves the

original space unchanged). Note that since ΠA = AA+,

there exists a spectral decomposition in training but it is hid-

den in A+ (where A+ is the Moore-Penrose inverse).

The resulting derivatives with respect to W are then

∂J1

∂W
= D−1/2 ∂J1

∂M
D−1/2+

diag

(

D−1Ω

(

∂J1

∂Ω

)

sym

−D−1M

(

∂J1

∂M

)

sym

)

1⊤

A related optimization objective is

J2 =
1

2
‖ΠW −ΠΨ‖

2
F , (20)
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with Ψ = E(E⊤E)−1E⊤. Its partial derivative can be writ-

ten as
∂J2

∂W
= −2(I −ΠW )ΠΨW

+ (21)

Finally, propagating the partial derivatives of Ji down to

Λ and X gives
∂Ji

∂Λ
= X⊤

∂Ji

∂W
X (22)

and
∂Ji

∂X
= 2

(

∂Ji

∂W

)

sym

XΛ⊤ (23)

An important aspect of our approach is that we do not

restrict the rank in training. During alignment the optimiza-

tion may choose to collapse certain directions thus reducing

rank. We prove a topological lemma [22] implying that if

the Frobenius distance between the projectors (such as in

the two objectives J1, J2) drops below a certain value, then

the ranks of the two projectors will match. Conversely, if

for some reason the ranks cannot converge, the objectives

are bounded away from zero.

6. Experiments

In this section we validate the proposed methodology by

constructing models on standard datasets for region-based

object classification, like Microsoft COCO [29], and for im-

age segmentation on BSDS [1]. A matconvnet [41] imple-

mentation of our models and methods is publicly available.

6.1. Region Classification on MSCOCO

For recognition we use the MSCOCO dataset [29],

which provides 880k segmented training instances across

80 classes, divided into training and validation sets. The

main goal is to assess our second-order pooling layer in

various training settings. A secondary goal is to study the

behavior of ConvNets learned from scratch on segmented

training data. This has not been explored before in the con-

text of deep learning because of the relatively small size of

the datasets with associated object segmentations, such as

PASCAL VOC [13].

The experiments in this section use the convolutional ar-

chitecture component of AlexNet[25] with the global O2P

layers we propose in order to obtain DeepO2P models with

both classification and fully connected (FC) layers in the

same topology as Alexnet. We crop and resize each object

bounding box to have 200 pixels on the largest side, then

pad it to the standard AlexNet input size of 227x227 with

small translation jittering, to limit over-fitting. We also ran-

domly flip the images in each mini-batch horizontally, as

in standard practice. Training is performed with stochastic

gradient descent with momentum. We use the same batch

size (100 images) for all methods but the learning rate was

optimized for each model independently. All the DeepO2P

models used the same ǫ = 10−3 parameter value in (4).

Architecture and Implementation details. Implementing

the spectral layers efficiently is challenging since the GPU

support for SVD is still very limited and our paralleliza-

tion efforts even using the latest CUDA 7.0 solver API have

delivered a slower implementation than the standard CPU-

based. Consequently, we use CPU implementations and in-

cur a penalty for moving data back and forth to the CPU.

The numerical experiments revealed that an implementa-

tion in single precision obtained a significantly less accu-

rate gradient for learning. Therefore all computations in our

proposed layers, both in the forward and backward passes,

are in double precision. In experiments we still noticed a

significant accuracy penalty due to inferior precision in all

the other layers (above and below the structured ones), still

computed in single precision, on the GPU.

In our extend paper[22] we present a second formal

derivation of the non-linear spectral layer based on eigen-

decomposition of Z = X⊤X + ǫI instead of SVD of X .

Our experiments favor the derivation presented here. The

alternative implementation, which is formally correct, ex-

hibits numerical instability in the derivative when multiple

eigenvalues have very close values, thus producing blow up

in K̃. Such numerical issues are expected to appear under

some implementations, when complex layers like the ones

presented here are integrated in deep network settings.

Results. The results of the recognition experiment are pre-

sented in table 1. They show that our proposed DeepO2P-

FC models, containing global layers, outperform standard

convolutional pipelines based on AlexNet, on this prob-

lem. The bottom layers are pre-trained on ImageNet us-

ing AlexNet, and this might not provide the ideal initial in-

put features. However, despite this potentially unfavorable

initialization, our model jointly refines all parameters (both

convolutional, and corresponding to global layers), end to

end, using a consistent cost function.

We note that the fully connected layers on top of the

DeepO2P layer offer good performance benefits. O2P over

hand-crafted SIFT performs considerably less well than our

DeepO2P models, suggesting that large potential gains can

be achieved when deep features replace existing descriptors.

6.2. FullImage Segmentation on BSDS300

We use the BSDS300 dataset to validate our deep nor-

malized cuts approach. BSDS contains 200 training images

and 100 testing images and human annotations of all the rel-

evant regions in the image. Although small by the standards

of neural network learning it provides exactly the supervi-

sion we need to refine our model using global information.

Note that since the supervision is pixel-wise, the number of

effective datapoint constraints is much larger. We evaluate

using the average and best covering metric under the Opti-
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Method SIFT-O2P AlexNet AlexNet (S) DeepO2P DeepO2P(S) DeepO2P-FC DeepO2P-FC(S)

Results 36.4 25.3 27.2 28.6 32.4 25.2 28.9

Table 1. Classification error on the validation set of MSCOCO (lower is better). Models with (S) suffixes were trained from scratch

(i.e. random initialization) on the MSCOCO dataset. The DeepO2P models only use a classification layer on top of the DeepO2P layer

whereas the DeepO2P-FC also have fully connected layers in the same topology as AlexNet. All parameters of our proposed global models

are refined jointly, end-to-end, using the proposed matrix backpropagation.

Arch [10] AlexNet VGG

Layer ReLU-5 ReLU-4 ReLU-5

Method NCuts NCuts DeepNCuts NCuts DeepNCuts NCuts DeepNCuts

Results .55 (.44) .59 (.49) .65 (.56) .65 (.56) .73 (.62) .70 (.58) .74 (.63)

Table 2. Segmentation results give best and average covering to the pool of ground truth segmentations on the BSDS300 dataset [1] (larger

is better). We use as baselines the original normalized cuts [10] using intervening contour affinities as well as normalized cuts with affinities

derived from non-finetuned deep features in different layers of AlexNet (ReLU-5 - the last local ReLU before the fully connected layers)

and VGG (first layer in block 4 and the last one in block 5). Our DeepNCuts models are trained end-to-end, based on the proposed matrix

backpropagation methodology, using the objective J2.

mal Image Scale (OIS) criterion [1]. Given a set of full im-

age segmentations computed for an image, this amounts to

selecting the one that maximizes the average and best cov-

ering, respectively, compared to the pool of ground truth

segmentations.

Architecture and Implementation details. We use both

the AlexNet[25] and the VGG-16[37] architectures to feed

our global layers. All the parameters of the deep global

models (including the low-level features, pretrained on Im-

ageNet) are refined end-to-end using the J2 objective. We

use a linear affinity but we need all entries of W to be pos-

itive. Thus, we use ReLU layers to feed the segmentation

ones. Initially, we just cascaded our segmentation layer to

different layers in AlexNet but the resulting models were

hard to learn. Our best results were obtained by adding two

Conv-ReLU pairs initialized randomly before the normal-

ized cuts layer. This results in many filters in the lower layer

(256 for AlexNet and 1024 for VGG) for high capacity but

few in the top layer (20 dimensions) to limit the maximal

rank of W . For AlexNet we chose the last convolutional

layer while for VGG we used both the first ReLU layer in

block4 4 and the top layer from block 5. This gives us feeds

from layers with different invariances, receptive field sizes

(32 vs. 132 pixels) and coarseness (block 4 has 2× the res-

olution of 5). We used an initial learning rate of 10−4 but

10× larger rates for the new layers. A dropout layer with

rate .25, between the last two layers, reduces overfitting. In

inference, we generate 8 segmentations by clustering[3] and

split connected components into separate segments.

Results. The results in table 2 show that in all cases we ob-

tain important performance improvements with respect to

the corresponding models that perform inference directly on

original AlexNet/VGG features. Training using our Matlab

implementation takes 2 images/s considering 1 image per

4We call a block the set of layers between two pooling levels.

batch while testing at about 3 images/s on a standard Titan

Z GPU with an 8 core E5506 CPU. In experiments we mon-

itor both the objective and the rank of the similarity matrix.

Rank reduction is usually a good indicator of performance

in both training and testing. In the context of the rank analy-

sis in §5, we interpret these findings to mean that if the rank

of the similarity is too large compared to the target, the ob-

jective is not sufficient to lead to rank reduction. However if

the rank of the predicted similarity and the ground truth are

initially not too far apart, then rank reduction (although not

always rank matching) does occur and improves the results.

7. Conclusion

Motivated by the recent success of deep network archi-

tectures, in this work we have introduced the mathematical

theory and the computational blocks that support the de-

velopment of more complex models with layers that per-

form structured, global matrix computations like segmenta-

tion or higher-order pooling. Central to our methodology

is the development of the matrix backpropagation method-

ology which relies on the calculus of adjoint matrix vari-

ations. We provide detailed derivations (see also our ex-

tended version[22]), operating conditions for spectral and

non-linear layers, and illustrate the methodology for nor-

malized cuts and second-order pooling layers. Our ex-

tensive region recognition and segmentation experiments

based on MSCoco and BSDS show that that deep networks

relying on second-order pooling and normalized cuts layers,

trained end-to-end using the introduced practice of matrix

backpropagation, outperform counterparts that do not take

advantage of such global layers.
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AlexNet VGG Ground

Image ReLU-5 ReLU-4 ReLU-5 Truth

NCuts DeepNCuts NCuts DeepNCuts NCuts DeepNCuts (Human)

Figure 3. Segmentation results on images from the test set of BSDS300. We show on the first column the input image followed by a

baseline (original parameters) and our DeepNcuts both using AlexNet ReLU-5. Two other pairs of baselines and DeepNCut models trained

based on the J2 objective follow. The first pair uses ReLU-4 and the second ReLU-5. The improvements obtained by learning are both

quantitatively significant and easily visible on this side-by-side comparison.
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