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Abstract

Eigenvalue problems are ubiquitous in computer vision,

covering a very broad spectrum of applications ranging

from estimation problems in multi-view geometry to image

segmentation. Few other linear algebra problems have a

more mature set of numerical routines available and many

computer vision libraries leverage such tools extensively.

However, the ability to call the underlying solver only as

a “black box” can often become restrictive. Many ‘human

in the loop’ settings in vision frequently exploit supervision

from an expert, to the extent that the user can be considered

a subroutine in the overall system. In other cases, there

is additional domain knowledge, side or even partial infor-

mation that one may want to incorporate within the formu-

lation. In general, regularizing a (generalized) eigenvalue

problem with such side information remains difficult. Mo-

tivated by these needs, this paper presents an optimization

scheme to solve generalized eigenvalue problems (GEP) in-

volving a (nonsmooth) regularizer. We start from an alter-

native formulation of GEP where the feasibility set of the

model involves the Stiefel manifold. The core of this pa-

per presents an end to end stochastic optimization scheme

for the resultant problem. We show how this general algo-

rithm enables improved statistical analysis of brain imaging

data where the regularizer is derived from other ‘views’ of

the disease pathology, involving clinical measurements and

other image-derived representations.

1. Introduction

The explosion of photo or data sharing platforms in the

last ten years has led to large and rich datasets where de-

riving a single all-encompassing representation for down-

stream statistical inference is challenging. Images often

come with tags or user comments, and webpages can be

characterized in terms of their textual content as well as the

genre of related webpages. Even when working specifically

with images, it is common to perform different feature ex-

tractions in the hope that all aspects of the image content

are ‘covered’ by at least one feature type. Performing ma-

chine learning by fusing different views of the data is a well

studied problem [3, 4, 6, 16, 26, 33].

Independent of the specific inference question of inter-

est, observe that once the multiple views are in hand, prac-

titioners often utilize off-the-shelf data exploration tech-

niques to get a better sense of the derived representations

and/or to identify reasonable parameter estimates for the

subsequent components of the processing pipeline. To this

end, spectral analysis is widely used for the evaluation of

the heterogeneity in the groups and for feature selection

[29]. In the latter setting, it is common to obtain the pro-

jection of the original distribution on the principal bases of

the covariance and proceed with analyzing the embedded

versions of the examples in the lower dimensional space

instead. Frequently this may provide nicer affinity matri-

ces which may be more suitable for machine learning tasks.

When faced with multiple views, the above strategy can be

applied to each view one by one, and the resultant affin-

ity (or kernel) matrices can be averaged. But various re-

cent results suggest that there is practical value in operating

on each view separately and then enforcing consistency be-

tween the results obtained from each [24]. For example, in

co-clustering, one imposes the constraint that leading eigen-

vectors across multiple views should be similar [4]. In the

applied math literature, a more general version of the prob-

lems motivated from physics and engineering applications

are studied as coupled eigenvalue problems [28]. From the

perspective of the multi-view setup, this will entail solving

a set of eigenvalue problems concurrently for the “primary”
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and multiple “secondary” views. It turns out that when re-

stricted to only two views, the formulation in some sense

generalizes a very recent approach [14] for finding common

eigenbases computed independently on different shapes.

The multiple view and co-clustering discussion above,

while interesting, is not entirely essential to motivate eigen-

value problems in vision. Instances of eigen-decomposition

are ubiquitous in computer vision in applications ranging

from face recognition, indexing/hashing, registration, shape

analysis to segmentation [10, 12, 22, 31, 34]. As soon as a

formulation reduces to the eigenvalue form, a mature set of

numerical analysis tools can be deployed directly. Their nu-

merical behavior is well understood, and when faced with

degenerate cases, it is also relatively easy to find robust pre-

conditioners from the literature. That is, a black-box solver

suffices. On the other hand, when a practitioner has addi-

tional supplementary information available for data, the ex-

isting solvers provide very little guidance on how such regu-

larizers can be incorporated within the numerical optimiza-

tion. In practice, such meta information may correspond

to noisy labels in a semi-supervised setting, shape priors in

segmentation, partial knowledge of a few eigen bases and so

on [15]. In fact, we can also think of additional views of the

data as regularizers on the primary eigen-decomposition.

As we gradually move to systems where both the human

and the statistical model mutually cooperate, it is impor-

tant to derive end to end frameworks that offer such flexi-

bility, yet retain much of the attractive numerical properties

of their black-box counterparts.

With the foregoing motivation in mind, the main goal

of this paper is to derive efficient numerical optimization

schemes to solve a generalized eigenvalue problem with a

nonsmooth regularizer, where few (if any) alternatives are

currently available. We assume that the “mass matrix” in

the eigenvalue formulation either comes naturally from the

basic design (e.g., generalized Rayleigh [2]) or is a repre-

sentation of the secondary views of the data. Separately, our

formulation permits a fairly general (i.e., nonsmooth) regu-

larizer. This may encode either partially observed or noisy

meta knowledge about the data, common in crowd-sourced

deployments or applications where a specific type of infor-

mation is more expensive to obtain. Since a large majority

of the data may be unobserved, standard imputation tech-

niques are not applicable. The contribution of this work

is to derive efficient numerical optimization schemes which

solve the above problem as a trace minimization with gen-

eralized Stiefel constraints. We derive the update schemes

and provide a detailed description of its properties. As an

example, we show the applicability of these ideas to a sta-

tistical inference problem on brain imaging data, where we

work with multiple derived representations of the image as

well as measurements which are available only on a small

subset of the participants.

2. Useful manifolds in numerical optimization

First, we present an overview of some manifolds that ap-

pear often in numerical optimization problems, which will

serve as background material for much of the technical de-

scription that follows.

For vector spaces V and W denote by L(V,W ) the vec-

tor space of linear maps from V to W . Thus, the space of

L(RN ,Rp) may be identified with the space RN×p of N×p
matrices. An injective linear map u : RN → V is called

a N−frame in V . The set GFN,p = {u ∈ L(RN ,Rp) :
rank(u) = N} of N−frames in R

p is called the Stiefel

manifold. As a special case, when N = p, GFN,N :=GFN

is the General Linear group or the set of N × N matrices

with nonzero determinant. In short, a Stiefel manifold is the

set of N×p orthonormal matrices (with a Riemannian struc-

ture). The set of all N−dimensional (vector) subspaces

α ⊆ R
p is called the Grassmann manifold of N−planes

in R
p and denoted by GRN,p. With these definitions it is

easy to see that the Grassmann manifold is just the Stiefel

manifold quotiented by the Orthogonal group (set of or-

thogonal matrices) in N−dimensions. Let Sn be the set

of n× n symmetric projection matrices with trace equal to

p. Then we have that Sn is homeomorphic to GRN,p where

the homeomorphism sends each element of Sn to its column

space. Hence one may consider optimizing over Sn instead

of GRN,p and vice-versa. Readers can see [1] for more de-

tails on these topics such as exponential map, tangent space

and retraction.

Now, we will look at one prominent application of the

manifolds described above in the context of computer vi-

sion, namely, Spectral clustering. Spectral clustering refers

to a popular graph partitioning technique that analyzes the

eigen structure of a matrix derived from the pairwise sim-

ilarities of nodes, to identify clusters inherent in the data.

The nodes in the graph represent individual data examples

such as pixels in an image or vectors in a distribution X .

The algorithm, however, does not make use of the native

space of X , but rather the space induced by the chosen

measure of similarity or the kernel matrix M . This works

well because with a proper choice of M , the cohesiveness

of clusters of points can be characterized via stability of

the eigenvectors of its Laplacian matrix associated with the

graph. Ordinary spectral clustering is formulated as

min
V ∈RN×p

tr(V T
MV ) s.t. V

T
V = I (1)

where tr(·) denotes the trace functional. Observe that this is

actually an implicit optimization over the Grassmann mani-

fold rather than the Stiefel manifold. This is because, the

objective function is invariant to a rotation in R
p of the

decision variables, that is, replacing V with V Q so that

Q ∈ R
p×p, QTQ = I , we have that,

tr((V Q)TM(V Q)) = tr(QT (V TMV )Q) = tr(V TMV )
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where the second equality is due to the similarity invariance

property of the trace functional.

3. Regularized Generalized Eigenvalue Prob-

lem (R-GEP)

The Generalized Eigenvalue Problem (GEP) is a very

well studied problem, particularly in finite element analy-

sis, control theory, etc. [27]. In computer vision and ma-

chine learning, GEP can be used for binary classification [7]

and face recognition tasks [8], among others. This problem

constitutes the key computational phase of the Heat Kernel

Smoothing procedure used in [23] to smooth signals over

anatomical surfaces in 3D medical images. A relaxed ver-

sion of the Normalized cuts problem used widely in image

segmentation applications can also be formulated as a GEP

[25]. It is expressable as the following numerical optimiza-

tion problem,

min
V ∈RN×p

f(V ) := tr(V T
MV ) s.t. V

T
DV = I (2)

where the decision variable of the optimization problem V

is the matrix containing the first p eigenvectors of the matrix

M which are the eigenvectors corresponding to the largest

p eigenvalues of the matrix M with respect to another arbi-

trary matrix D. The pair {M,D} is also commonly referred

to as the matrix pencil. When D is the identity matrix, this

problem reduces to the standard eigenvalue problem hence

we note that Principal Component Analysis (PCA) is a spe-

cial case of this problem by setting M to be the similarity

matrix Y TY . While D can be singular, it is assumed to be

a positive definite (p.d) matrix in many applications.

Now, we motivate the regularization part of the prob-

lem. Let n = {1, ..., N} be the set of subjects and suppose

that we are given supplementary information for a subset

n′ ⊆ n, |n′| = N ′. One can also think of the supplementary

information as data procured from more expensive sources.

For instance, in our applications some modalities are ex-

pensive ($5000+) or may involve invasive procedures so

not all participants will opt in. Another example is in vari-

ous crowd sourced platforms where expert level annotation

may be available only for few examples due to high acqui-

sition cost. Let the data associated with n′ be S ∈ R
s×N ′

where s is the number of supplementary features for each

subject in n′. The key assumption is that S contains com-

plementary information which captures the underlying pat-

tern among the subjects, hence helping our primary goal.

Practical aspects of this setup are further explained in (5).

Let Γ = STS ∈ R
N ′

×N ′

be the corresponding similarity

matrix and α ∈ R
N ′

be its leading eigenvector. We can

think of the magnitude of coordinates of α as weights on

the subjects in n′. Let V·1 ∈ R
N denote the first column of

V and V·1|n
′ be the restriction of V·1 to the set n′ (the nota-

tion is suppressed when the context is clear). The simplest

way to take advantage of the complementary information of

α in our model is to use the ℓ0 norm (which counts the num-

ber of nonzero entries) of the difference between V·1 and α

which seeks fidelity between them while keeping the num-

ber of places they are different small. It is well known that

this gives us a computationally intractable problem but can

be approximated for practical purposes by its best convex

surrogate, the ℓ1 norm. Hence the optimization problem is

min
V ∈RN×p

tr(V T
MV ) + λ||V·1 − α||1 s.t. V

T
DV = I (3)

where λ > 0 is the regularization parameter. Even though

in principle one can add |n′| regularization terms, this gen-

erally does not provide significant improvements as shown

empirically (see supplement). In the next section we explain

how this optimization problem can be solved efficiently to

exploit the structure of the problem. Note that the regu-

larization term in problem (3) is specifically chosen with

the application in mind, but the algorithm described in the

following section can be used for any nonsmooth function,

say g : RN×p → R with the following properties. We as-

sume that g is a real valued convex (nonsmooth) function

on {V ∈ R
N×p : V TDV = I} and that at least one ele-

ment sg ∈ ∂g(V ) can be computed efficiently for every V

in the feasible set. Note that outside of the feasible set we

do not have any assumptions on g unlike most projection

based algorithms.

4. Algorithm

We solve the optimization problem (3) with a coordinate

descent method over the generalized Stiefel manifold. The

main intuition of our algorithm is to decrease the function

by finding the next iterate along a curve that lies in the fea-

sible set. The constraints in (2) and (3) describe a mani-

fold over the decision variables, specifically the generalized

Stiefel manifold GFN,p. We can therefore construct curves

in this manifold using the exponential map, or constructions

such as Cayley curves [32]. In the text below, we describe

an algorithm that constructs descent curves on the general-

ized Stiefel manifold. These curves are constructed to have

two key properties. First, the curves only vary along a sub-

set of the dimensions/decision variables, so that methods

such as coordinate descent can be used to parallelize or re-

duce the problem [21]. Second, the directional derivative

of the objective along the tangent to the curve will be nega-

tive, meaning that an iterate chosen from a suitable distance

along this curve will have decreased objective values rela-

tive to the current iterate.

To simplify calculations, we describe the update steps

for the unregularized in problem (2). This can be extended

to the regularized problem in (3) by adding the subdifferen-

tial of the regularization function to the subdifferential used

here.
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Algorithm 1 Stochastic coordinate descent on GFN,p

Require: f : GFN,p → R, D ∈ R
N×N , V0 ∈GFN,p(D)

1: for t = 1, ..., T do

2: Select rows I ⊆ {1, ... , N}
3: U0 ← VI· −D−1

II
DĪIVĪ·

4: [Q QR]← U0 for Q nonsingular

5: Take G ∈ ∂VI·
f(V )

6: G′ ← GIJ +GIJ̄RT

7: Construct a descent curve Y on GFi,p(DII) through

U0 in the direction of −G′ (22)

8: Pick step size τt satisfying Armijo-Wolfe condition

[18]

9: Vt+1 ← Y (τt)
10: end for

We start by describing a constructive way of dividing the

optimization problem into smaller subproblems while still

maintaining the orthogonality constraints with respect to the

given positive definite matrix D. Note that if D is the iden-

tity matrix this reduces to the usual Stiefel constraints.

Suppose we have a subset I of i row indices, correspond-

ing to rows of V . The submatrix consisting only of these

rows is denoted by VI· ∈ R
i×p. We seek to construct a

descent curve by reducing (2) to the subproblem over only

this submatrix. We are given a feasible iterate V , and seek

to compute the next iterate W such that it also lies in the

generalized Stiefel manifold GFN,p and is thus feasible for

the problem in (3), and W only differs from V in the rows

selected by I. To start, assume w.l.o.g. that I selects the

first i rows of V . Then we write the constraint V TDV = I

as
[

VI·

VĪ·

]T [

DII DT
ĪI

DĪI DĪĪ

] [

VI·

VĪ·

]

= I. (4)

We are interested in the case that the rows not selected, with

indices in the complement Ī, are fixed. Writing the con-

straints only the free variable VI·, we have:

V
T
I·DIIVI·+V

T
Ī·DĪIVI·+V

T
I·D

T
ĪIVĪ·+V

T
Ī·DĪĪVĪ· = I. (5)

On the subproblems, it will be sufficient to choose new

iterates which preserve the equality. This is a general

quadratic equality constraint, so it will be more difficult

than a Stiefel constraint. Note that this constraint also in-

cludes rows not in the selected set, i.e., VĪ·. However, we

can ignore rows which are not neighbors of I in the graph

representation of nonzeros of D. As a result, when D is

sparse, this computations below will still be of order≪ N .

The constraint on VI· will be of the form

V
T
I·DIIVI· + V

T
Ī·DĪIVI· + V

T
I·D

T
ĪIVĪ· = P1 (6)

for a matrix P1 that is constant w.r.t. VI·. If we assume that

DII is full-rank, we can complete the square:

(

D
1

2

II
VI· +D

− 1

2

II
D

T
ĪIVĪ·

)T (

D
1

2

II
VI· +D

− 1

2

II
D

T
ĪIVĪ·

)

= P

(7)

where the matrix P = P1 + V T
Ī·
DĪID

−1

II
DIĪVĪ· is still

constant with respect to the selected submatrix.

Note that D ≻ 0 implies DII ≻ 0, so we can assume

the inverse matrices above exist when D is positive definite.

We next describe the constraints over subproblem deci-

sion matrix U . If we take any orthogonal U , and say

VI· = D
− 1

2

II
UP

1

2 −D
−1

IID
T
ĪIVĪ·, (8)

this provides a new iterate that satisfies the constraints in (4)

and subsequent equations.

The descent curve will then be computed around the

point:

U0 =

(

D
1

2

II
VI· +D

− 1

2

II
D

T
ĪIVĪ·

)

P
− 1

2 (9)

given V is the previous iterate. Here, we note that for the

regularized problem (3), we simply add λsign(V·1 − α) to

the first column of the subdifferential.

4.1. Alternate Form

The previous derivation provides the most general means

to construct the subproblem over U , and would be used e.g.,

if the chosen descent curve is a geodesic constructed from

the exponential map of a subgradient around U0. We can

in general perform optimization on this subproblem using

any choice of retraction. This is a general class of map-

pings from the tangent space of a manifold to the manifold

and preserves the key properties of the exponential function

necessary to perform feasible descent on a manifold, for

more details, see [1]. A computationally efficient retraction

on the Stiefel manifold is given by the Cayley transform.

A form of this transformation suitable for the generalized

Stiefel manifold is given by Equation (1.2) and Lemma 4.1

of [32]. This allows us to eliminate the potentially expen-

sive computation of matrix square roots. Here we would

instead consider

VI· = U −D
−1

IID
T
ĪIVĪ·, (10)

which will satisfy the constraint in (5) if UTDIIU = P .

Note the construction from [32] still assumes that DII ≻ 0
and P is nonsingular.

4.2. Singularity Correction

We can relax the assumptions in the above subproblem

construction, in that we do not necessarily require that the

constraint matrix P to be nonsingular. This section de-

scribes a transformation of the subproblem that allows us

to consider singular P .
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First rewrite (7) as:

(

VI· +D
−1

IID
T
ĪIVĪ·

)T

DII

(

VI· +D
−1

IID
T
ĪIVĪ·

)

= P.

(11)

Assume, as above, that DII ≻ 0 . Then for any matrix

that satisfy this equation, P will be nonsingular iff VI· +
D−1

II
DT

ĪI
VĪ· is nonsingular. We achieve the “singularity

correction” by transforming the subproblem into a problem

over only a maximal set of linearly independent columns of

the latter matrix. Assume w.l.o.g. that

VI· +D
−1

IID
T
ĪIVĪ· =

[

Q QR
]

(12)

for a i × r nonsingular matrix Q and a r × (p − r) matrix

R. Let J be the indices of the columns corresponding to Q.

Then
Q = VIJ +D

−1

IID
T
ĪIVĪJ (13)

and

[Q QR]
T
DII

[

Q QR
]

=

[

QTDIIQ QTDIIQR

RTQTDIIQ RTQTDIIQR

]

= P.

Taking R to be fixed, and expressing the constraint only

on the submatrix Q of linearly independent columns, we

can expect the equality to be true iff

(

VIJ +D
−1

IID
T
ĪIVĪJ

)T

DII

(

VIJ +D
−1

IID
T
ĪIVĪJ

)

= PJJ .

(14)

So given U ∈ R
i×r such that UTDIIU = PJJ , we let

VIJ = U −D−1

II
DT

ĪI
VĪJ , (15)

VIJ̄ = UR−D−1

II
DT

ĪI
VĪJ̄ . (16)

We now show feasibility after performing the singularity

correction.

Lemma 1. With the above notations, VI· constructed is fea-

sible.

Proof. The proof consists of simple linear algebraic calcu-

lations, that is, first observe that,

VIJ +D−1

II
DT

ĪI
VĪ·

=
[

U −D−1

II
DT

ĪI
VĪJ UR−D−1

II
DT

ĪI
VĪJ̄

]

+
[

D−1

II
DT

ĪI
VĪJ D−1

II
DT

ĪI
VĪJ̄

]

=
[

U UR
]

.

Now it is enough to show that this block matrix produces P

when multiplied with the square matrix DII as

[

UT

RTUT

]

DII [U UR] =

[

UTDIIU UTDIIUR

RTUTDIIU RTUTDIIUR

]

=

[

PJJ PJJR

RTPJJ RTPJJR

]

= P.

As a footnote, while we can allow P to be singular, it is

still necessary for the correctness of our method that DII ≻
0 for any choice of I. However, it is sufficient to show that

D ≻ 0:

x
T
DIIx

w.l.o.g.
=

[

x

0

]T [

DII DT
ĪI

DĪI DĪĪ

] [

x

0

]

≥ 0. (17)

This derivation therefore produces valid subproblems of (2)

as long as the constraint matrix D is positive definite.

4.3. Computing a Descent Curve

A descent direction for the subproblem will come from

differentiating f ◦ V (U) w.r.t. U , where V is related to U

by (8):

∂

∂U
f ◦V (U) = 2(DI·V·J +(DIIVIJR+DIĪVĪJ̄ )RT )P 1/2

.

(18)

We pick a subgradient G ∈ ∂VI·
f ◦ V (U) and then per-

form the singularity correction on G with the same R in

(12):

G
′ = GIJ +GIJ̄R

T
. (19)

To generate a descent curve, we can project a subgradient

of f ◦W onto the tangent space of the manifold GFi,p(DII)
at U0, where W is the next feasible point for any orthonor-

mal U such that

W (U) =

[

UP 1/2 UP 1/2R

VĪJ VĪJ̄

]

∈ R
N×p

(20)

assuming w.l.o.g. that I selects the first |I| rows of the

matrix. This construction preserves the constraints while

leaving the complement Ī unchanged, so it is clear that W

is also feasible. Then, a skew-symmetric matrix is defined

as

A = G
′
U

T
0 − U0G

′T
, (21)

and the curve Y as a function of τ by the Crank-Nicolson-

like design as in [32] is

Y (τ) =
(

I +
τ

2
ADII

)−1
(

I −
τ

2
ADII

)

U0. (22)

So one can think of Y as a function of a single parame-

ter τ on which we perform a linear search over the descent

curve with sufficient decrease in the objective value in each

iteration.

Theorem 2. Let F := f+g and Vt be a point V at iteration

t. F (Vt) is a monotonically nonincreasing sequence for (3)

and hence for (2).

Proof. Note that from lemma (1), at every iteration t we

produce a feasible point and from section (4.3) they satisfy

the strong Wolfe conditions. Combining both gives us the

desired result.

1845



Figure 1: DTI image showing tensor directionality, followed by the FA image and the connectivity matrix.

5. Experiments

Figure 1 shows a slice of an example pair of a DTI im-

age, the corresponding FA image and the connectivity ma-

trix (with 160 regions of interest).

Our experiments evaluate the efficacy of R-GEP in fus-

ing multiple sources via measuring performance improve-

ment for downstream statistical analysis tasks. We also dis-

cuss about running time for Alg. 1.

5.1. Data

The dataset for our experiments is comprised of brain

imaging data, cognitive test scores and other demographic

data from 102 middle-aged and older adults. In this cohort,

58 of the subjects are healthy (according to a dementia rat-

ing scale [17]), while the rest are diseased. Recall that the

data used in our model come from three sources. The pri-

mary source is 3D volumetric Fractional Anisotropy (FA)

imaging data, while the single secondary source is connec-

tivity information derived from the corresponding 3D Diffu-

sion Tensor Images (DTI). For each voxel in the brain image

space, a DTI image provides the rate and directionality of

diffusion of water. The two sources are related in the sense

that FA summarizes the degree of diffusion of water within

each voxel (i.e., 3D pixel) of a DTI. However, there is in-

formation loss in this summarization, and hence using DTI-

derived connectivity information as a secondary source for

any statistical analysis performed in FA space is expected

to increase the statistical power. Using the DTI data and

performing a pre-processing step such as tractography, one

can construct a connectivity matrix that corresponds to an

adjacency graph where the nodes represent anatomical re-

gions of interest and the edges weights (non-negative) give

the strength of their connection (e.g., derived using fiber

counting procedures [19]).

Note that the secondary source in this case is a third or-

der tensor where each slice i corresponds to a subject’s ad-

jacency matrix. Using Canonical Polyadic decomposition

[13] on this tensor, we can then compute the subject space

factor matrix CN×r, where r represents the tensor decom-

position rank. The resulting factor matrix C will respect the

structure of the adjacency graph, and hence the mass ma-

trix D in (3) is given by CCT . The incomplete priors n′

from which we derive α for the regularization term as de-

scribed in Section 3, include 7 different cerebrospinal fluid

(CSF) scores that measure specific types of protein levels

in the brain that may be related to the disease [30]. These

measures are positive scalars and are generally available for

a smaller subset of the cohort (in our case, 60 out of 102)

because it is a relatively more involved procedure.

5.2. Evaluations setup

Our evaluations are two-fold. Recall that the embed-

dings V learned by our model in (3) should, as a first order

requirement, retain the structural and group-level charac-

teristics of the input data, for example, the healthy versus

diseased discrimination power. If such sanity checks are

satisfied, we can evaluate improvements obtained in down-

stream statistical analysis. Therefore, using V as the feature

representations for the inputs, we first check for changes in

our ability to classify the healthy versus diseased subjects

using an off the shelf machine learning library.

The comparison is performed against three models of

incremental complexities. First, we compare the results

to a baseline model which relies only on the primary

source/view (FA data). Second, we also compare the results

to ‘intermediate’ models that include a PCA based approach

on FA data and a GEP (2) setup which does not use any reg-

ularizer. Lastly, a PCA-avg model is also evaluated where

the primary and secondary source kernel are averaged. See

supplement for the extended versions of Table 1 and 2.

We further repeat the same set of experiments to eval-

uate the power of these representations in replicating the

disease progression. This is achieved via regressing the

representations using existing disease markers as an out-

come/dependent variable (example, a cognitive score like

MMSE [5]). We used linear-SVM for both classification

and regression setups. For the baseline model, the input

features are FA and for the other models, the inputs are V .

All results are 10-fold cross validated.

5.3. Results

Table 1 and 2 present the classification and regression

results respectively. In either case, the rows correspond to

PCA rank (p). The columns represent the baseline model,
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p Baseline PCA PCA-avg
GEP 2 R-GEP 3

r = 1 5 10 r = 1 5 10

3 63.4 85.7 85.6 86.6 85.7 85.7 90.3 88.5 86.5

5 63.4 82.6 81.8 85.4 85.4 86.3 89.5 89.3 87.3

7 63.4 84.3 80.7 84.3 84.3 84.3 86.4 88.4 87.5

10 63.4 82.4 83.5 82.4 84.2 86.2 86.5 86.4 89.3

13 63.4 83.3 85.6 86.2 84.2 88.1 89.2 91.2 88.2

Table 1: Healthy versus diseased classification accuracy (10-fold cross validated) using GEP and R-GEP, compared to the

baseline linear classifier and the PCA setup. p denotes the PCA rank and r is tensor rank.

p Baseline PCA PCA-avg
GEP 2 R-GEP 3

r = 1 5 10 r = 1 5 10

3 0.679 0.718 0.647 0.719 0.718 0.718 0.745 0.771 0.758

5 0.679 0.719 0.614 0.726 0.737 0.735 0.769 0.746 0.749

7 0.679 0.707 0.610 0.707 0.707 0.713 0.763 0.785 0.734

10 0.679 0.656 0.622 0.656 0.742 0.719 0.741 0.762 0.754

13 0.679 0.717 0.654 0.730 0.765 0.745 0.737 0.757 0.754

Table 2: Healthy versus diseased regression correlation coefficient (10-fold cross validated) using GEP and R-GEP, compared

to the baseline linear classifier and the PCA setup. p denotes the PCA rank and r is tensor rank.

Figure 2: Feature sensitivity. First column shows the FA image. Second column shows overlays of the weights assigned by

baseline linear kernel on this FA image. Last column shows overlays from the base R-GEP case in Table 1. Green (Red)

corresponds to smaller (larger) weights.

PCA on primary source, PCA on primary and secondary

source (PCA-avg) and the GEP and R-GEP models (with

different choices of tensor decomposition rank r). Refer

to the supplement for an expanded version of these tables.

It is clear from the accuracy results in Table 1 that intro-

ducing additional sources of information always increases

the performance (63.4% accuracy for baseline to > 91%
for R-GEP). Same is the case with regression results in Ta-

ble 2 (0.68 correlation coefficient from baseline to > 0.78
for R-GEP). R-GEP outperforms the rest (especially GEP)

across multiple choices of p and r. These trends support

the hypothesis that our incomplete priors (CSF measures)

are predictive of the disease [9]. It is interesting to see that

even when only the primary source is used, the performance

improves from baseline to PCA (second to third columns),

which is perhaps due to nature of the imaging data itself.

As the length of the embeddings p increases, both the ac-

curacies and correlations for the R-GEP model are not nec-

essarily monotonic. This implies that for the statistical task

of interest (e.g., discriminating healthy versus diseased in

Table 1), there may be a ‘sweet spot’ for p. Smaller values

of p seem to perform better. It should be noted that all these

interpretations are sensitive to the number of data instances,

the specific choices of data sources, and the chosen task at
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hand. The results for GEP and R-GEP (last six columns

in Tables 1 and 2) for a given p show that the performance

changes only marginally (in most of the cases) for differ-

ent t. More precisely, there seems to be no single t which

gives best set of accuracies and/or correlations across all the

p. This is ideal because r is not an outcome of the model,

and it only governs the way we compute the mass matrix.

Note that the two sources do provide complementary infor-

mation, which can be seen by the performance differences

of the PCA-avg model to that of the PCA.

An interesting exploratory tool is to compute the sensi-

tivity (or weight) of each feature (or voxel) in classifying the

healthy versus diseased subjects. Computing these weights

is straight forward for the baseline case since it corresponds

to a linear SVM. However, for R-GEP the feature space is

V and not the voxel space, see Figure 1. We used a trick

from [20], where results from a SVM method can be used

to assess sensitivities in the original feature space. Figure

2 shows two pairs of these feature sensitivity maps of the

baseline model to the best case of R-GEP in the classifi-

cation case. Sensitivity of a voxel is proportional to the

absolute value of the weights (here, green is smaller and

red is larger). The regions selected by R-GEP are different

from the baseline, and more importantly, R-GEP assigned

weights more contiguously compared to the baseline. It

should be noted that the baseline is a simple linear SVM and

so unsatisfactory sensitivity maps are expected. These re-

sults support the premise that incorporating secondary and

incomplete priors increase performance, and our R-GEP

model combines these information sources in a meaningful

way offering good improvements. Additional experiments

using positron emission tomography (PET) images from a

study on pre-clinical Alzheimer’s disease are available on

the project webpage.

We note that there is a broad spectrum of ways in which

information from disparate sources can be combined, e.g.,

multiple kernel learning with data imputation for incom-

plete features [11]. The purpose of these experiments is

not to claim that the proposed ideas are the best means

for multi-view data fusion. Instead, the experiments sug-

gest that independent of which statistical machinery we

choose to deploy, methods such as the one presented here

can be used as a pre-processing step to harmonize informa-

tion across the views to construct meaningful low dimen-

sional embeddings that can then be fed to the downstream

analysis.

5.4. Discussion

Table 3 shows the runtime of Alg. 1 versus the condi-

tion number (denoted by κ) of D. We note two aspects of

our algorithm. Firstly, as the problem size N increases, the

increase in the runtime is not significant implying that the

algorithm is scalable to large datasets. Secondly, we see that

κ has a significant impact on the convergence (Table 3). In-

Condition Problem size (N )

number κ 10 30 50 100
1 0.04 0.06 0.27 0.46

5 0.04 2.91 36.18 91.5

10 0.05 8.00 71.55 514.2

20 0.35 75.86 324.2 >1000

Table 3: Effect of condition number κ on the runtime (in

seconds) of Alg. 1.

tuitively, this means that when the data matrix consists of

points that are similar in some sense, κ of the similarity ma-

trix induced increases. In these cases, as expected, finding

a good descent direction becomes harder, and we tend to

make very little progress towards the optimal (local) solu-

tion at each iteration. Recall that this issue is very common

in most numerical optimization algorithms, and the solution

involves applying either standard (or specialized) precondi-

tioning techniques (refer to [18]). The results presented here

do not utilize any preconditioning. For reasonable values of

κ, the runtime scales approximately linearly. For κ = 3, the

solver returns the correct solution for N = 1000 in ≈ 5s,

N = 5000 in ≈ 2min and N = 10000 in ≈ 7min.

6. Conclusion
This paper describes a manifold optimization frame-

work to obtain solutions to generalized eigenvalue prob-

lems with a nonsmooth regularizer. Given (i) the numer-

ous problems in vision that involve GEP and (ii) a practi-

cal need to incorporate various forms of meta knowledge

or supervision into such formulations, our algorithm ad-

dresses an important gap where few alternatives are avail-

able currently. As long as the inputs are well conditioned,

the method is scalable and efficient. We show a concrete

application to a brain imaging problem where the frame-

work helps improve standard statistical machine learning

experiments which seek to utilize diverse types of imaging

modalities for disease diagnosis. In this case, incorporating

a nonsmooth regularizer has the direct consequence that it

yields higher sensitivity/specificity and arguably more in-

terpretable visual results. Our solver can be used in a plug

and play manner in various other settings in vision where

a regularization is expected to meaningfully bias and im-

prove the performance. The extended version of this pa-

per, the supplementary material and the code are available

at http://pages.cs.wisc.edu/˜sjh/.
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