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Abstract

We address the problem of cross-domain image retrieval,

considering the following practical application: given a

user photo depicting a clothing image, our goal is to re-

trieve the same or attribute-similar clothing items from on-

line shopping stores. This is a challenging problem due

to the large discrepancy between online shopping images,

usually taken in ideal lighting/pose/background conditions,

and user photos captured in uncontrolled conditions. To

address this problem, we propose a Dual Attribute-aware

Ranking Network (DARN) for retrieval feature learning.

More specifically, DARN consists of two sub-networks, one

for each domain, whose retrieval feature representations

are driven by semantic attribute learning. We show that this

attribute-guided learning is a key factor for retrieval ac-

curacy improvement. In addition, to further align with the

nature of the retrieval problem, we impose a triplet visual

similarity constraint for learning to rank across the two sub-

networks. Another contribution of our work is a large-scale

dataset which makes the network learning feasible. We ex-

ploit customer review websites to crawl a large set of online

shopping images and corresponding offline user photos with

fine-grained clothing attributes, i.e., around 450,000 online

shopping images and about 90,000 exact offline counterpart

images of those online ones. All these images are collected

from real-world consumer websites reflecting the diversity

of the data modality, which makes this dataset unique and

rare in the academic community. We extensively evaluate

the retrieval performance of networks in different configura-

tions. The top-20 retrieval accuracy is doubled when using

the proposed DARN other than the current popular solution

using pre-trained CNN features only (0.570 vs. 0.268).

1. Introduction
Cross-domain image retrieval is an important task for

many practical applications. For example, mobile product

image search [36] aims at identifying a product, or retriev-

ing similar products from the online shopping domain based

on a photo captured in unconstrained scenarios by a mobile

phone camera. In surveillance applications, a security guard

may be interested in retrieving images of a suspect from a

(a) Query Image (b) Top-6 Retrieval Results 

Figure 1. Cross-domain clothing retrieval. (a) Query image from

daily photos. (b) Top-6 product retrieval results from the online

shopping domain. The proposed system finds the exact match

clothing (first two images) and ranks the ones with similar at-

tributes as top results.

specific camera given a query image from another camera.

In this paper, we address the problem of cross-domain

product retrieval by taking clothing products as a concrete

use case. Given an offline clothing image from the “street”

domain, our goal is to retrieve the same or similar cloth-

ing items from a large-scale gallery of professional online

shopping images, as illustrated in Figure 1.

Due to the huge impact for e-commerce applications,

there is a growing interest in methods for clothing retrieval

[20, 33, 31, 44] and outfit recommendation [18]. The ma-

jority of these methods, however, do not model the discrep-

ancy between the user photos and clothing images from

online shopping stores. Though metric learning methods

[24, 15] can be used for domain adaptation, their perfor-

mance largely depends on the existing features. Another

barrier also occurs because of the lack of large annotated

training sets containing user photos and desired retrieved

images from online shopping.

In order to tackle the training data issue, we observe

that there is a large number of customer review websites,

where people post their pictures wearing the clothing they

have purchased. Therefore, it is possible to crawl the of-

fline clothing images uploaded by the users with the links

to the online shopping product images. As a result, we cre-

ated a dataset containing tens of thousands of online-offline

clothing image pairs obtained from the user review pages.

These image pairs are very rare in both academic and in-

dustry as they reveal the real discrepancy of images across
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scenarios. In addition, we have also obtained corresponding

fine-grained clothing attributes (e.g., clothing color, collar

pattern, sleeve shape, sleeve length, etc.) from the available

online product description, without significant annotation

cost. As data pre-processing, in order to remove the impact

of cluttered backgrounds, which predominantly exist for the

offline images, we employ an enhanced R-CNN detector to

localize the clothing area in the image, with some refine-

ments particularly made for the clothing detection problem.

For addressing the problem of cross-domain retrieval,

we propose a novel Dual Attribute-aware Ranking Network

(DARN) for retrieval feature learning. DARN consists of

two sub-networks with similar structure. Each of the two

domain images are fed into each of the two sub-networks.

This specific design aims to diminish the discrepancy of on-

line and offline images.

The two sub-networks are designed to be driven by se-

mantic attribute learning, so we call them attribute-aware

networks. The intuition is to create a powerful semantic

representation of clothing in each domain, by leveraging

the vast amounts of data annotated with fine-grained cloth-

ing attributes. Tree-structure layers are embedded into each

sub-network for the comprehensive integration of attributes

and their full relations. Specifically, the low-level layers of

the sub-network are shared for learning the low-level rep-

resentation. Then, a set of fully connected layers in a tree-

structure are used to construct the high-level component,

with each branch modelling one attribute.

Based on the learned semantic features from each

attribute-aware network, we incorporate the learning-to-

rank objective to further enhance the retrieval feature rep-

resentation. Specifically, the triplet ranking loss is used

to constrain the feature similarity of triplets, i.e., the fea-

ture distance between the online-offline image pair must be

smaller than that of offline image and any other dissimilar

online images.

Generally, the retrieval features from DARN have sev-

eral advantages compared with the deep features of other

works [19, 8]. (1) By using the dual-structure network, our

model can handle the cross-domain problem more appro-

priately. (2) In each sub-network, the scenario-specific se-

mantic representation of clothing is elaborately captured by

leveraging the tree-structure layers. (3) Based on the seman-

tic representation, the visual similarity constraint enables

more effective feature learning for the retrieval problem.

In summary, the main contributions of our paper are:

1. We collect a unique dataset composed of cross-

scenario image pairs with fine-grained attributes. The

number of online images is about 450,000, with ad-

ditional 90,000 offline counterparts collected. Each

image has about 5-9 semantic attribute categories,

with more than a hundred possible attribute values.

This online-offline image pair dataset provides a train-

ing/testing platform for many real-world applications

related to clothing analytics. We are planning to re-

lease the full dataset to the community for research

purposes only.

2. We propose the Dual Attribute-Aware Ranking Net-

work which simultaneously integrates the attributes

and visual similarity constraint into the retrieval fea-

ture learning. We design tree-structure layers to com-

prehensively capture the attribute information and their

full relations, which provides a new insight on multi-

label learning. We also introduce the triplet loss func-

tion which perfectly fits into the deep network training.

3. We conduct extensive experiments proving the effec-

tiveness and robustness of the framework and each one

of its components for the clothing retrieval problem.

The top-20 retrieval accuracy is doubled when using

the proposed DARN other than using pre-trained CNN

feature only (0.570 vs. 0.268). The proposed method

is general and could be applied to other cross-domain

image retrieval problems.

2. Related Work

Fashion Datasets. Recently, several datasets contain-

ing a wide variety of clothing images captured from fashion

websites have been carefully annotated with attribute labels

[45, 9, 32, 18]. These datasets are primarily designed for

training and evaluation of clothing parsing and attribute es-

timation algorithms. In contrast, our data is comprised of a

large set of clothing image pairs depicting user photos and

corresponding garments from online shopping, in addition

to fine-grained attributes. Notably, this real-world data is

essential to bridge the gap between the two domains.

Visual Analysis of Clothing. Many methods have been

recently proposed for automated analysis of clothing im-

ages, spanning a wide range of application domains. In

particular, clothing recognition has been used for context-

aided people identification [13], fashion style recognition

[21], occupation recognition [39], and social tribe predic-

tion [26]. Clothing parsing methods, which produce se-

mantic labels for each pixel in the input image, have re-

ceived significant attention in the past few years [45, 9]. In

the surveillance domain, matching clothing images across

cameras is a fundamental task for the well-known person

re-identification problem [28, 37].

Recently, there is a growing interest in methods for cloth-

ing retrieval [20, 33, 31, 44] and outfit recommendation

[18]. Most of those methods do not model the discrepancy

between the user photos and online clothing images. An ex-

ception is the work of Liu et al [31], which follows a very

different methodology than ours based on part-based align-

ment and features derived from sparse reconstruction, and

does not exploit the richness of our data obtained by mining

images from customer reviews.
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Visual Attributes. Research on attribute-based vi-

sual representations have received renewed attention by

the computer vision community in the past few years

[27, 11, 34, 43]. Attributes are usually referred as semantic

properties of objects or scenes that are shared across cat-

egories. Among other applications, attributes have been

used for zero-shot learning [27], image ranking and retrieval

[38, 22, 17], fine-grained categorization [3], scene under-

standing [35], and sentence generation from images [25].

Related to our application domain, Kovashka et al [22]

developed a system called “WhittleSearch”, which is able to

answer queries such as “Show me shoe images like these,

but sportier”. They used the concept of relative attributes

proposed by Parikh and Grauman [34] for relevance feed-

back. Attributes for clothing have been explored in several

recent papers [4, 5, 2]. They allow users to search visual

content based on fine-grained descriptions, such as a “blue

striped polo-style shirt”.

Attribute-based representations have also shown com-

pelling results for matching images of people across do-

mains [37, 29]. The work by Donahue and Grauman [7]

demonstrates that richer supervision conveying annotator

rationales based on visual attributes, can be considered as

a form of privileged information [42]. Along this direction,

in our work, we show that cross-domain image retrieval can

benefit from feature learning that simultaneously optimizes

a loss function that takes into account visual similarity and

attribute classification.

Deep Learning. Deep convolutional neural networks

have achieved dramatic accuracy improvements in many ar-

eas of computer vision [23, 14, 40]. The work of Zhang et

al [46] combined poselet classifiers [2] with convolutional

nets to achieve compelling results in human attribute pre-

diction. Sun et al [40] discovered that attributes can be

implicitly encoded in high-level features of networks for

identity discrimination. In our work, we instead explicitly

use attribute prediction as a regularizer in deep networks for

cross-domain image retrieval.

Existing approaches for image retrieval based on deep

learning have outperformed previous methods based on

other image representations [1]. However, they are not de-

signed to handle the problem of cross-domain image re-

trieval. Several domain adaptation methods based on deep

learning have been recently proposed [16, 6]. Related to

our work, Chen et al [5] uses a double-path network with

alignment cost layers for attribute prediction. In contrast,

our work addresses the problem of cross-domain retrieval

feature learning, proposing a novel network architecture

that learns effective features for measuring visual similar-

ity across domains. We note that other domain adaptation

methods[24, 15] could even be applied on top of our learned

features to further refine retrieval results.

Attribute categories Examples (total number)

Clothes Button Double Breasted, Pullover, ... (12)

Clothes Category T-shirt, Skirt, Leather Coat ... (20)

Clothes Color Black, White, Red, Blue ... (56)

Clothes Length Regular, Long, Short ... (6)

Clothes Pattern Pure, Stripe, Lattice, Dot ... (27)

Clothes Shape Slim, Straight, Cloak, Loose ... (10)

Collar Shape Round, Lapel, V-Neck ... (25)

Sleeve Length Long, Three-quarter, Sleeveless ... (7)

Sleeve Shape Puff, Raglan, Petal, Pile ... (16)

Table 1. Clothing attribute categories and example values. The

number in brackets is the total number of values for each category.

Figure 2. Some examples of online-offline image pairs, containing

images of different human pose, illumination, and varying back-

ground. Particularly, the offline images contain many selfies with

high occlusion.

3. Data Collection

We have collected about 453,983 online upper-clothing

images in high-resolution (about 800 × 500 on average)

from several online-shopping websites. Generally, each im-

age contains a single frontal-view person. From the sur-

rounding text of images, semantic attributes (e.g., cloth-

ing color, collar shape, sleeve shape, clothing style) are

extracted and parsed into <key, value> pairs, where each

key corresponds to an attribute category (e.g., color), and

the value is the attribute label (e.g., red, black, white, etc.).

Then, we manually pruned the noisy labels, merged similar

labels based on human perception, and removed those with

a small number of samples. After that, 9 categories of cloth-

ing attributes are extracted and the total number of attribute

values is 179. As an example, there are 56 values for the

color attribute.

The specified attribute categories and example attribute

values are presented in Table 1. This large-scale dataset an-

notated with fine-grained clothing attributes is used to learn

a powerful semantic representation of clothing, as we will

describe in the next section.

Recall that the goal of our retrieval problem is to find the

online shopping images that correspond to a given query

photo in the “street” domain uploaded by the user. To ana-

lyze the discrepancy between the images in the shopping

scenario (online images) and street scenario (offline im-
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Figure 3. The distribution of online-offline image pairs.

ages), we collect a large set of offline images with their on-

line counterparts. The key insight to collect this dataset is

that there are many customer review websites where users

post photos of the clothing they have purchased. As the

link to the corresponding clothing images from the shop-

ping store is available, it is possible to collect a large set of

online-offline image pairs.

We initially crawled 381,975 online-offline image pairs

of different categories from the customer review pages.

Then, after a data curation process, where several annota-

tors helped removing unsuitable images, the data was re-

duced to 91,390 image pairs. For each of these pairs, fine-

grained clothing attributes were extracted from the online

image descriptions. Some examples of cropped online-

offline image pairs are presented in Figure 2. As can be

seen, each pair of images depict the same clothing, but in

different scenarios, exhibiting variations in pose, lighting,

and background clutter. The distribution of the collected

online-offline images is illustrated in Figure 3. Generally,

the number of images of different categories in both sce-

narios are almost in the same order of magnitude, which is

helpful for training the retrieval model.

In summary, our dataset is suitable to the clothing re-

trieval problem for several reasons. First, the large amount

of images enables effective training of retrieval models, es-

pecially deep neural network models. Second, the informa-

tion about fine-grained clothing attributes allows learning

of semantic representations of clothing. Last but not least,

the online-offline images pairs bridge the gap between the

shopping scenario and the street scenario, providing rich in-

formation for real-world applications.

4. Technical Approach

The unique dataset introduced in the previous section

serves as the fuel to power up our attribute-driven feature

learning approach for cross-domain retrieval. Next we de-

scribe the main components of our proposed approach, and

how they are assembled to create a real-world cross-domain

clothing retrieval system.

4.1. Dual Attribute-aware Ranking Network

In this section, the Dual Attribute-aware Ranking Net-

work (DARN) is introduced for retrieval feature learning.

Compared to existing deep features [19, 8], DARN simulta-

neously integrates semantic attributes with visual similarity

constraints into the feature learning stage, while at the same

time modeling the discrepancy between domains.

Network Structure. The structure of DARN is illus-

trated in Figure 4. Two sub-networks with similar Network-

in-Network (NIN) models [30] are constructed as its foun-

dation. During training, the images from the online shop-

ping domain are fed into one sub-network, and the images

from the street domain are fed into the other. Each sub-

network aims to represent the domain-specific information

and generate high level comparable features as output. The

NIN model in each sub-network consists of five stacked

convolutional layers followed by MLPConv layers as de-

fined in [30], and two fully connected layers (FC1, FC2).

To increase the representation capability of the intermedi-

ate layer, the fourth layer, named Conv4, is followed by two

MLPConv layers.

On top of each sub-network, we add tree-structured

fully-connected layers to encode information about seman-

tic attributes. Given the semantic features learned by the

two sub-networks, we further impose a triplet-based rank-

ing loss function, which separates the dissimilar images

with a fixed margin under the framework of learning to

rank. The details of semantic information embedding and

the ranking loss are introduced next.

Semantic Information Embedding. In the clothing do-

main, attributes often refer to the specific description of cer-

tain parts (e.g., collar shape, sleeve length) or clothing (e.g.,

clothes color, clothes style). Complementary to the visual

appearance, this information can be used to form a powerful

semantic representation for the clothing retrieval problem.

To represent the clothing in a semantic level, we design tree-

structure layers to comprehensively capture the information

of attributes and their full relations.

Specifically, we transmit the FC2 response of each sub-

network to several branches, where each branch represents a

fully-connected network to model each attribute separately.

In this tree-structured network, the visual features from the

low-level layers are shared among attributes; while the se-

mantic features from the high-level layers are learned sep-

arately. The neuron number in the output-layer of each

branch equals to the number of corresponding attribute val-

ues (see Table 1). Since each attribute has a single value,

the cross-entropy loss is used in each branch. Note that the

values of some attributes may be missing for some clothing

images. In this case, the gradients from the corresponding

branches are simply set to zero.
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Figure 4. The specific structure of DARN, which consists of two sub-networks for images of the shopping scenario and street scenario,

respectively. In each sub-network, it contains a NIN network, including all the convolutional layers, followed by two fully connected

layers. The tree-structure layers are put on top of each network for attribute learning. The output features of each sub-network, i.e., FC1,

Conv4-5, are concatenated and fed into the triplet ranking loss across the two sub-networks.

During the training stage, the low-level representation of

clothing images is extracted layer by layer. As the activation

transfers to the higher layers, the representation becomes

more and more abstract. Finally, the distinctive characteris-

tic of each attribute is modeled in each branch. In the back-

propagation, the gradient of loss from each attribute w.r.t.

the activation of FC2 layer are summed up and transferred

back for weight update.

Learning to Rank with Semantic Representation. In

addition to encoding the semantic representation, we ap-

ply the learning to rank framework on DARN for retrieval

feature learning. Specifically, the triplet-based ranking loss

is used to constrain the feature similarity of image triplets.

Denoting a and b the features of an offline image and its cor-

responding online image respectively, the objective function

of the triplet ranking loss is:

Loss(a, b, c) = max(0,m+ dist(a, b)− dist(a, c)), (1)

where c is the feature of the dissimilar online image,

dist(·, ·) represents the feature distance, e.g., Euclidean dis-

tance, and m is the margin, which is empirically set as 0.3

according to the average feature distance of image pairs.

Basically, this loss function imposes that the feature dis-

tance between an online-offline clothing pair should be less

than that of the offline image and any other dissimilar online

image by at least margin m.

In this way, we claim that the triplet ranking loss has

two advantages. First and obviously, the desirable ranking

ordering can be learned by this loss function. Second, as

the features of online and offline images come from two

different sub-networks, this loss function can be considered

as the constraint to guarantee the comparability of features

extracted from those two sub-networks, therefore bridging

the gap between the two domains.

Similar to [8], we found that the response of FC1 layer,

i.e., the first fully connected layer, achieves the best retrieval

result. Therefore, the triplet ranking loss is connected to the

FC1 layer for feature learning. However, the response from

the FC1 layer encodes global features, implying that subtle

local information may be lost, which is specially relevant

for discriminating clothing images. To handle this prob-

lem, we claim that local features captured by convolutions

should also be considered. Specifically, the max-pooling

layer is used to down-sample the response of the convolu-

tional layers into 3×3×fn, where fn is the number of filters

in the n-th convolutional layer. Then, the down-sampled re-

sponse is vectorized and concatenated with the global fea-

tures. Lastly, the triplet ranking loss is applied on the con-

catenated features of every triplet. In our implementation,

we select the pooled response map of Conv4 and Conv5,

i.e., the last two convolutional layers, as local features.

4.2. Clothing Detection

As a pre-processing step, the clothing detection compo-

nent aims to eliminate the impact of cluttered backgrounds

by cropping the foreground clothing from images, before

feeding them into DARN. Our method is an enhanced

version of the R-CNN approach [14], which has recently
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achieved state-of-the-art results in object detection.

Analogous to the R-CNN framework, clothing proposals

are generated by selective search [41], with some unsuitable

candidates discarded by constraining the range of size and

aspect ratio of the bounding boxes. Similar to Chen et al

[5], we process the region proposals by a NIN model. How-

ever, our model differs in the sense that we use the attribute-

aware network with tree-structured layers as described in

the previous section, in order to embed semantic informa-

tion as extra knowledge. We show in our experiments that

this model yields superior results.

Based on the attribute-aware deep features, support vec-

tor regression (SVR) is used to predict the intersection over

union (IoU) of clothing proposals. In addition, strategies

such as the discretization of IoU on training patches, data

augmentation, and hard example mining, are used in our

training process. As post-processing, bounding box regres-

sion is employed to refine the selected proposals with the

same features used for detection.

4.3. Cross-domain Clothing Retrieval

We now describe the implementation details of our com-

plete system for cross-domain clothing retrieval.

Training Stage. The training data is comprised of

online-offline clothing image pairs with fine-grained cloth-

ing attributes, as described in Section 3. The clothing area

is extracted from all images using our clothing detector, and

then the cropped images are arranged into triplets.

In each triplet, the first two images are the online-offline

pairs, with the third image randomly sampled from the on-

line training pool. As the same clothing images have an

unique ID, we sample the third online image until getting

a different ID than the online-offline image pair. Several

such triplets construct a training batch, and the images in

each batch are sequentially fed into their corresponding sub-

network according to their scenarios. We then calculate

the gradients for each loss function (cross-entropy loss and

triplet ranking loss) w.r.t. each sample, and empirically set

the scale of gradients from those loss functions as 1. Lastly,

the gradients are back propagated to each individual sub-

network according to the sample domain.

We pre-trained our network as well as the baseline net-

works used in the experiments on the ImageNet dataset

(ILSVRC-2014), as this yields improved retrieval results

when compared to random initialization of parameters.

End-to-end Clothing Retrieval. We have set up an end-

to-end real-time clothing retrieval demo on our local server

and will publish it if the paper is accepted. We also pro-

vide example retrieval results in the supplemental files. (We

omit the demo link due to double-blind policy.) In our

retrieval system, 200,000 online clothing images cropped

by the clothing detector are used to construct our retrieval

gallery. Given the cropped online images, the concatenated

responses from FC1 layer, pooled Conv4 layer, and pooled

Conv5 layer of one sub-network of DARN corresponding to

shop scenario are used as the representation features. The

same processes are operated on the query image, except that

the other sub-network of DARN is used for retrieval feature

extraction. We then l2 normalize the features from different

layers for each image. The PCA is used to reduce the di-

mension of normalized features (17,920-D for DARN with

Conv4-5) into 4,096-D, which conducts a fair comparison

with other deep features using FC1 layer output only. Based

on the pre-processed features, the Euclidean distance be-

tween query and gallery images is used to rank the images

according to the relevance to the query.

5. Experiments

5.1. Experimental Setting

Dataset: For training the clothing detector, 7,700 online-

offline images are sampled from our dataset as positives and

labelled with bounding boxes. The person-excluded images

from the PASCAL VOC 2012 [10] detection task are used

as negatives. Another 766 images are annotated to test the

detectors.

For the retrieval experiment, about 230,000 online im-

ages and 65,000 offline images are sampled for network

training. In the training process, each offline image and

its online counterpart are collected, with the dissimilar on-

line image randomly sampled from the 230,000 online pool

to construct a triplet. Note that the third images in differ-

ent epochs are shuffled to be different for the same online-

offline pair. For testing, we used 1,717 online-offline im-

age pairs. To make the retrieval result convincing, the rest

200,000 online images are used as the retrieval gallery.

Baselines: For clothing detection, we compare the per-

formance of Deformable Part-based Model (DPM) [12] and

different R-CNN versions with different models, including

AlexNet (Pre-trained CNN) [23], Pre-trained NIN, and

the Attribute-aware Network (AN). To evaluate the contri-

bution of SVR, we compare the performance of SVR and

SVM based on the AlexNet.

For clothing retrieval, the approach using Dense-SIFT

(DSIFT) + fisher vector (FV) is selected as traditional base-

line. Specifically, the bin size and stride for DSIFT are 8

and 4, respectively. The descriptor dimension is reduced to

64 by PCA. In the encoding step, two dictionaries with 64

and 128 centers are constructed, which lead to the 8,192 and

16,384 dimensions of FV representation.

To analyze the retrieval performance of deep features,

we compare pre-trained networks including AlexNet (pre-

trained CNN) and pre-trained NIN. We evaluate each in-

dividual component of our proposed approach. We de-

note our overall solution as Dual Attribute-aware Rank-
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Detection Model Online AP Offline AP Top-20 Acc

DPM 0.049 0.017 0.297

Pre-t CNN+SVM 0.520 0.412 0.560

Pre-t CNN+SVR 0.545 0.452 0.567

Pre-t NIN+SVR 0.601 0.477 0.588

AN+SVR 0.744 0.683 0.635

Table 2. AP of detection models on online-offline images and its

corresponding top-20 retrieval accuracy on a subset of the data.

ing Network (DARN), the solution without dual structure

as Attribute-aware Ranking Network (ARN), the solution

without dual structure and the ranking loss function as

Attribute-aware Network (AN).

We further evaluate the effectiveness of DARN in terms

of different configurations w.r.t. the features used, i.e.,

DARN using the features obtained from FC1, DARN with

Conv4 using the features from FC1+Conv4, and DARN

with Conv4-5 using the features from FC1+Conv4+Conv5.

It is worth noting that the dimension of all features are re-

duced to 4096 by PCA to have a fair comparison.

Evaluation Metrics: We used two metrics to measure

the performance of retrieval models. (1) the top-k retrieval

accuracy in which we denote a hit if we find the exact same

clothing in the top k results otherwise a miss, and (2) Nor-

malized Discounted Cumulative Gain (NDCG@k), con-

sidering NDCG@k = 1
Z

∑k

j=1
2rel(j)−1
log(j+1) , where rel(j) is

the relevance score of the jth ranked image, and Z is a nor-

malization constant. The relevance score rel(j) of query

image and jth ranked image is the number of their matched

attributes divided by the total number of query attributes.

5.2. Clothing Detection Improving Clothing Re-
trieval Performance

We used Average Precision (AP) to evaluate clothing de-

tection. Since the detection performance is important to our

network learning, a more strict IoU threshold, i.e., 0.7, is

selected. The AP of detection results on online and offline

images is presented in Table 2. Generally, the performance

of every detector on the online images is better than that

on offline images, which indicates the complexity of offline

images. We can observe that our proposed AN with SVR

is superior than other baselines. DPM achieves the lowest

AP, which may be due to less discriminative features and

its incapability to handle clothing with huge distortion. By

comparing the performance of CNN with SVM and SVR,

we can find the effectiveness of SVR in the R-CNN frame-

work. Furthermore, the detection performance is further im-

proved by replacing the CNN with pre-trained NIN. Lastly,

the AN with SVR achieves 74.4% and 68.3% AP on the on-

line and offline images respectively, which is significantly

better than the runner-up.

To evaluate the impact of various detectors on retrieval,

we compare the top-20 retrieval accuracy of DARN with
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Figure 5. The top-k retrieval accuracy on 200,000 retrieval gallery.

The number in the parentheses is the top-20 retrieval accuracy.
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Figure 6. The top-20 retrieval accuracy on different sizes of re-

trieval galleries.

Conv4-5 by feeding different detection results. We sampled

10,000 online images from the full set as retrieval gallery

for this test. The results are presented in Table 2. As can be

seen, more precise detection leads to more accurate retrieval

results.

5.3. Cross-domain Clothing Retrieval Evaluation

We give full detailed top-k retrieval accuracy results for

different baselines as well as our proposed methods in Fig-

ure 5. We vary k as the tuning parameter as it is an important

indicator for a real system. We also list the top-20 retrieval

accuracy of each model in the parentheses.

Compared to the baselines, we notice that all the deep

features significantly outperform the traditional features,

i.e., Dense-SIFT with FV encoding. For the deep features,

the top-k accuracy of pre-trained NIN is slightly better than

that of pre-trained CNN. Based on the pre-trained NIN, we

evaluate the contributions of tree-structured layers, triplet

ranking, and dual-structure.

Generally, the retrieval performance is gradually im-

proved by applying the NIN structure, semantic informa-

tion, learning to rank framework, and the dual-structure.
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Figure 7. The top-4 retrieval result of DARN with Conv4-5. The images in first column are the queries, and the retrieved images with green

boundary are the same clothing images. Best viewed in original pdf file.

The top-20 retrieval accuracy of AN increases 11.6% after

fine-tuning on pre-trained NIN with attributes. This attests

the effectiveness of attributes for image retrieval. By intro-

ducing the triplet ranking loss, the top-20 accuracy of ARN

achieves another 5.0% increment.

Compared with a single model, the dual-structure net-

work greatly improves the retrieval performance, i.e.,

the top-20 retrieval accuracy of DARN improves 9.9%

when compared with ARN. The retrieval performance also

slightly benefits from the local features, which can be ob-

served by comparing the DARN and DARN with local fea-

tures, i.e., DARN with Conv5 and DARN with Conv4-5.

Some retrieval examples by DARN with Conv4-5 are illus-

trated in Figure 7.

5.4. Attribute-aware Clothing Retrieval Evaluation

One key advantage of the proposed approach is the

attribute-aware nature. The learned features have strong se-

mantic meaning. Therefore, we should expect that the re-

trieval result should present strong attribute-level matching

in terms of retrieval accuracy.

To evaluate this argument, we use NDCG@K to calcu-

late the attribute-level matching. More specifically, we de-

fine the relevance score in NDCG as the attribute matching

between the query and retrieval results divided by the total

number of query attributes. We present the result in Table

3. Compared with traditional features, the retrieval result of

deep features contains more similar attributes to the queries.

5.5. Showing the Robustness: Performance vs. Re-
trieval Gallery Size

To further demonstrate the robustness our method, we

show the top-20 retrieval accuracy of different retrieval

models by tuning the retrieval gallery size in Figure 6.

We calculate the accuracy increment ratio of some repre-

sentatives to evaluate the robustness of features. Intuitively,

the smaller increase ratio indicates the better robustness of

features. Specifically, the top-20 retrieval accuracy of tradi-

tional features, pre-trained NIN, ARN, and DARN increase

Retrieval Model NDCG@20

DSIFT + FV, C = 64 0.290

DSIFT + FV, C = 128 0.289

Pre-trained CNN 0.367

Pre-trained NIN 0.370

AN 0.415

ARN 0.442

DARN 0.494

DARN with Conv5 0.499

DARN with Conv4-5 0.505

Table 3. The NDCG@20 result evaluating the attribute level match

on 200,000 retrieval gallery.

by 115.4%, 63.8%, 64.5%, and 28.2% from largest retrieval

gallery to smallest gallery, respectively. This observation

demonstrates that the DARN can learn much more robust

features than the baselines.

5.6. System Running Time

Our retrieval system runs on a server with the Intel i7-

4930K CPU (@ 3.40GHz) with 12 cores and 65 GB RAM

memory, with two GTX Titan GPU cards. On average,

the attribute-aware ranking feature extraction process costs

about 13 seconds per 1,000 images. Given a cropped query,

it costs about 0.21 second for feature extraction and clothing

retrieval in our retrieval experiment.

6. Conclusions

We have presented the Dual Attribute-aware Ranking

Network for the problem of cross-domain image retrieval.

Different from previous approaches, our method simulta-

neously embeds semantic attribute information and visual

similarity constraints into the feature learning stage, while

modeling the discrepancy of the two domains. We demon-

strate our approach in a practical real-world clothing re-

trieval application, showing substantial improvement over

other baselines. In addition, we created a unique large-scale

clothing dataset which should be useful to many other appli-

cations, e.g., person re-identification in surveillance videos.
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