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Abstract

Performance characterization of stereo methods is

mandatory to decide which algorithm is useful for which ap-

plication. Prevalent benchmarks mainly use the root mean

squared error (RMS) with respect to ground truth disparity

maps to quantify algorithm performance.

We show that the RMS is of limited expressiveness for

algorithm selection and introduce the HCI Stereo Metrics.

These metrics assess stereo results by harnessing three se-

mantic cues: depth discontinuities, planar surfaces, and

fine geometric structures. For each cue, we extract the rele-

vant set of pixels from existing ground truth. We then apply

our evaluation functions to quantify characteristics such as

edge fattening and surface smoothness.

We demonstrate that our approach supports practition-

ers in selecting the most suitable algorithm for their ap-

plication. Using the new Middlebury dataset, we show

that rankings based on our metrics reveal specific algo-

rithm strengths and weaknesses which are not quantified by

existing metrics. We finally show how stacked bar charts

and radar charts visually support multidimensional perfor-

mance evaluation. An interactive stereo benchmark based

on the proposed metrics and visualizations is available at:

http://hci.iwr.uni-heidelberg.de/stereometrics

1. Introduction

Disparity maps computed from stereo image pairs often

serve as crucial input for higher level vision tasks such as

object detection, 3D reconstruction, and image based ren-

dering, which are in turn used in applications such as driver

assistance [31] and computer assisted surgery [24].

Fueled by the renowned Middlebury benchmark [34],

stereo matching algorithms have made tremendous progress

in the past decade. Since then, stereo benchmarks have

become increasingly challenging, diverse and realistic

with datasets such as the new Middlebury dataset [33],
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Figure 1: The same three algorithms A1-A3 rank differ-

ently, depending on which of our proposed performance

metrics is used. For example, A1 is “the best algorithm”

according to the widely used RMS measure. Yet, A1 yields

the lowest performance at depth discontinuities. The col-

umn rankings show that our metrics allow for a more ex-

pressive and semantically intuitive assessment of stereo re-

sults with respect to depth discontinuities, planar surfaces,

and fine structures. (Black denotes occluded regions.)

KITTI [10], HeiSt [20] and the new SINTEL stereo data [5].

Top ranking algorithms on these benchmarks have long left

behind purely pixel-based approaches. Instead, they hy-

pothesize on local geometry, including segment-wise plane

fitting [16], explicit support for slanted and curved sur-

faces [2, 39] as well as integrating sophisticated shape priors

and object recognition [3, 4, 12]. Even though this evolution
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towards higher-level reasoning started more than ten years

ago, performance evaluation in the stereo community still

mainly works with purely pixelwise comparison of disparity

differences. The two prevalent metrics are 1) RMS, which

denotes the root mean squared pixelwise disparity differ-

ence to a given ground truth disparity (GT) and 2) BadPix,

the fraction of pixels whose disparity error exceeds a certain

threshold, commonly set to 1 or 2 pixels.

Given this situation, our goal is to let stereo evaluation

catch up with the progress of the stereo algorithms it is sup-

posed to assess. Yet, introducing novel metrics for stereo

evaluation is only justified if these metrics foster new valu-

able insights and complement the established metrics RMS

and BadPix. On the one hand, the established metrics al-

ready fulfill many requirements for good performance met-

rics as they are widely applicable, easy to compute, inde-

pendent of image dimensions, and commonly accepted. On

the other hand, metrics which average over all image pix-

els cannot account for the fact that input pixels for stereo

applications are neither spatially independent nor equally

important or equally challenging.

In the Middlebury Stereo Evaluation v.31, Scharstein and

Hirschmüller address this issue by using binary masks for

occluded pixels and linear image weights for the overall

ranking. We build upon this idea and further flesh out the

information given in existing GT disparity maps. We auto-

matically extract GT pixel subsets of geometric structures

at semantically meaningful image regions such as planar

surfaces. These subsets can be extracted from different

GT datasets and applied to dense depth maps generated by

stereo or other reconstruction methods.

Our contribution is threefold:

1. We propose the HCI Stereo Metrics, a novel set of

nine semantically intuitive metrics which characterize

stereo performance at depth discontinuities, planar sur-

faces, and fine structures (Section 3).

2. We re-evaluate recent Middlebury submissions, re-

veal previously unquantified algorithm properties, and

demonstrate how metric combinations and multidi-

mensional visualizations can be used to optimize for

application-specific requirements (Section 4).

3. We provide source code for our evaluation framework

and publish an interactive benchmarking website2.

2. Related Work

The state-of-the-art performance evaluation method for

stereo algorithms clearly consists of comparing RMS scores

achieved on the Middlebury [33, 34] and KITTI [10]

datasets with the published scores on the respective bench-

mark websites. Both benchmarks provide scores computed

1http://vision.middlebury.edu/stereo/eval3
2http://hci.iwr.uni-heidelberg.de/stereometrics

on full, non-occluded and occluded pixel subsets. Middle-

bury v.2 additionally provides scores for pixel subsets at

depth discontinuities.

Looking from a broader perspective, performance eval-

uation for correspondence problems tends to be either very

theoretical or very application-specific [8, 19].

On the theoretical side, Barnard and Fischler defined

a comprehensive set of characteristics ranging from ac-

curacy and reliability to domain sensitivity and computa-

tional complexity [1]. Maimone and Shafer analyzed which

performance characteristics can be assessed on test setups

ranging from empirical uncontrolled environments over en-

gineered test data to pure mathematical analysis [25]. Har-

alick suggested sound statistical performance characteriza-

tion with random perturbations of the algorithm input [13].

Despite their mathematical universality, most of these eval-

uation methods are hardly feasible for stereo evaluation in

current research and real-world scenarios because they of-

ten require exact and comprehensive models of the algo-

rithms, problem domains, and input data.

On the application-oriented side, a variety of evaluation

methods has been proposed, such as for pedestrian or lane

detection in driver assistance scenarios [9, 17, 27, 31].

Maier-Hein et al. proposed evaluation metrics for stereo

accuracy, robustness, point density and computation time in

laparoscopic surgery [23, 24]. Further specialized evalua-

tion methods were proposed with regard to immersive vi-

sualization for tele-presence [29], video surveillance sys-

tems [37], and imaging parameter dependence on Mars mis-

sions [18]. Those methods accomplish their specific pur-

pose very well but the problem-specific insights are often

not easily transferable to other domains.

Our goal is to find a good trade-off between those two

areas of research. We aim at developing theoretically sound

general purpose metrics which are nonetheless easily appli-

cable to existing benchmark datasets and parameterizable to

suit the specific needs of different applications.

In the stereo community, Kostková et al. reasoned that

performance evaluation should take the algorithm purpose

into account and showed that evaluation must not be lim-

ited to basic pixel averaging [21]. Instead, they discriminate

matching errors such as the false negative rate and occlu-

sion boundary inaccuracy. Furthermore, we borrow ideas

from the segmentation and object detection communities to

include higher level reasoning about the image structure:

Margolin et al. proposed evaluation metrics for foreground

maps which incorporate the fact that pixels are neither spa-

tially independent nor equally important [26]. Özdemir et

al. developed performance metrics for object detection eval-

uation which are sensitive to boundary and fragmentation

errors [30]. Yasnoff et al. state that good metrics for scene

segmentation should incorporate error categories for differ-

ent picture elements and have adjustable costs [38].
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3. Novel Metrics for Stereo Evaluation

In this Section, we introduce theoretical principles for

the quantitative evaluation of stereo performance at depth

discontinuities, planar surfaces, and fine structures. For

each of these geometric entities, we first motivate their

relevance for stereo applications, then briefly explain how

we obtain the respective ground truth subsets, and finally

propose distinct metrics to formally quantify stereo perfor-

mance. For each proposed metric, 0 denotes a perfect result

and higher values indicate lower performance. The methods

to obtain the relevant pixel subsets are only briefly outlined

in this Section. Further details are given in the supplemental

material.

3.1. Depth Discontinuities

Depth discontinuities are defined as image regions where

the disparity differences between adjacent pixels exceed

a certain threshold. Sharp and accurate disparity edges

are important for applications such as object detection and

tracking [15]. Yet, depth discontinuity areas are challeng-

ing and error-prone due to occlusion effects and either the

smoothness terms of global stereo algorithms or the local

support windows of local algorithms.

We propose metrics to quantify three phenomena at

depth discontinuities: foreground fattening, foreground

thinning, and fuzziness. Figure 2 depicts schematic illus-

trations of these phenomena together with actual disparity

maps and visualizations of our metrics.

To quantify the described characteristics, we define

Ω ⊂ N
2 as the set of pixels of a given image. We then

define Md ⊂ Ω as the subset of pixels which are located at

high gradients of the ground truth disparity map Dgt. By

linearly following local gradient directions on both sides of

c) fuzziness a) fattening b) thinning 
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Figure 2: Stereo algorithms yield very different perfor-

mance at depth discontinuities (middle row). With our met-

rics (bottom row), we quantify the degree of a) edge fatten-

ing, b) thinning and c) fuzziness using geometric clues ex-

tracted from GT disparity maps. The GT disparity and pixel

subsets used for the evaluation are illustrated in Figure 3.

a) GT disparity of 

    Middl. Playroom 

c) ��: BG disparities  

    propagated into FG  

b) pixel subsets at  

    disparity edges  

Figure 3: To quantify edge thinning and fattening, we auto-

matically extract ground truth subsets (b) for depth discon-

tinuities (white), nearby foreground objects (blue), and the

adjacent background (orange). We further create extrapo-

lated disparity maps where nearby background disparities

are propagated into the foreground (c) and vice versa.

the discontinuity and applying median filtering, we obtain

the pixel subsets Mf and Mb (shown in Figure 3.b). They

denote the foreground and background areas on either side

of the discontinuity. We further introduce the extrapolated

disparity maps Df and Db. For Db, those disparities of

Mb which are closest to the discontinuity are propagated

into Mf along the local gradient directions (see Figure 3.c).

D1. Foreground Fattening. We quantify foreground

fattening by defining Mfat as the subset of pixels, whose

estimated disparity Da(~x) is closer to the extrapolated fore-

ground Df (~x) than to the actual background Dgt(~x), i.e.:

Mfat = {~x ∈ Mb : |Da(~x)−Dgt(~x)| > |Da(~x)−Df (~x)|}
(1)

The degree of foreground fattening Dfat ∈ [0, 1] is then

defined as the cardinality of Mfat normalized by the total

number of considered pixels:

Dfat = |Mfat| / |Mb| (2)

D2. Foreground Thinning. Similarly, we quantify fore-

ground thinning by defining the subset of pixels whose es-

timated disparity Da(~x) is closer to the extrapolated back-

ground Db(~x) than to the actual foreground Dgt(~x), i.e.:

Mthin = {~x ∈ Mf : |Da(~x)−Dgt(~x)| > |Da(~x)−Db(~x)|}
(3)

The normalized Dthin ∈ [0, 1] is then defined as:

Dthin = |Mthin| / |Mf | (4)

D3. Fuzziness. Algorithm results with sharp edges yield

strong disparity gradients close to depth discontinuities and

smaller gradients at more distant pixels. Thus, we com-

pute G = ‖∇Dgt‖ − ‖∇Da‖, the differences of absolute

disparity gradient magnitudes between the GT and the algo-

rithm disparity map. We penalize the differences weighted

by their distance to the depth discontinuity. We use the com-

mon distance metric dist(~x,M) = min~xi∈M ‖~x− ~xi‖ to

2122



find the closest element in the set of edge area pixels

Me = Md ∪Mf ∪Mb. Furthermore, we define:

f(~x) =

{

|G(~x)|·dist(~x,Md), if G(~x) < 0

G(~x) · dist(~x,Ω \Me), otherwise
(5)

which penalizes overly strong gradients by their distance to

discontinuities and overly soft gradients by their closeness.

Finally, we quantify the fuzziness of discontinuities as:

Dfuz =
1

|Me|

∑

~x∈Me

f(~x) (6)

3.2. Planar Surfaces

Reconstructed planar surfaces are used with very dif-

ferent requirements among stereo applications like image-

based rendering or driver assistance. While some applica-

tions care about the correct principal orientation, others re-

quire the exact distance or prefer smooth but slightly tilted

planes over more accurate yet uneven planes with artifacts.

A common strategy among many stereo algorithms is to

fit local planes or splines to some sort of superpixels [16,

35, 39]. Their parametrization often is a trade-off between

locally accurate fits with jumps between the superpixels or

smoother yet less accurate results.

We propose three metrics to quantify the described char-

acteristics of planar surfaces: bumpiness, offset, and lo-

cal misorientation (compare Figure 4). To quantify the

proposed characteristics, we use RANSAC to robustly fit

planes to connected regions of homogeneous gradient direc-

tions in Dgt. With P = {p0, ..., pm}, we denote the set of

m fitted planes in disparity space, defined in point-normal

form pi = (~ni, Pi). The set of pixels whose disparity values

belong to the fitted planes is denoted as Mp.

P1: Bumpiness. Disparity maps at planar surfaces

should ideally have homogeneous gradients and hence a

constant second derivative. To quantify bumpiness, we

therefore compute the second derivative of the algorithm re-

sult Da using the Laplacian ∆ and denote the metric as:

Pbump =
1

|Mp|

∑

~x∈Mp

|∆Da(~x)| (7)

Pbump is 0 if all gradients of the estimated disparity map

are smooth and bigger than 1 for strong bumpiness.

P2: Offset. To quantify the offset, we consider all ele-

ments in Mp and compute the Euclidean distance d( ~X, p)

of each 3D point ~X = (x, y,Da(x, y)) to its corresponding

plane p = (~n, P ):

Poff =
1

|Mp|

∑

pi∈P

∑

~x∈Mpi

d( ~X, pi) (8)
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Figure 4: Reconstructing planar surfaces such that they are

smooth as well as correctly located and oriented is chal-

lenging for stereo algorithms. Our metrics quantify that the

stereo result on the Middlebury v.3 Playtable displayed in b)

has locally smooth areas which suffer from inaccurate ori-

entation leading to locally increasing offsets from the true

plane. In c) the local orientation is only slightly off for some

patches but their relative offset to the plane leads to signifi-

cant jumps between them.

P3: Local Misorientation. To quantify the misorienta-

tion in Da, we estimate the local surface orientation at each

element in Mp by fitting a plane to its 5× 5 neighborhood

using standard least squares. With ~na(~x) denoting the es-

timated unit surface normal of Da at ~x, we compute the

average angle difference to the GT unit normal ~ni as:

Porient =
1

|Mp|

∑

pi∈P

∑

~x∈Mpi

∢(~na(~x), ~ni) (9)

Values for Porient range from 0◦ for perfect normals to 90◦

for surfaces which are orthogonal to the GT plane.

3.3. Fine Structures

Reconstructing depth at fine, elongated structures of

small horizontal extent is challenging for stereo algorithms.

In the trade-off between minimizing artifacts and preserving

fine structures, the latter are often sacrificed for smooth dis-

parities at larger objects. But reconstructing fine structures

is essential for obstacle detection in autonomous navigation

and medical instrument detection in laparoscopic surgery.

Metrics averaging over the entire image are very tolerant

against such errors, as the structures make up just a small

fraction of the image. We propose three metrics to quantify

algorithm performance at fine structures: porosity, fragmen-

tation, and detail fattening (see Figure 5).

To quantify algorithm performance at fine structures, we

define the subset Ms denoting all pixels which belong to

vertical fine structures. We obtain this subset by shifting

positive and negative gradients of Dgt towards each other

and by keeping regions with high overlap. Since many

stereo applications primarily care about the detection of
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RMS 33.86 34.15 23.50 36.04 21.07 23.10 

Fpor 1.87 2.66 0.53 1.06 0.35 0.00 

Ffrag 0.50 0.00 0.00 0.67 0.00 0.00 

Ffat 0.00 0.00 0.03 0.09 0.06 0.11 

Figure 5: Top: Stereo algorithms produce very different re-

sults at fine structures. For these regions, our metrics visual-

ize (Middle) and quantify (Bottom) porosity, fragmentation

and detail fattening (lower values are better). Both results

in a) detect a comparable amount of the structure. Yet, the

left result is distributed over the entire structure, yielding a

better value for the sampling metric Fpor.

fine structures but are rather tolerant about their exact dis-

tance, we further define the pixel subset Ma for correctly

detected fine structure elements in Da. This set includes all

pixels whose disparity differences are within a given error

tolerance to Dgt.

F1: Porosity. Given a fixed number of correctly detected

structure pixels, their spatial distribution can make a big dif-

ference when estimating the shape of a structure. As shown

in Figure 5.a small fragments which are distributed over the

entire structure may be preferred over a connected block

which misses half of the structure. We quantify this char-

acteristic by penalizing big missing parts of fine structures.

For each missing structure element in Mm = Ms \ Ma,

we compute the logarithmic distance to the closest correct

structure element in Ma:

Fpor =
1

|Ms|

∑

~x∈Mm

log(1 + dist(~x,Ma)) (10)

F2: Fragmentation. Fine structures which are frag-

mented into multiple substantial parts can be misleading

for applications like object recognition. We quantify the

fragmentation of Ma for each structure by computing the

amount of 8-connected components. Normalized by the

number of GT structures, fragmentation is quantified as:

Ffrag =
1

|S|

∑

s∈S

(1−
1

|Fs|
) (11)

where S is the set of ground truth structures and Fs the set

of estimated fragments for each structure s ∈ S . Ffrag is 0,

if the algorithm produces a single component per struc-

ture and closer to 1 with an increasing number of fragments.

F3: Detail Fattening. Similarly to Dfat for edge fatten-

ing, we quantify the extent to which pixels left and right of

fine structures, denoted as Mn, are erroneously closer to the

extrapolated structure Dn than to the background Dgt. This

is particularly relevant as fine structures often appear as part

of grids which tend to be estimated as solid objects.With:

Mdfat = {~x ∈ Mn : |Da(~x)−Dgt(~x)| > |Da(~x)−Dn(~x)|}
(12)

the degree of detail fattening is defined as:

Ffat = |Mdfat| / |Mn| (13)

4. Experimental Validation

In this Section we perform a threefold validation of our

proposed evaluation metrics. After describing the experi-

mental setup, we first test the expressiveness and specificity

of our individual metrics on recent submissions to the Mid-

dlebury benchmark. We then introduce visualization meth-

ods to demonstrate the feasibility of multidimensional per-

formance analysis. Finally, we validate whether our metrics

are orthogonal to the established RMS and BadPix metrics.

4.1. Experimental Setup

Our experiments are based on the new Middlebury

benchmark v.3 which is split into 15 test and 15 training

images. Upon submission to the evaluation page, algorithm

results on the training images are made publically avail-

able in full resolution. For our experiments, we drop im-

ages with intentionally imperfect illumination or rectifica-

tion (PianoL, Playtable, MotorcycleE) and keep the remain-

ing 12 images. As stereo results we use the highest res-

olution submission of each of the 13 available algorithms,

namely BSM [40], Cens5 [15], ELAS [11], IDR [22], LCU3,

LDSM for LAMC DSM [36], LPS [35], MeshS3, SGBM14,

SGBM24, SGM [14], SNCC [7], and TSGO [28]. In line

with Middlebury, we use dense stereo results and evalu-

ate on full resolution. We also exclude occluded pixels, an

image boundary of max(20, 0.01 ∗ imgwidth) pixels and

those pixels where Dgt was marked as invalid.

4.2. Qualitative Metric Evaluation

In this Section, we exemplarily test how much the rank-

ing defined by our metrics correlates with the intuitive rank-

ing of the respective characteristics at test.

Depth Discontinuities Figure 6 depicts three stereo re-

sults for the Adirondack image ranked by their performance

at edge thinning and fuzziness. The ranking by thinning

corresponds well to the intuitive assessment of the disparity

edges, particularly at the left side of the back rest. Similarly,

edge fuzziness corresponds with the amount of artefacts in

all three stereo results, particularly at the arm rest.

3anonymous submission
4www.opencv.org - implementation of SGM [14]
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Figure 6: Top: Analyzed for edge thinning, the algorithms

LDSM, SNCC, SGM rank best from left to right with 0.01,

0.05, and 0.13 for Dthin. Bottom: Analyzed for edge fuzzi-

ness, their relative order changes to SNCC, SGM, LDSM

with 0.63, 0.72, and 0.75 for Dfuz .

Planar Surfaces The disparity maps depicted in Fig-

ure 4 show that stereo results at planar surfaces indeed per-

form well at one surface metric whilst performing lower at

another. From left to right the stereo results are LPS, TSGO,

and MeshS. With an average angle difference of 9.52◦ on

the entire subset Mp, LPS achieves more accurate surface

orientations than TSGO with 20.03◦. Yet in terms of sur-

face bumpiness, TSGO ranks better with a value of 0.45 as

compared to 1.82 for LPS.

Fine Structures From left to right, Figure 5 depicts dis-

parity maps of the algorithms LCU, LDSM, IDR, MeshS,

BSM and Cens5, which are taken from the Pipes image.

Below, we show pairwise visualizations of the metrics Fpor,

Ffrag , and Ffat, together with the metric scores for each al-

gorithm. Clearly, Cens5 has the best sampling which is cor-

rectly quantified by Fpor = 0. Interesting to note are the first

two algorithm results. With 33.86 and 34.15 they have very

similar RMS values but the first result supports a much bet-

ter reconstruction of the structure, which is correctly quan-

tified by the lower Fpor metric of 1.87 as compared to 2.66.

Similarly, the values for Ffrag and Ffat correspond well to

the intuitive ranking of the displayed disparity maps.

4.3. Comparison of Algorithm Performance

Combined algorithm performance is ideally evaluated on

a range of representative images. Since images have differ-

ent content and difficulty, benchmarks such as Middlebury

v.3 apply weights to normalize metric values across test im-

ages. Our metrics are naturally normalized across images

as they only consider specific subsets on each image. The

upper bar chart in Figure 7 illustrates linearly combined per-

formance metrics for three algorithms averaged over all test

images. Cens5 shows the best overall performance and is

best at planar surfaces. SGBM1 has a lower overall perfor-

mance but it is more sensitive to detecting fine structures.

Weights for individual metrics can easily be adjusted to

meet the priorities of specific application domains. For in-

stance, augmented reality applications in computer assisted

minimally-invasive surgery require accurate reconstruction

of the poses of medical instruments [6]. As shown in Fig-

ure 8, this includes detecting fine structures such as sutures,

which are very challenging for stereo algorithms [23].

The lower chart in Figure 7 illustrates how relative rank-

ings change when performance at fine structures is given a

higher weight. According to the new ranking on our test

data, SGBM1 would be a better choice for applications in

computer-assisted surgery than BSM or Cens5.

A multidimensional analysis is useful in situations where

algorithm performance must be thoroughly assessed; in

such cases a single combined performance scalar is often

insufficient. For instance, researchers publishing a new

stereo algorithm with particular focus on depth discontinu-

ities would ideally be able to show quantitatively that their

algorithm performs better at discontinuities and maintains

good scores at the remaining characteristics. Using radar

charts as depicted in Figure 9, different algorithms can be

compared with regard to multiple performance characteris-

tics based on their relative ranking and their absolute scores.

In our case, lower values in the center represent the highest

performance and algorithms further outside rank lower.

Figure 7: Top: Among the depicted algorithms Cens5 has

the best overall performance (shortest bar). It is particularly

good at planar surfaces. Bottom: For applications where

fine structures are important, relative metric weights differ

such that other algorithms like SGBM1 are better suited.

Figure 8: Reconstructing fine structures is both essential

and challenging for stereo applications in computer assisted

surgery. Even state-of-the-art algorithms [32] suffer from

poor reconstruction of sutures and medical instruments.
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Figure 9 depicts algorithm performance for the image

ArtL using RMS, Bad1.0, Bad4.0, and the three proposed

metrics for fine structures. Interestingly, the algorithms

SGM, LCU, and TSGO rank similar in RMS but show very

different performance at fine structures. SGM achieves the

best BadPix percentages, the lowest detail fattening and lit-

tle porosity but it suffers from relatively strong fragmenta-

tion. By contrast, LCU yields no fragmentation at all and

yields good performance at all the other metrics. Hence,

SGM would be the best choice for applications which are

robust against fragmentation of fine structures whereas LCU

would be the better overall choice. It is further interesting

to note that algorithms like SGBM1 and LPS have a much

higher RMS on the ArtL image but are among the best per-

forming algorithms for sampling fine structures.

L
C

U
 a

lg
o
ri

th
m

 
S
G

M
 a

lg
o
ri

th
m

 

Figure 9: With radar charts, multiple performance dimen-

sions can be evaluated at the same time. SGM and LCU

yield very similar RMS scores (lower values in the center

are better). Yet, as shown on the disparity maps and quanti-

fied by Ffrag and Fpor on the chart, LCU features less frag-

mentation whereas SGM yields better structure sampling.

4.4. Orthogonality of Metrics

To evaluate whether our metrics are complementary to

the existing metrics, we check to what extent the metrics are

mutually correlated on the 12 training images and 13 algo-

rithm results. Figure 10 plots algorithm performance with

different metrics against each other. The transparency and

direction of the lines denote the degree and orientation of

linear correlations. We use the Jadeplant image as it fea-

tures discontinuities, fine structures, and planar surfaces.

For a more comprehensive evaluation with all images and

algorithms we refer to Figure 6 in the supplemental mate-

rial. The top row of Figure 10 shows that algorithm per-

formance measured by RMS and BadPix is correlated on

the Jadeplant image. By contrast, our metrics show little

correlation with the RMS. The table in Figure 11 further de-

notes r2, the coefficient of determination, for each metric

paired with RMS, Bad1.0 and three of our metrics, com-

puted on the full dataset. Most of our metrics are highly un-

correlated. The higher correlation between Ffat and Dfat

is acceptable as both metrics measure similar stereo inaccu-

racies but are justified by having different scopes.

As a further experiment, we compute RMS scores on

each pixel subset of the metrics in order to separately test

the influence of our subset selection and of the metric func-

tions applied to these sets. Rankings based on the subset

RMS scores are more similar to those defined by our metrics

yet not identical5. We conclude that it is the combination of

subset selection and metric function that makes our metrics

specific about their meaning. This is nicely illustrated by

the stereo results in Figure 5. Understandably, the RMS is

more specific about fine structure performance when being

applied only to pixels at fine structures. Yet, the expressive-

ness of metrics which incorporate spatial pixel distributions

such as Ffrag cannot be achieved by the RMS metric.

Figure 10: RMS scores on the Jadeplant image are more

correlated with BadPix than with our more specific metrics.

(Algorithms at the lower left corner perform best).

Bad1.0 Bad4.0 Dfat Dthin Dfuz Fpor Ffrag Ffat Pbump Pdist Pmis 

RMS 0.14 0.26 0.04 0.08 0.71 0.00 0.00 0.01 0.14 0.04 0.25 

Bad1.0 - 0.66 0.14 0.05 0.03 0.05 0.07 0.35 0.06 0.10 0.26 

Dfat 0.14 0.35 - 0.03 0.00 0.07 0.12 0.73 0.10 0.10 0.07 

Fpor 0.05 0.06 0.07 0.01 0.00 - 0.62 0.13 0.09 0.02 0.00 

Pbump 0.06 0.27 0.10 0.05 0.14 0.09 0.00 0.02 - 0.68 0.61 

Figure 11: The coefficient of determination for linear fits

between scores across images and algorithms is very low

for most pairs of metrics. The pairs (Bad1.0, Bad4.0) and

(Dfat, Ffat) seem to be correlated on the Middlebury data.

4.5. Limitations

We identified two limitations of our proposed evaluation

framework. First, our metrics are not homogenously nor-

malized. Just like for the RMS, this is not an issue by it-

self. Yet, in combination, the different ranges make it diffi-

cult to get a good grasp of the relative differences between

algorithms across multiple metrics. To address this issue,

we provide heuristic score distributions in Figure 12. With

these histograms, individual metric scores can be put in con-

text when assessing algorithm performance. As a further

solution, our metrics could be rewritten to denote respec-

tive percentages of bad pixels, e.g. the percentage of surface

normals which are off by more than 5◦.

5Quantitative results on all images and algorithms are provided in Sec-

tion 3.2. and the second column in Figure 6 of the supplemental material.
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As a second limitation, our pixel extraction methods are

not completely parameter-free. We publish our source code

such that our results can be reproduced and comparable

metric scores can be computed for further disparity maps.

Figure 12: The histograms illustrate the relative distribu-

tions of metric scores on the Middlebury dataset. With these

scores, individual stereo results can be evaluated in context.

5. Further Benefits and Applications

Beyond the assessment of algorithm performance on

academic benchmark datasets, our geometry-based evalu-

ation also supports blackbox tuning of algorithm parame-

terization and makes performance evaluation more tolerant

against dataset bias and ground truth deficiencies.

Parameter tuning of stereo algorithms often is a diffi-

cult and rather subjective process, all the more if the re-

spective implementation details are inaccessible. Combined

with a coarse parameter sweep, our metrics can be used for

application-specific parameter optimization.

Even carefully composed datasets are not perfectly rep-

resentative for the proportions of ordinary and variously

challenging pixels on test images. For instance, common

benchmarks feature large areas with flat objects and there-

fore tend to favor smooth disparity maps. By comput-

ing metrics for specific, semantically meaningful image

regions, our approach avoids to disadvantage algorithms

which perform well on less frequent yet equally important

regions such as fine structures. As a second issue, the term

“representative” is highly application-specific which lead to

specialized benchmarks such as KITTI [10]. Our approach

allows to generalize and re-combine multiple datasets. Al-

gorithm performance on different image regions may be

composed such that it complies with the proportions and

priorities of a given application.

Our proposed metrics may further be applied to data with

missing GT disparities. For example, the metric for surface

bumpiness can be computed on disparity maps with roughly

segmented planar image regions.

6. Conclusion and Outlook

We proposed and carefully justified the HCI Stereo Met-

rics: nine semantically intuitive performance measures for

three geometric categories of stereo ground truth. Our met-

rics can be applied to various benchmark datasets and to

dense algorithm results generated by two-frame stereo or

other reconstruction methods. By combining our proposed

metrics, automated benchmarks or parameter tunings can

be carried out taking into account a variety of application-

specific requirements.

The presented metrics and evaluation methods are avail-

able online6. On this interactive benchmark website, re-

searchers and engineers may thoroughly assess and com-

pare state-of-the-art stereo algorithms. We thereby hope to

help engineers identify “their best” stereo algorithm and to

foster progress in those stereo applications where existing

methods still yield insufficient quality.

Future work will focus on performance with respect to

radiometric challenges such as specular highlights or trans-

parency. These concepts will further be applied to optical

flow and multi-view stereo evaluation.
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algorithm performance for view prediction and structure re-

construction. In Image Analysis, pages 101–107. Springer,

2003. 2

[22] J. Kowalczuk, E. T. Psota, and L. C. Perez. Real-time stereo

matching on cuda using an iterative refinement method

for adaptive support-weight correspondences. IEEE Trans-

actions on Circuits and Systems for Video Technology,

23(1):94–104, 2013. 5

[23] L. Maier-Hein, A. Groch, A. Bartoli, S. Bodenstedt, G. Bois-

sonnat, P. L. Chang, N. T. Clancy, D. S. Elson, S. Haase,

E. Heim, J. Hornegger, P. Jannin, H. Kenngott, T. Kilgus,

B. Muller-Stich, D. Oladokun, S. Rohl, T. R. Dos Santos,

H. P. Schlemmer, A. Seitel, S. Speidel, M. Wagner, and

D. Stoyanov. Comparative validation of single-shot optical

techniques for laparoscopic 3-d surface reconstruction. IEEE

Trans Med Imaging, 33(10):1913–1930, Oct 2014. 2, 6

[24] L. Maier-Hein, P. Mountney, A. Bartoli, H. Elhawary, D. El-

son, A. Groch, A. Kolb, M. Rodrigues, J. Sorger, S. Spei-

del, et al. Optical techniques for 3d surface reconstruction

in computer-assisted laparoscopic surgery. Medical image

analysis, 17(8):974–996, 2013. 1, 2

[25] M. Maimone and S. A. Shafer. A taxonomy for stereo

computer vision experiments. In ECCV workshop on per-

formance characteristics of vision algorithms, pages 59–79.

Citeseer, 1996. 2

[26] R. Margolin, L. Zelnik-Manor, and A. Tal. How to evalu-

ate foreground maps. In CVPR 2014, pages 248–255. IEEE,

2014. 2

[27] N. Morales, G. Camellini, M. Felisa, P. Grisleri, and P. Zani.

Performance analysis of stereo reconstruction algorithms. In

Procs. IEEE Intl. Conf. on Intelligent Transportation Sys-

tems, pages 1298–1303, 2013. 2

[28] M. G. Mozerov and J. van de Weijer. Accurate stereo match-

ing by two-step energy minimization. IEEE Transactions on

Image Processing, 24(3):1153–1163, 2015. 5

[29] J. Mulligan, V. Isler, and K. Daniilidis. Performance evalu-

ation of stereo for tele-presence. In ICCV 2001, volume 2,

pages 558–565. IEEE, 2001. 2
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[32] S. Röhl, S. Bodenstedt, S. Suwelack, H. Kenngott, B. P.

Müller-Stich, R. Dillmann, and S. Speidel. Dense GPU-

enhanced surface reconstruction from stereo endoscopic im-

ages for intraoperative registration. Med Phys, 39(3):1632–

1645, 2012. 6

[33] D. Scharstein, H. Hirschmüller, Y. Kitajima, G. Krathwohl,
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