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Abstract

Even high-quality lenses suffer from optical aberrations,

especially when used at full aperture. Furthermore, there

are significant lens-to-lens deviations due to manufactur-

ing tolerances, often rendering current software solutions

like DxO, Lightroom, and PTLens insufficient as they don’t

adapt and only include generic lens blur models.

We propose a method that enables the self-calibration of

lenses from a natural image, or a set of such images. To this

end we develop a machine learning framework that is able

to exploit several recorded images and distills the available

information into an accurate model of the considered lens.

1. Introduction

High-quality lenses are typically the most expensive part

in modern camera systems. Even high grade lenses exhibit

severe lens aberrations at open aperture [38, 9]. In addition,

lens-to-lens deviations due to manufacturing tolerances can

be significant [5, 35]. Existing approaches aka DxO, Light-

room that use parametric models often neglect these indi-

vidual errors and hence provide only limited image quality

improvements.

Recently, Shih et al. [35] suggested an approach to cal-

ibrate individual lenses using a grid of light points and fit-

ting parameters of the lens prescription to counter this is-

sue. Schuler et al. [33] proposed a blind algorithm to cor-

rect for the individual errors of a lens. Our approach takes

this one step further. It uses machine learning to estimate a

regression model for the family of non-stationary lens blurs.

This model represents point spread functions as real-valued

functions of several parameters such as image position and

orientation, allowing for continuous transfer across settings

and multiple images. It makes use of major progress in the

field of blind deconvolution (BD) during recent years [42],

and it can exploit information present in sets of images in an

elegant way, thus improving the blur model with the amount

of photos taken over time. All these images are natural im-

ages, and none of them needs to be taken of a custom cal-

ibration pattern, which is why we refer to the process as

self-calibration. Both high-quality lenses and simple lenses

benefit from the approach that renders time and cost inten-

sive physical calibration approaches unnecessary.

The optical aberrations of a lens are generally described

by the point spread function (PSF). The overall PSF (or

blur) model is a high-dimensional function that for a given

lens depends on a number of quantities, including position

in the image plane, wavelength, aperture stop, focus length

(for zooms), and focus setting. If we had a sufficiently

large training set of accurate PSF observations1 covering the

space of input variability, we could simply apply machine

learning to estimate the overall PSF. Each PSF measure-

ment, however, would ideally require an optical measure-

ment under controlled conditions, and it is not feasible to

do this for each individual lens. The challenge addressed by

the present paper thus is how to estimate this function from

a relatively small set of imperfect PSF estimates extracted

automatically from natural images, taking advantage of the

symmetries of the problem. To this end, we introduce a

non-parametric regression framework that learns a continu-

ous PSF model as a function of lens settings. Our approach

is generic and provides a framework that allows any local

PSF estimation algorithm to be used and hence will benefit

from future advances in the field of BD. At the same time

any non-blind deconvolution (NBD) algorithm can be used

for the final image correction, once the PSF family has been

estimated. Therefore, our approach is not limited to a spe-

cific algorithm — it can be viewed as a novel generic tool

for the continuous modeling of non-stationary point spread

functions (PSFs).

Once we have a mathematical model of the blur at hand,

we can use it to correct and enhance the captured image via

NBD. We measure the improvement in image quality using

test charts using the commercial image quality system iQ

developed by Image Engineering [17].

Our contributions are three-fold:

• we present a benchmark for lens blur and make a com-

prehensive comparison of state-of-the-art PSF estima-

tion algorithms

• we show how to get reliable PSF estimates from cap-

tured photos

• we introduce a new framework for spatially-varying

PSF models depending on all relevant input variables

that makes use of local PSF estimates and outputs a

continuous PSF model tailored for each individual lens

considered.

1These local PSFs are often also referred to simply as PSFs, since they

are also functions. We can think of them as functions obtained from the

overall PSFs by restriction to a subset of the input arguments.
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2. Problem formulation

The notion of a PSF is invaluable in the description of

optical systems and directly owes itself to the linearity of

the underlying physical equations. As mentioned above, the

PSF of an imaging system describes its response to a point

source or point object. Only in an ideal, i.e. aberration-free

imaging system, each point of the object plane is mapped to

a single point in the image plane, yielding a sharp image of

the static scene being captured. However, in reality an ideal

system does not exist,2 and a point in the object plane will

be spread or blurred according to the pattern determined by

the point spread function.

In practice, capturing a picture with a digital image sen-

sor yields a finite set of intensity values. A digital image can

be represented by a matrix whose dimensions correspond to

the resolution of the image. For simplicity, we consider x, y

and f to be vectors, describing the underlying sharp image

of the captured scene, the blurry possibly noise corrupted

taken photo, and the PSF respectively. The case of matrices

is analogous. Since the incoherent imaging equation [10] is

linear in x, it can be written as

y = Fx. (1)

where F is the convolution matrix of f . For incoherent

light, the PSF fully characterizes an optical system and can

be considered as its fingerprint. No two lenses have the

same PSF. Blind deconvolution aims at inferring F from an

image alone, i.e., given y, infer F without knowing x. Once

F is known, one can remove the induced blur via non-blind

deconvolution.

3. Related work

Blind image deconvolution. Blind image deconvolu-

tion (BD) has seen much progress in recent years. A good

overview can be found in the review [42]. State-of-the-art

methods include fast MAP based methods [4, 46] that em-

ploy heuristic non-linear filtering methods (e.g. shock fil-

tering) for latent image reconstruction, the approach of [49]

that use variational Bayesian inference for PSF and image

estimation, and recently proposed methods [39, 26] that use

powerful patch-based priors for image prediction. All of

these methods have been developed for the removal of blur

caused by unintended camera shake, which is a common

image degradation that occurs independent of the lens qual-

ity.3 With the help of a new benchmark dataset, we test

2note that aperture diffraction, which invariably occurs, is also consid-

ered an aberration; for high quality and large f-stops, it can be the dominant

aberration
3There is an interesting trade-off at work in that lens manufacturers try

to counter this degradation using optical image stabilization. This, how-

ever, can lead to problems with lens centering (see e.g. http://www.

photozone.de/fuji_x/879-fuji55200f3548?start=1),

thus increasing the need for lens correction methods.

whether these methods are also able to estimate local PSFs

stemming from optical aberrations and make a comprehen-

sive comparison.

Other relevant work includes [46], arguing that many

edges are actually not informative about the unknown PSF

and may even misguide PSF estimation. A follow-up paper

[15] trains a discriminative model and finds good regions

for PSF estimation within an image. This idea has been fur-

ther extended in [1], selecting several patches and building

a synthetic mosaic comprising those parts of the image that

are most informative about the PSF.

Non-blind image deconvolution. In contrast to BD, in

non-blind image deconvolution (NBD) the PSF is assumed

to be known. The task is to restore a sharp image from

a blurry and possibly noisy one. Despite being a convex

optimization problem, NBD is inherently ill-posed. This is

due to its high sensitivity to noise, and the fact that blur can

wipe out certain frequencies irretrievably.

One of the oldest methods, which still enjoys much pop-

ularity, is Richardson-Lucy deconvolution, originally pro-

posed independently by [29] and [24]. It is an iterative

method ensuring non-negativity of the estimated image.

Only recently [44] proposed an extension that is able to deal

with saturated pixels for which the linear model (1) does not

hold true.

While non-negativity helps to constrain the solution

space, it is often insufficient for the suppression of restora-

tion artifacts such as ringing and the recovery of high-

frequency detail. Other popular deconvolution routines

make use of so-called natural image statistics [22, 21].

Recently proposed methods make use of learning ap-

proaches [30] and deep convolutional neural networks [31,

47], both of which achieve state-of-the-art results.

PSF modeling. While most works on BD and NBD as-

sume an invariant PSF (i.e., a PSF model does not depend

on the position in the image plane), in reality this is often

not the case. [28] developed an extension of the convolu-

tional model based on non-stationary combination [25]. In

contrast, [14] proposed the so-called Efficient Filter Flow

(EFF) model, based on non-stationary convolution, with a

number of advantages when compared to Nagy’s model [7].

Recently, [8] designed a model based on wavelets, which is

also able to describe spatially-varying blur.

Optical aberration correction. Existing approaches to

optical aberration correction can be categorized into those

that measure the PSF in a calibration step, and those that

estimate the PSF blindly.

[32] measure the PSF of a lens via point light sources and

use the EFF framework to correct optical aberrations using

subsequent non-blind deconvolution. Instead of point stim-

uli, [35] use a grid of illuminated pinholes for PSF measure-

ment. Rather than using the PSF measurement directly, they

fit a mechanical model (known as lens prescription model)
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of the lens to the measured PSFs. The correction is again

performed via NBD.

[19] estimate the PSF via a calibration pattern and fit a

spatially-varying parametric model. [12] also use a cali-

bration pattern for PSF estimation and present a non-blind

deconvolution method that exploits cross-channel informa-

tion to yield high-quality results. [18] propose a method

that performs PSF estimation either with help of a calibra-

tion pattern or blindly through sharp edge prediction. [37]

uses images of a point grid, of which they compute local

moments, which are used to fit a polynomial description

(Seidel polynomials) of lens aberrations.

Probably closest to our approach is the work of [33], us-

ing a blind deconvolution approach for PSF determination

and a global lens PCA basis to constrain and connect lo-

cal PSF estimates. The correction and image reconstruc-

tion is done via [21]. In contrast to our approach, this work

only makes use of a single image and thus cannot propa-

gate information about the PSF between images taken with

the same lens; moreover, it cannot take into account all the

input variables that our approach can handle.

[41] discusses the topic from a theoretical perspective

and sheds light on the question how much information about

the PSF can be obtained from a single image. [48] makes

use of optical computing to correct for optical aberrations.

4. Overview

Our method consists of three essential ingredients:

(1) Local PSF estimation. Each captured photo is assayed

for informative regions suitable for reliable PSF esti-

mation. If this is the case we employ a state-of-the-art

PSF estimation technique to yield local PSF estimates.

The PSF depends on a number of parameters including

position within the image, color channel, and aperture

setting.

(2) PSF modeling. The local PSF estimates can be con-

sidered as samples of the continuous PSF that we seek

to infer. To this end, we use efficient non-parametric

regression methods from the ML literature to estimate

the underlying physical PSF of the given lens.

(3) PSF correction. With the PSF model at hand, we cor-

rect the images captured with it via non-blind non-

stationary deconvolution.

EFF [14] provides an efficient way for the description

and computation of non-stationary blur. Its drawback is

the necessary increase in parameters for the modeling of

large complex PSFs due to its limited interpolation capabil-

ities. We propose a novel approach to handle this using non-

parametric kernel regression. Previously, basis sets have

been proposed for specific problems such as camera shake

and optical aberrations. Presently, we describe a generic

learning framework and apply it to the problem of blind cor-

rection of non-stationary optical aberrations.

In the following sections we will discuss each of these

steps in detail before we will present experimental results

in Sec. 9, concluding in Sec. 10.

5. PSF estimation

5.1. Benchmark for optical aberrations

For building a model of a PSF that accurately describes

optical lens aberrations, we need to sample it. Previously

this has been accomplished by time-consuming measure-

ment procedures as proposed in [32, 35, 12]. An alternative

is to estimate local PSFs from images as proposed by [33].

In recent years single image blind deconvolution has

seen much progress in dealing with blur arising from cam-

era shake during exposure. However, it is not clear whether

a state-of-the-art PSF estimation method developed for mo-

tion blur performs equally well for blur caused by optical

aberrations.

Therefore, we created a benchmark and tested several

state-of-the-art methods. The benchmark consists of 80 im-

ages × 12 kernels, yielding 960 blurred images. These im-

ages are generated similarly to [39]: we use the same 80

ground truth images, convolve them with different PSFs (in

a stationary way, i.e., using the same PSF for the whole im-

age), and add 1% Gaussian noise. The PSFs were obtained

by taking digital SLR images of a point light source in a

distance of 150 cm, placed in one of the four image corners

(in our case, the upper right), where the optical aberrations

are most severe. For each PSF the corresponding lens was

focused by first placing the above point light source into

the image center. Then the camera was rotated to record

the PSF 4. For each PSF, three images were taken, which

were then averaged and normalized. For simplicity, we use

the green color channel and thus neglect chromatic aberra-

tions. The table in Fig. 1 summarizes the lenses that were

measured, providing a selection of Canon EOS lenses rang-

ing from popular low-cost lenses (Canon EF 50mm f/1.4

USM) to professional lenses (Zeiss Otus 55mm f/1.4 APO-

Distagon). Figure 1 shows the PSFs; note that they differ

from PSFs typical for motion blur as measured and shown

in [23, 20]. When comparing the PSFs, bear in mind that

the scale of the PSF images varies, as specified in the table.

We also want to stress, that through our particular focusing

procedure no conclusions can be drawn from the size of the

PSF to the imaging quality of the corresponding lens.

The result of a comparison of five state-of-the-art local

PSF estimation methods is shown in the lower left panel

of Fig. 1. All results were obtained using subsequent non-

blind deconvolution using the method of [50]. The error

4Note that the focus distance was thus not optimal for the corner, lead-

ing to an error which depends on the field curvature of the lens.
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ratio is defined and computed according to [23]. Images

with values below 3 are visually of acceptable image qual-

ity with little or no artifacts. In particular, this means that all

considered lenses mostly take pictures with acceptable im-

age quality in the corners (dashed line). Interestingly, two

of the evaluated methods [4, 46], which are based on heuris-

tic filtering methods such as shock filtering, are hardly able

to improve image quality on the present task. [39] is able

to improve image quality in about 65% of the cases, [49] in

about 90% of the cases. Only the recently proposed method

of [26] dominates the dashed line and thus consistently im-

proves image quality for all tested images.

5.2. PSF samples through patchbased estimation

All of the above tested BD methods assume that the blur

is invariant across the image plane and return a single PSF

for a given input image. While the assumption of a station-

ary PSF seems often acceptable for camera shake [20], it is

unrealistic for blur stemming from optical aberrations [32].

Rather than adopting and modifying a state-of-the-art

BD method for non-stationary lens correction as e.g. [33]

did, we employ another strategy:

(1) First we assay an image or a set of images (taken with

the same lens and settings) to find image regions that

are most informative about the unknown PSF. We con-

sider two different approaches: 1) one based on the

rmap idea of [46], which computes a mask for PSF es-

timation that neglects all edges that likely impede blur

estimation; 2) the other uses the discriminative model

of [15] that selects good regions to deblur. In practice

we found both approaches to work equally well.

(2) Second, we run [26], the best performing method in our

lens blur benchmark, on the set of image patches se-

lected by (1). For each analysed patch we get a single

estimated blur kernel, which after centering (i.e. shift-

ing the center of mass into the center) serves as a local

sample of the global non-stationary PSF, to be used as

input to the subsequent data-driven PSF modeling step.

The motivation for this approach is threefold: 1) it is com-

pletely generic and modular such that any future advances

in one of these sub-tasks could be readily employed to im-

prove the overall performance; 2) uninformative image re-

gions do not hamper PSF estimation; 3) since only parts of

the input image(s) are analysed, it is computationally more

efficient and allows for massively parallel processing.

6. PSF modeling

6.1. Motivation

Although EFF provides an efficient way for space-

variant filtering, it has some shortcomings if computational

efficiency should be maintained:

Groundtruth EFF [14] Our approach

Figure 2. Comparison between EFF and our regression based ap-

proach: EFF computes the effective PSF at a certain pixel posi-

tion (red cross) as a weighted linear interpolation between PSFs

(left) from different image regions (colored boxes). For complex

PSFs due to optical aberrations (Canon EF 24mm f/1.4L) such a

description is insufficient and provides unsatisfactory results. In

contrast to EFF, our approach models the overall PSF as a high-

dimensional regression, continuously interpolating in all param-

eters and properly accounting for the location and orientation of

the PSF samples. As the image on the bottom right illustrates,

this truly interpolates, rather than taking a superposition (bottom

middle), thus yielding a faithful PSF representation. For better

visualization we applied a gamma of 0.5 to all PSF images.

P1 the patches must have the same size

P2 the local PSFs used to parametrise the model need to lie

on a regular equi-spaced grid

P3 the weighting functions perform linear interpolation be-

tween the parametrising PSFs

In particular, property P3 has strong implications with

regard to the accuracy of PSF modeling: non-trivial

PSFs can only be represented faithfully if the number of

parametrising PSF samples is high enough. Figure 2 il-

lustrates this issue for a non-trivial PSF caused by optical

aberrations of a Canon 24 mm f/1.4L lens. EFF performs

a linear interpolation between the observed PSF samples to

compute the local PSF applied at a certain pixel location.

Note, that for each pixel the weighting is different accord-

ing to the overlap and weighting function that have been

chosen. However, irrespective of that choice the interpo-

lation is always linear, i.e., the applied PSF is a weighted

linear combination of the observed PSF samples. Figure 2

shows the resulting PSF for the popular choice of 50% over-

lap and a Bartlett-Hann window. The resulting PSF is a sub-
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a Canon EF 85mm f/1.2L II USM 51x51

b Canon EF 50mm f/1.4 USM 81x81

c Zeiss Otus 55mm f/1.4 APO-Distagon 41x41

d Walimex Pro 35mm f/1.4 21x21

e Canon EF 35mm f/1.4L USM 65x65

f Sigma 35mm f/1.4 DG HSM 41x41

g Sigma 50mm f/1.4 EX DG HSM 91x91

h Nikon AF-S Nikkor 50mm f/1.4G 71x71

i Sigma 85mm f/1.4 EX DG HSM 45x45

j Nikon AF Nikkor 20mm f/2.8D 61x61

k Voigtlander 20mm f/3.5 SL-II 51x51

l Nikon AF-S Nikkor 14-24mm f/2.8G ED 21x21

(PSF taken at 14mm)

Figure 1. Benchmark for blind deconvolution of images that have been artificially blurred with real-world PSFs of popular photographic

lenses (see table). The PSFs were recorded at open aperture with a light source placed in the upper right image corner. For the benchmark

we used only the green color channel, comprising half of the pixels of the raw images. The plot on the left shows the percentage of images

whose degradation is upper bounded by the given error rate, thus higher is better.

optimal approximation of the true PSF. To some extent, this

shortcoming can be addressed by using more PSF samples,

but this is not always possible: in the case of BD, where

we do not measure but estimate the PSF, not all image re-

gions yield good PSF estimates. For example, regions with

few edges and little texture might not contain enough useful

information for a reliable local PSF estimation.

This issue has been recognised before in the context of

non-stationary motion blur [11]. There, the authors tried

to mitigate this effect by enforcing similarity (as measured

by Euclidean distance) between neighboring PSF estimates.

In addition, they tried to identify bad estimates through an

entropy measure, which once identified were then excluded

and replaced.

A more sophisticated approach to constrain the estimated

PSF during blind deconvolution has been proposed in [13]

and [33]. Although tackling different problems (motion blur

removal vs. correction of optical aberrations), the key idea is

the same: in both cases the local PSF estimates are projected

to a PSF basis which constrains the solution space to phys-

ically plausible PSFs only. The optimization is then per-

formed in the basis coefficients rather than the parametris-

ing PSFs. Since the optimization problem size scales ex-

ponentially with the dimensionality of the basis, both the

dimensionality as well as the number of discretization step

has to be kept low. While in [33], this basis was orthogonal,

[13] used a over-complete basis.

In this following section we present an alternative ap-

proach to this problem, which is not only computationally

efficient but also offers a number of additional advantages.

6.2. Kernel regression for PSF modeling

Kernel regression denotes a class of non-parametric tech-

niques in statistics used for the estimation of non-linear re-

lations between random variables.

yi = f(xi) + ǫi, i = 1, 2, . . . , n. (2)

Nadaraya [27] and Watson [43] proposed to estimate

such a relation f as a locally weighted average of obser-

vations yi using a kernel K as a weighting function:

f̂(x) =

∑n
i=1 yi Kh(x− xi)

∑n
i=1 Kh(x− xi)

(3)
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Figure 3. Illustration of coordinate parametrization used for multi-

variate kernel regression in our PSF modeling step. The irregu-

larly located bright “blobs” correspond to PSF estimates from se-

lected image patches. Each PSF estimate within the image plane

is parametrized by its distance to the image center r, its angle ϕ

and a locally attached coordinate system (u,v). Please note, that

(u,v) and (u′,v′) denote the coordinates in a rotated local coordi-

nate system and hence do not take integer but real values.

The Nadaraya-Watson estimator (NWE) is the simplest

form of kernel regression and can be viewed as an adap-

tive filter. As pointed out in [40] many popular image pro-

cessing filters such as bilateral filtering can be interpreted as

NWE with a modified kernel definition. In the multivariate

case the Nadaraya-Watson estimator (3) becomes

f̂(x) =

∑n
i=1 yi KH(x− xi)

∑n
i=1 KH(x− xi)

(4)

In our case, the function we want to estimate is the true

underlying PSF, which is a real-valued continuous function

of several variables including the positions of the local PSF

sample within the image plane, given in polar coordinates

(r, ϕ), pixel position within the local PSF sample (u, v),

and possibly other parameters (Φ) such as wavelength or

aperture setting, i.e.,

f = f(u, v, r, ϕ,Φ) (5)

Figure 3 illustrates the parametrization that we use in our

experiments. Note that u and v denote the coordinates in

the rotated local coordinate system and thus take real val-

ues rather than integers. Hence we have access to samples

that lie on a non-regular grid and hence provide sub-pixel

information about the unknown PSF. This is a serendipitous

advantage of our choice to use rotated coordinate systems

for the local PSF, a choice we originally made to be able

to take into account the fact that PSFs tend to be close to

rotationally symmetric with respect to the image center.

In summary, each local PSF sample thus provides us

with a set of training points for the regression (one for

each pixel), where each training point consists of (at least)

four position variables as input, and one intensity value (the

value of that pixel) as output.

6.3. Kernel choice

It is known [36] that for the case of classical kernel re-

gression the choice of the kernel has only a small effect on

the accuracy of estimation (in contrast to the choice of the

bandwidth), and, therefore, preference is given to differen-

tiable kernels with low computational complexity such as

an RBF kernel. Furthermore, a reasonable assumption is

that the kernel factorizes. We model the kernel as

KH(x,x′) =
∏

x∈{u,v,r,ϕ,Φ}

Khx
(x, x′) (6)

where for x ∈ {u, v, r,Φ} we assume a RBF kernel

Khx
(x, x′) = exp

(

−
‖x− x′‖2

2h2
x

)

. (7)

For x = ϕ we map the variable to the two-dimensional unit

sphere and use a Gaussian RBF kernel in terms of distances

in that space. This avoids discontinuous treatment of the cir-

cular variable φ, thus ensuring that any two PSF estimates

that are close to each other in the image plane are encour-

aged to take similar values. The values of the bandwidth

parameters hx control the coupling and smoothing of the

available PSF samples. For example to enforce rotational

symmetry, i.e., no dependence of the PSF on ϕ, one would

choose a very large bandwidth hϕ, such that PSF samples

with a certain distance r to the image center are averaged

during regression.

For automatic parameter determination we follow [3]

and compute the bandwidth for variable x as

hx = σx

{

4

(d+ 2)n

}1/(d+4)

(8)

where d and n denote the dimensionality and number of

input samples respectively; σx denotes the standard devia-

tion of variable x and is computed via its sample estima-

tor. To speed up computation we employ Kd-tree acceler-

ated nearest neighbor search to approximate kernel compu-

tations, similar to [34]. This method has the advantage that

the “training” only consists of building the Kd-tree, and it

is possible to update the tree as additional training exam-

ples become available, hence allowing a lens model that

improves over time as new images come in.

While we use kernel regression in our experiments, any

non-parametric regression technique could be used. We also

experimented with Gaussian process regression, however

found it computationally prohibitive due to the large amount
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of variables involved. A typical problem size in our experi-

ments is of the order 106, and this size could increase further

for large image databases or bigger sized local PSFs.

7. PSF correction

With an accurate PSF model at hand, existing images

as well as images to be captured subsequently can be cor-

rected via non-blind deconvolution (NBD). In this work, we

use the Richardson-Lucy NBD algorithm of [44], which is

capable of dealing with partially saturated image regions.

For efficient computation we use EFF [14] and accelerate

the iterative Richardson-Lucy updates via [2].

8. Implementation

We run all our experiments with unoptimized Matlab

code. For PSF estimation we use the Matlab code of [26],

for patch selection the Matlab code of [15], and for PSF

correction a modified version of the Matlab code of [44].

Due to the long processing time of [26], we distribute the

workload to a compute cluster and process all patches in

parallel. The size of the unknown blur kernel is kept fixed

to 55x55 pixels in all our experiments. The runtime for each

of the steps, i.e., PSF estimation, modeling and correction,

is in the order of tens of minutes. For RAW development

we use Dave Coffin’s dcraw [6]. For chromatic aberration

correction we use tca correct and fulla of the freely

available panorama stitching software Hugin [16].

9. Experimental results

Due to limited space we show only a few selected results

here. For more comparisons we refer the interested reader

to the supplementary material5.

Comparison with state-of-the-art. Figures 5 and 6

show comparisons with state-of-the-art methods for both

non-blind [32] and blind [33, 19] lens correction. In both

cases our approach yields comparable if not superior re-

sults. Figure 4 depicts the estimated PSF for the example

of Fig. 5 before and after applying kernel regression.

Comparison with commercial software. Commercial

software packages such as DxO, Lightroom and PTLens

that aim to correct optical aberrations work with pre-defined

parametric lens models. While they manage to correct

for geometric distortions and lateral chromatic aberrations

rather well, they typically fall short in correcting other types

of blur such as astigmatism, coma and longitudinal chro-

matic aberrations. In Figure 6 we compare with a result ob-

tained with DxO Optics Pro 7.2, an image borrowed from

[33]. The comparison demonstrates that our approach com-

pares favourably in terms of recovered overall sharpness.

Quantitative evaluation. We measure the improvement

in image quality based on a test chart (TE268) with an

5Available for download from the accompanying project webpage

http://webdav.is.mpg.de/pixel/psf_regression

MTF50 w/o corr. n=1 n=2 n=5 non-blind

Corner 383 545 608 654 696

Center 613 923 1013 1076 1120
Table 1. Improvement in MTF50 for Canon 24mm f/1.4L lens

measured in line pairs per image height (LP/PH) through test chart

TE268 and iQ Analyzer of Image Engineering. Higher means bet-

ter. n denotes the number of images used for PSF modeling.

off-the-shelf image quality system[17], developed by Im-

age Engineering. A statistic that is commonly used for

quantitative assessment of resolution and image quality is

the MTF50, which denotes the value at which the Modula-

tion Transfer Function drops down to half of its maximum

value. In Tab. 1 we show how with an increasing number of

analysed images the image quality improves. This experi-

ment illustrates that our approach allows a self-calibration

of lenses that improves with time.

10. Conclusion

Optical aberrations are inevitable and no lens is ever per-

fect. To mitigate the adverse effects of optical flaws we

proposed a novel method for blind lens correction. It com-

prises three steps: local PSF estimation, overall PSF model-

ing, and PSF correction. Our approach is generic and allows

simple integration of existing and future methods for any of

these sub-tasks. For PSF modeling we use non-parametric

kernel regression as a versatile tool that allows the incorpo-

ration of physical constraints such as symmetry conditions,

and smoothly interpolates between local PSFs to build a

continuous PSF family producing a meaningful estimate at

any desired point. In a number of experiments, we demon-

strate the robustness and effectiveness of our approach.

A drawback of our current system is the limited extrapo-

lation capability of the proposed regression technique using

localized kernels. While it performs well in interpolating

between local PSF estimates and distributing information

throughout the image plane, it does less so for extrapolat-

ing a non-trivial PSF pattern to image corners. In principle,

this could be addressed by a localized criterion which ad-

justs the kernel bandwidth depending on the amount of data

available in a neighborhood. Alternatively, recent advances

in fast Gaussian process regression for multi-dimensional

pattern extrapolation [45] might be able to help remedy this

problem, suggesting another direction for future work.
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