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Abstract

In this work we propose a novel approach to the problem

of multi-view stereo reconstruction. Building upon the pre-

viously proposed PatchMatch stereo and PM-Huber algo-

rithm we introduce an extension to the multi-view scenario

that employs an iterative refinement scheme. Our proposed

approach uses an extended and robustified volumetric trun-

cated signed distance function representation, which is ad-

vantageous for the fusion of refined depth maps and also for

raycasting the current reconstruction estimation together

with estimated depth normals into arbitrary camera views.

We formulate the combined multi-view stereo reconstruc-

tion and refinement as a variational optimization problem.

The newly introduced plane based smoothing term in the

energy formulation is guided by the current reconstruction

confidence and the image contents. Further we propose an

extension of the PatchMatch scheme with an additional KLT

step to avoid unnecessary sampling iterations. Improper

camera poses are corrected by a direct image alignment

step that performs robust outlier compensation by means of

a recently proposed kernel lifting framework. To speed up

the optimization of the variational formulation an adapted

scheme is used for faster convergence.

1. Introduction

We consider the problem of performing a dense 3d re-

construction from a set of calibrated 2d images. Many al-

gorithms have been proposed to solve this problem with en-

couraging results. The widespread availability of 3d print-

ing increases the demand for accurate reconstruction of ob-

jects using a set of camera images. It is worth considering

that often camera poses are in practice not perfectly accu-

rate, even for externally tracked cameras, and that the man-

ual selection of well-suited camera views is not feasible.

Therefore any reconstruction algorithm should not only try

to find a dense 3d reconstruction that minimizes the pho-

tometric reprojection error between views, but also refine

the camera poses for enhanced photo consistency. Also the

computational feasibility has to be considered, especially

Figure 1: Reconstruction result of the proposed algorithm

applied to the Bunny dataset provided by Kolev et al. [23].

for reconstructions involving many high resolution images.

The efficiency of massively parallel systems in combination

with parallel algorithms seem to be well suited for process-

ing such big amounts of visual data. Our algorithm tries to

address all of the aforementioned challenges of multi-view

stereo reconstruction. Typical results for our algorithm are

shown in figure 1.

1.1. Related work

The method of Furukawa and Ponce [14] uses a strategy

that matches image patches, expands the correspondences

in the neighbourhood and filters based on visibility con-

straints starting with sparse matches in the images result-

ing in a semi-dense point-cloud. Kolev et al. [23, 24] try to

solve the reconstruction problem by minimization of con-

vex energy functionals. In [37] an algorithm based on the

fusion of range images is proposed by Zach et al. Fusion

of depthmaps for reconstruction and meshing has also been

proposed in the approach of Curless and Levoy [12].

The estimation of range images from two or views is

a widely considered problem on its own and we consider

only some closely related works. Similar to the image patch

matching and expansion by Furukawa and Ponce [14] is the

PatchMatch stereo algorithm by Bleyer et al. [9] that tries

to perform dense stereo matching using sampling and prop-

agation. Several variants of this algorithm have been pro-

posed that introduce explicit regularization like PMBP by

Besse et al. [6] and PM-Huber by Heise et al. [18].

The problem of pose estimation given image and depth
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data was addressed in the DTAM algorithm by Newcombe

et al. [30] and also by Steinbrücker et al. [34]. The DTAM

system by Newcombe et al. [30] also address the problem of

reconstruction from the recorded images. The Kinectfusion

approach by Newcombe et al. [29] and Izadi et al. [19] uses

an RGB-D sensor for the simultaneous pose estimation and

scene reconstruction.

The dense bundle adjustment approach proposed by

Amaël Delaunoy and Marc Pollefeys [13] addresses the

same issues as our approach but uses a different strategy

to optimize the overall photo consistency in terms of the

reconstruction and the camera poses.

1.2. Contribution

The main contributions of our paper are:

• An extended truncated signed distance volume repre-

sentation that uses expectation maximization together

with a Gaussian noise plus uniform outlier model for

filtering and per voxel confidence

• A new Variational PatchMatch MultiView formulation

that operates directly on local planes and allows the

joint optimization of depth and normals. The resulting

efficient second order regularization of the depth also

incorporates the confidence of the TSDF volume.

• Extension of the PatchMatch algorithm with a direct

image patch alignment step to speed up convergence

and to reduce the number of necessary sampling steps

• Automatic selection of reasonable camera views and

direct optimization of the camera poses using the re-

cently proposed kernel lifting framework [39, 38]

2. Method

The overall goal of our algorithm is to increase the

photo-consistency of the provided images by minimization

of the photometric reprojection error. On the one hand we

try to improve our estimate of the scene geometry and on

the other hand we try to optimize the initial camera poses

to minimize the photometric error. Our approach is compa-

rable and most similar to the dense bundle adjustment ap-

proach proposed by Amaël Delaunoy and Marc Pollefeys

[13], but with a completely different algorithmic approach.

Our algorithm starts with a crude approximation of the sur-

face generated by the visual hull of the object [5, 26]. The

current surface is then raycasted from an extended volumet-

ric distance representation based on the method by Curless

and Levoy [12, 29, 19] to a depthmap plus normal repre-

sentation. The extracted information is then refined using a

variational PatchMatch stereo variant [18, 9, 4, 7] that di-

rectly operates on local planes and therefore allows a direct

and joint optimization of the depth and normals. Further

the refinement of our algorithm is not solely based on sam-

pling as in the original PatchMatch algorithm but also incor-

porates a direct intensity refinement step for our plane for-

mulation similar to the well known KLT alignment [3] and

uses several images at once for a more robust data term.

The refined depthmaps are then re-added to the extended

and robustified truncated signed distance volume represen-

tation that uses expectation maximization to filter outliers.

The raycasting and refinement steps are performed for many

view combinations and repeated over several scales. After

each scale we furthermore perform direct image alignment

to refine the camera poses [34, 30, 21, 22],which in our for-

mulation are assumed to be good initial estimates of the true

poses. Additionally image subsets of the PatchMatch cor-

respondence estimation phase, which do not have a reason-

able reprojection calculated by the direct pose refinement,

are pruned. This helps to remove images that do not match

very well e.g. due to occlusions induced by the scene geom-

etry or due to changes in the illumination and allows a fully

automatic selection of reasonable image combinations for

the correspondence estimation. For the pose refinement we

use the recently proposed kernel lifting scheme of Zollhöfer

et al. [39] and Christopher Zach [38]. The exact details for

each stage of the algorithm are explained in the following

sections. Figure 2 gives an overview of the algorithm.
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Figure 2: Overview of the proposed algorithm.

2.1. Initialization and Visual Hull Computation

We initialize our volume with the visual hull of the scene.

If the visual hull is not available or can not be computed

many other basic geometry initialization should be suffi-

cient e.g. simple depthmap fusion. For computation of the

visual hull we perform a simple thresholding operation to

segment the input images into foreground and background.

The original formulation of the volumetric truncated signed

distance representation of Cureless and Levoy [12] uses the

arithmetic mean to average several input depthmaps. To es-
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timate the visual hull from the segmented input images we

propose to use the geometric mean, which has the property

that if one of the samples is zero then the mean also has zero

value. If one voxel is segmented as outside in one view the

geometric mean will result in a value of zero although the

voxel might be segmented as foreground in other views. As

proposed in [19, 29] we store the current value and a weight

(here the number of samples) in the volume. The update

rules for the running geometric mean with a pixel value of

f ∈ {background = 0, foreground = 1} for the function

F (x) and the weight W (x) with x ∈ Ω ⊂ R
3 are given by

Fi+1(x) = Fi(x)
Wi(x)

Wi+1(x) · f
1

Wi+1(x) (1)

Wi+1(x) =Wi(x) + 1. (2)

The value of f is determined by projecting x into the seg-

mented image Si : ΩS ⊂ R
2 → {0, 1} using the extrinsics

Ri, ti and the intrinsics Ki of the corresponding camera,

resulting in the lookup position (u, v)⊤ = π(Ki[Ri|ti]x)
with x being in homogeneous coordinates and π being

the perspective projection [17]. To simplify the depthmap

and normal extraction we actually apply a simple function

before storing values in the volume that maps the range

[0, . . . , 1] → [−1, . . . , 1] in order to make the isolevel for

surface extraction the zero level [19, 29, 27]. Before the

values are updated, the inverse transformation is applied to

the stored values. Having calculated the visual hull using

all the segmented input images we set all weights to a small

constant value, e.g. one. Because the visual hull is only

an initial approximation to the real non-convex surface, the

influence of this initial approximation using large weights

would be too exaggerated with the normal running average

for the fusion of the refined depth maps. Typical results for

the visual hull computation for the full Dino dataset [32] are

shown in figure 3.

Figure 3: Typical results for the visual hull computation for

the full Dino dataset [32].

2.2. Robust Depthmap Fusion

We are using a variant of the truncated signed distance

function volume (TSDF) proposed by Curless and Levoy

[12]. While there are many other efficient and less mem-

ory consuming algorithms available to perform depthmap

fusion and meshing e.g. Poisson surface reconstruction[20],

the TSDF has the advantage that it is an online algorithm

that allows the integration of estimations adaptively and fur-

ther is able to raycast virtual depthmaps into arbitray views

at ease. These properties make the TSDF representation

unique, but still efficient in combination with parallel al-

gorithms and hardware like GPUs [29, 19]. We extend the

TSDF representation to make it more robust against out-

liers, that are common for multiview- and stereo depthmaps.

We use a probabilistic uniform outlier plus Gaussian mix-

ture model to represent the truncated distance probability at

each voxel

p(x|µ, σ2, w) = (1− w)U(x| − 1, 1) + wN (x|µ, σ2).
(3)

A similar model was used by Geoerge Vogiatzis and Car-

los Hernández [35] but works directly on the depth values

instead of the truncated distance and was optimized using a

parametric approximation to the posterior. Contrary to the

results in [35] we found that the optimization with the EM

algorithm works quite well, given a reasonable initializa-

tion. To maintain the online ability of the TSDF representa-

tion, we need to reformulate the classical expectation max-

imization (EM) algorithm [8] as an online variant suitable

for our mixture model. We use an online variant for mix-

ture models similar to the one proposed by Allou Samé et

al. [31] leading to the following formulation for the update

rules. We evaluate the mixture component responsibility in

the n-th iteration of the Gaussian as

γ(zN ) =
wnN (xn+1|µn, σ

2
n)

(1− wn)U(xn+1| − 1, 1) + wnN (xn+1|µn, σ2
n)
.

(4)

The parameters of the Gaussian are then updated using

NN ,n+1 = NN ,n + γ(zN ) (5)

µn+1 =
µnNN ,n + γ(zN )xn+1

NN ,n+1
(6)

x̄2n+1 =
x̄2nNN ,n + γ(zN )x2n+1

NN ,n+1
(7)

σ2
n+1 = x̄2n+1 − µ

2
n+1. (8)

The mixture weight w is updated using the rule

wn+1 =
NN ,n+1

N + 1
, (9)

and directly represents the number of inliers according to

the Gaussian noise component. Initially we set the mean µ
for each voxel to the value from the visual hull computa-

tion and the other values to a constant values leading to a

high variance for the Gaussian component. In figure 4 we

plot the results of the proposed online algorithm applied to a

synthetic signal sampled from a Gaussian component with

µ = 0, σ2 = 0.1 and w = 0.8 leading to 0.2 for the uniform

outlier component.
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Figure 4: Synthetic samples drawn from the mixture with

mean µ = 0, σ2 = 0.1, w = 0.8 in blue. The EM filtered

result is shown in red.

The authors of the Kinectfusion system [29, 19] pro-

posed to weight each depth sample added to the volume

e.g. by the normal direction in the view. We can also eas-

ily incorporate such a weighting scheme by multiplying the

responsibility γ(zn) with our weight ω and by adding ω to

N in equation (9) instead of adding 1. In practice we store

µ, x̄2, NN and N at each voxel leading to a doubled mem-

ory consumption compared to the original formulation of

Cureless and Levoy [12]. For the weighting ω we use a

combination of the normal direction and the data term from

the PatchMatch phase.

Despite the new update rules, the integration of

depthmaps in the volume is performed as described in

[29, 19]. Raycasting of depth and normal maps into new

views is also performed as described in [29, 19], but we

treat the µ component of each voxel as our current distance

value. We are also able to raycast our weight w into the

view, which results in a confidence value describing the per-

centage of inliers.

2.3. Variational Depth and Normal Map Optimiza
tion

For the variational depthmap- and normal estimation and

refinement the current contents of the TSDF volume are

raycasted into the ith camera with the projection matrix

Ki[Ri|ti] resulting in a current estimate of the depthmap

and normal-map for the camera i. For the refinement of the

raycasted estimate we propose a multiview stereo algorithm

based on the minimization of an energy function

E = Edata + λEsmooth, (10)

consisting of a data term describing the similarity between

patches in several images, which are related using a local

plane approximation of the surface, and a smoothness term

favoring similar local planes in adjacent pixels.

2.3.1 Smoothness Term

Given a camera K[I|0] at the origin and a plane π(x) =
[
n⊤d

]⊤
with the normal n and a distance d. Any ray X =

[(K−1x)⊤ρ]⊤ parameterized by ρmust fulfill the following

equation for a ray-plane intersection [17]

π⊤ [(K−1x)⊤ρ]⊤ = 0 (11)

[
n

d

⊤
1] [(K−1x)⊤ρ]⊤ = 0⇒ ρ = −

n

d

⊤
K−1x. (12)

In the following we refer to n

d
as π′ : (Ω ⊂ R

2)→ R
3 and ρ

refers to the inverse depth. Given a plane for each pixel we

assume that the neighbouring pixels should also have a sim-

ilar local plane with only small deviations except at surface

boundaries where the planes differ a lot. As we have seen

in equation (12) the resulting inverse depth of course also

depends on the pixel coordinates, such that a small change

e.g. of the normal leads to different inverse depth changes in

the image at different pixel positions. This behaviour is il-

lustrated in figure 5. Given two neighbouring pixels xa and

Camera

π′
a

π′
b

Figure 5: Two planes π′
a and π′

b lead to very different depth

values at the intersections depending on the ray’s pixel po-

sition on the camera plane. The camera rays are shown as

dotted lines.

xb we are interested in second order smoothness instead of

a first order smoothness given by ∇ρ; the ray originating at

xa intersected with the neighbouring plane should result in

a similar inverse depth value as from the own plane:

π′(xa)
⊤K−1xa − π

′(xb)
⊤K−1xa (13)

= ∇a,bπ
′(xa)

⊤K−1xa, (14)

where∇a,b refers to the gradient in the direction from xa to

xb. The combined objectives of plane similarity and second

order smoothness lead to the following smoothness term

Esmooth(π
′) =λ1

3∑

d=1

|D∇π′
d(x)| (15)

+ λ2

∣
∣
∣
∣
D

(
(K−1x)⊤ 0

0 (K−1x)⊤

)

P∇π′(x)

∣
∣
∣
∣
,

where the scalar values λ1 and λ2 allow to balance between

the two smoothness terms and the data term. P refers to

a 6 × 6 permutation matrix that maps the components of

the gradient in x direction to the first three entries and the

y direction components in the last three entries. The sec-

ond term results in the inverse depth difference between the

neighbouring plane in x direction and the local plane in the

first vector entry and the according difference in y direction

in the second entry. The first term leads to an anisotropic
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TV regularization as used in an optical flow formulation

by Werlberger et al. [36]. The matrix D is a 2 × 2 scaled

diffusion tensor as employed by Werlberger et al. [36] and

Kuschk et al. [25] uses the image contents to guide the reg-

ularization. Given an image I the diffusion tensor at the

location x is given by

DTensor(x) = exp(α|∇I(x)|β) · nn⊤ + n⊥n
⊤
⊥, (16)

with n = ∇I
|∇I| being the gradient direction and n⊥ being

a vector in the orthogonal direction [36]. To further guide

the regularization we use the raycasted confidence c stem-

ming from the TSDF w value at the assumed surface voxel

to perform less regularization in regions with a high inlier

rate leading to the final D matrix

D =
1

1 + τ c
DTensor(x). (17)

The parameters α, β and τ are scalar parameters that we

set to the values 10, 0.8 and 1. The smoothness as a whole

favours similar planes but allows to balance between pure

plane similarity and the inverse depth difference when in-

tersected with a ray.

2.3.2 Data term

As proposed by Gallup et al. [15] and also used by Heise

et al. [18] we use the plane-induced homography [17] to

evaluate the likelihood of local planes approximating the

real surface. The homography from the camera s to the

camera t induced by the plane π = [n⊤ d]⊤ is given by

Hs,t(n, d) =H(Kt,Rt, tt,Ks,Rs, ts,n, d)

=Kt(RtR
⊤
s −

1

d
(tt −RtR

⊤
s ts)n

⊤)K−1
s

=Kt(RtR
⊤
s − (tt −RtR

⊤
s ts)π

′⊤)K−1
s

=Hs,t(π
′) (18)

For the evaluation of the likelihood we use the cameras in

the neighbourhoodN of our currently selected camera i and

their corresponding images Ik with k ∈ N (i). Given the

color images Ii, Ik : (Ω ⊂ R
2) → R

3 and the local plane

map π′ : Ω → R
3 we can evaluate the corresponding data

term with

Edata(π
′) =

1

ZKZw

∑

k∈N (i)

∑

q∈N (x)

wi(x,q) (19)

ρi,k(x, Hi,k(π
′(x))q). (20)

The function ρi,k is the pixel similarity measurement func-

tion between the images Ii and Ik as proposed by Bleyer et

al. [9]

ρi,k(p,q) =(1− α)min(‖Ii(p)− Ik(q)‖1, τcol)+

αmin(‖∇Ii(p)−∇Ik(q)‖1, τgrad). (21)

The weighting function wi is identical to the one proposed

in [18] and weights according to the color similarity of the

pixel within the image Ii and the influence changes with the

distance to the center. The factorsZK andZw normalize the

data term according to the number of images used from the

neighbourhood and the sum of the weighting factors wi for

each of the pixels in the patch.

2.3.3 Optimization

To minimize the overall energy E we couple the data term

Edata and smoothness term Esmooth using a quadratic term

to perform a relaxation of the optimization problem [2, 33]

E(π′) = lim
θ→∞

∫

Ω

Edata(π
′
u) (22)

+
θ

2
(π′

u − π
′
v)

2 + Esmooth(π
′
v) dx. (23)

In the limit the difference between πu and πv has to be

zero otherwise the difference would dominate the energy.

The coupling simplifies our optimization problem and al-

lows sampling of the data term given a smoothed πv . For a

fixed πu we have to solve a ROF subproblem. The θ param-

eter is changed multiplicatively after each iteration and we

alternate between the two sub-problems keeping the other

parameter fixed.

Fixed π′
u, solve for π′

v:

At the first sight it might not be obvious that we can re-

cast equation (15) combined with a quadratic term into an

anisotropic ROF problem, but since equation (15) only in-

volves linear terms we can stack the terms into one 8 × 6
matrix A leading to the anisotropic TV of one linear term

with the gradient ∇π′ as parameter. We dualize our prob-

lem following Chambolle and Pock [10] and introduce a

dual variable p consisting of stacked vectors pi ∈ R
2 with

i ∈ [1, . . . , 4] leading to the dual anisotropic ROF optimiza-

tion problem

arg min
π′

v

max
pi,|pi|≤1

∫

Ω

θ

2
(π′

u − π
′
v)

2 + 〈p,A∇π′
v〉 −

4∑

i=1

δ(pi) dx,

(24)

where δ(q) is the indicator function such that δ(q) = 0 if

|q| ≤ 1 and otherwise∞. Kuschk and Cremers [25] used an

Augmented Lagrangian update scheme to speed up conver-

gence. Similar formulations were also used by Chan et al.

[11] and Afonso et al. [1]. We propose to perform an addi-

tional dualization of the quadratic term using the Legendre-

Fenchel pair f(x) = λ
2x

⊤x ⇔ f∗(p) = 1
2λp

⊤p. We ap-

ply this dualization to one term after the decomposition of
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the quadratic term into a sum of two halves θ
2 (π

′
u − π

′
v)

2 =
θ
4 (π

′
u − π

′
v)

2 + θ
4 (π

′
u − π

′
v)

2 leading to

θ

2
(π′

u − π
′
v)

2 =max
q

θ

4
(π′

u − π
′
v)

2 + (π′
u − π

′
v)

⊤q+
1

θ
q⊤q

(25)

In our case θ will go to infinity and therefore the quadratic

term 1
θ
q⊤q will vanish and it becomes obvious that the for-

mulation is equivalent to the method of the Augmented La-

grangian [11, 1, 25] in the limit up to a scale factor for θ.

We found empirically that the splitting of the quadratic term

and its half-dualization leads to a faster convergence that is

at least as good as the Augmented Lagrangian method and

often slightly better. For optimization we perform gradient

ascent on the dual variables p,q and gradient descent on the

primal variable πv . For further details regarding the primal

dual optimization we refer to Chambolle and Pock [10] and

Handa et al. [16].

Fixed πv , solve for πu:

As in the PatchMatch stereo algorithm by Bleyer et al. [9]

and PMHuber by Heise et al. [18] we also employ a variant

of the PatchMatch algorithm and evaluate several samples

S for each pixel x and keep the best sample s⋆ minimizing

our energy:

s⋆ = arg min
π′

u
∈S(x)

Edata(π
′
u) +

θ

2
(π′

u − π
′
v)

2. (26)

In [9] the authors proposed several sources for the set S(x)
of samples to test. We found that the fixed selection of sam-

ples from the neighbourhood of the previous iteration in-

troduces a significant bias and that in uncertain areas sam-

ples get propagated from a fixed direction. Bleyer et al. [9]

avoided this problem by changing the traversal and prop-

agation direction in the images. Our fully parallel imple-

mentation circumvents this problem by selecting a set of

samples SRN of randomly chosen neighbours within a cer-

tain neighbourhood. Joined with a small set of completely

random samples SR and the current value from the regular-

ization subproblem Ssmooth the complete set S is given

S = SRN ∪ SR ∪ Ssmooth. (27)

As in most PatchMatch variants we try to randomly refine

the current best particle s⋆ by applying a small perturbation

to the parameters.

While the overall strategy of random sampling and prop-

agation is very successful, we have found out that a huge

number of samples is necessary for finding the local op-

tima. Further the propagation should be faster if particles

are closer to their local optimal configuration e.g. best local

plane fit. The data term given in equation (20) is difficult to

optimize so that we therefore fall back to the simple sum of

squared distances (SSD) to iteratively optimize the plane pa-

rameters using the Lucas-Kanade [3] algorithm. The image

warping function is given by the plane induced homogra-

phy from equation (18) and we want to optimize our plane

parameter π′. Given the warping function

Ws,t(x, π
′) = Π(Hs,t(π

′)x) (28)

with Π being the perspective division here. We are inter-

ested in minimizing the SSD between our image Ii and the

destination images Id using the linearized expression with

respect to the additive parameters ∆π′

arg min
∆π′

∑

d∈N (i)

∑

x

(Id(Wi,d(x, π
′)) +∇Id

∂Wi,d

∂π′
∆π′ − Ii(x))

2.

(29)

The minimizing step for each iteration is then computed by

[3]

∆π′ = H−1
∑

d∈N (i)

∑

x

J⊤
i,d(Ii(x)− Id(Wi,d(x, π

′)) (30)

with H being the Gauss-Newton approximation of the Hes-

sian H =
∑

d∈N (i)

∑

x
J⊤
i,dJi,d. For solving the system

the Jacobi Ji,d matrix of the plane induced homography

needs to be calculated and applying the chain rule with

x′ = (u v w)⊤ = Hs,t(π
′)x and p = [ u

w
v
w
]⊤ results

in

Js,t =
∂It(Ws,t)

∂π′
=
∂It(p)

∂p

∂Π(x′)

∂x′

∂Hs,t(π
′)x

∂π′
(31)

=∇It

(
1/w 0 −u/w2

0 1/w −v/w2

)

Kt(tt −RtR
⊤
s ts)(K

−1
s x)⊤.

(32)

Having performed a few iterations we treat the optimized

plane π′⋆ just as any other sample and evaluate our original

likelihood function from equation (26). We have found that

this simple KLT refinement speeds up the propagation and

also leads to better local plane approximations, even when

using much smaller patch sizes than the ones proposed in

[9, 18]. To keep the notation uncluttered we omitted an

additional weighting term that incorporates the same pixel

intensity weighting scheme as used by our implementations

data term and a Tikhonov regularization avoiding numerical

issues in low gradient regions. The weighting leads to an ad-

ditional diagonal matrix that needs to be integrated into the

original least squares formulation and the Tikhonov regular-

ization to an addition of a diagonal matrix to the Hessian.

2.4. Pose Optimization

Most reconstruction algorithms assume that the camera

positions are fixed and exact but in reality this is rarely the
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case. Delaunoy et al. [13] showed that also the poses in

many typically used datasets are not completely accurate.

To refine the initial poses we use direct image alignment

as commonly used for Visual Odometry estimation using

RGB-D sensors [34, 30, 21]. We use an forward composi-

tional approach and try to align one image Is : Ω→ R and

it’s corresponding depthmap Ds : Ω → R raycasted from

the TSDFEM volume to the second image It : Ω → R

refining the relative pose Tt,s between the images. In-

stead of using ordinary least squares or iterative reweighted

least squares we employ the recently proposed kernel lift-

ing framework of Zollhöfer et al. [39] and Christopher Zach

[38] for robust estimation

arg min
p

∑

u∈Ω

1

2
ψ(It(Π(KtTt,s(p)Π

−1(u, Ds(u))))− Is(u)
︸ ︷︷ ︸

r(u,p)

)

= arg min
p

min
w

∑

u∈Ω

1

2

(
w2r(u,p)2 + κ2(w2)

)
. (33)

We perform a first order Taylor expansion of the residuals

r(p) as usually done for nonlinear least squares and try to

solve for an optimal step update ∆p ∈ se(3) minimizing

the residuals. Our transformation is then iteratively updated

until convergence

T (p)← T (∆p)T (p), (34)

with T (p) being the exponential mapping relating the Lie

algebra se(3) to the Lie group SE(3). For robustness we use

a smooth truncated quadratic function as described in [38]

for the residual penalizing function ψ resulting in κ2(w2) =
τ
2 (w

2 − 1)2 with τ controlling the point of truncation. For

details and a complete derivation we refer to the paper of

Zach [38] that contains all the details. It is worth mention-

ing that we only optimize the pose between two images and

therefore may introduce misalignments in other views or

only compensate for pose error originating from the first im-

age. Therefore we perform several iterations with randomly

selected neighbouring image pairs too avoid the introduc-

tion large error and bias. Initially we select for each image

its nearest neighbours and build subsets used in the Patch-

Match depth estimation. These subsets have to be below a

certain error in the relative pose refinement and are other-

wise removed. The assumption is that if the direct reprojec-

tion error is very high that these images are either occluded,

differently exposed or completely misaligned.

3. Evaluation

To evaluate the proposed extension of the TSDF with ex-

pectation maximization and the KLT step we generated a

synthetic dataset of a scene containing the Standford Bunny

on a plane. Our dataset contains 60 images of the color

data as well as the depth data and also the exact camera

Figure 6: One color image and depth image of the synthetic

dataset. Phong shaded reconstruction of the scene using a

standard TSDF and our TSDF-EM variant using only the

depth images with 2.5% uniform noise. The EM formula-

tion is clearly able to filter much more of the noise.

poses describing approximately a half circle. In figure 6 a

color and depth image of the synthetic dataset are shown

along with the Phong shaded TSDF reconstructions using

the depth images with 2.5% uniform noise with and without

our EM extension. The reconstruction using the proposed

EM extension is smoother and most of the floor is much bet-

ter reconstructed because the zero isolevel is not pushed out

of the volume. We also compared the synthetic depthmaps

with the raycasted depthmaps from the TSDF reconstruc-

tion and as shown in figure 7 the error is much smaller with

the EM filtering. The positive bias in the histogram comes

from the truncation of the distance function and outliers in

front of the correct value outside of the truncation distance

do not contribute anymore. Therefore outliers behind the

true surface contribute more and push the zero level out-

wards.

−1 0 1 2 3

·10−2

0
0.5
1

1.5
·10−2

TSDF-EM

TSDF

Noiseless

Figure 7: Histogram of the differences between the ground-

truth depthmaps and the raycasted depthmaps from the vol-

ume with and without EM. For both TSDF variants the syn-

thetic depthmaps with 2.5% uniform noise were used.

For the evaluation of the KLT step in PatchMatch we

used 20 image triples and compared the results of our im-

plementation with and without the KLT step against the

ground-truth depth values after each of our 20 iterations.

The percentage of depth errors < 0.025 after each iteration

is shown in figure 8. Already after the random initialization

the percentage of correct matches is much higher and also

the overall inlier rate using KLT is better. The additional

runtime overhead of the KLT step is negligible compared to

the time for the likelihood evaluation for each sample. We

perform at most 3 KLT iterations in our implementation.

The graph in figure 8 shows that identical or even better

results can be achieved even when the overall number of
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PatchMatch iterations is reduced which would significantly

reduce the overall runtime.
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Figure 8: Percentage of pixels with depth | error | < 0.025
after each PatchMatch iteration averaged from 20 different

views of the synthetic dataset with and without the KLT

step. Convergence with the KLT step is much faster and

also the percentage of correct matches is higher.

For evaluation of the complete proposed algorithm we

use the Middlebury Multi-View Stereo benchmark by Seitz

et al. [32]. We applied our algorithm to the full and ring

datasets. The results in terms of accuracy and completeness

can be found in table 1. The table also contains the results

of the algorithms from Furukawa and Ponce [14], Mücke et

al. [28] and Delaunoy and Marc Pollefeys [13].

In figure 9 the ground truth data, two views of the in-

put images and the results for the methods from table 1

are shown. While the smoothing effect of our algorithm

is clearly visible, fine details are still retained. Our method

gives visually pleasing results that are competitive with the

top performing methods.

Figure 9: Left to right and top to bottom: two of the in-

put images and ground truth data, reconstruction results as

presented in the multi-view Middlebury benchmark for the

method of Furukawa [14], Mücke [28] and the proposed

method. In the middle row the reconstructions for the full

dataset and at the bottom row the results for the ring dataset

are shown.

The result for the Dino ring dataset in the brackets in the

table 1 was the evaluation result when vertices inside the

reconstruction were removed. Images of the reconstruction

for the Dino are shown in figure 10 along with the ground

truth data and the reconstruction results from Furukawa et

al. [14].

Figure 10: Left to right: the ground truth data, reconstruc-

tion results for the full dino dataset for the method of Fu-

rukawa [14] and the proposed method.

For the evaluation we only used triples of images and we

took triple combinations of the four closest images to our

reference image. The patch size varied between 7 and 16
pixels. Our completely parallel implementation of the algo-

rithm runs on a single GPU. On a NVidia GTX 770 the ring

datasets took about 25 minutes to complete and for the full

datasets it took approximately 2 hours and 40 minutes. As

previously mentioned we actually perform several iterations

of all images at different scales and therefore the runtime is

also highly dependent on the scale space settings and the

image size. We mainly used three pyramid levels with scal-

ing factors 0.5, 1.0 and 1.5, where the scaling affected only

the images and the camera intrinsics but the TSDF-EM vol-

ume size did not change.

4. Conclusion

We have presented an algorithm that performs an itera-

tive refinement of depth and normal maps that are raycasted

and fused using a TSDF-EM volume. Our algorithm uses a

variational PatchMatch method with an additional KLT re-

finement step, that integrates the current confidence in the

depth value estimation, and tries to directly minimize the

intensity difference using a local plane approximation in

image space. Camera poses are refined using a direct im-

age alignment step combined with recently proposed kernel

lifting framework [39, 38].

There are many opportunities to improve the presented

algorithm by using more information for guiding the regu-

larization e.g. information from the depth and normal-maps

for finding sharp edges and discontinuities of the model.

Consideration of occlusions within the selected images for

refinement and using more images could improve the data

term quality.

One limitation of the current approach is that the regular-

ization is only taking place in the image space and therefore

occluded areas are not regularized at all. Additional reg-

ularization operating on the whole volume could possibly

alleviate this issue.
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Temple Temple Ring Dino Dino Ring

Acc. Comp. Acc. Comp. Acc. Comp. Acc. Comp.

Furukawa [14] 0.49 99.6 0.47 99.6 0.33 99.8 0.28 99.8

Proposed method 0.45 99.2 0.56 99.2 0.35 99.5 1.05 ( 0.46) 99.2 (98.7)

Mücke [28] 0.36 99.7 0.46 99.1 - - - -

Delaunoy [13] - - 0.51 99.1 - - 0.51 98.7

Table 1: Results for the Multiview Middlebury Benchmark [32].
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