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Abstract

In this paper, we propose a new approach to generate

oriented object proposals (OOPs) to reduce the detection

error caused by various orientations of the object. To this

end, we propose to efficiently locate object regions accord-

ing to pixelwise object probability, rather than measuring

the objectness from a set of sampled windows. We formu-

late the proposal generation problem as a generative proba-

bilistic model such that object proposals of different shapes

(i.e., sizes and orientations) can be produced by locating the

local maximum likelihoods. The new approach has three

main advantages. First, it helps the object detector han-

dle objects of different orientations. Second, as the shapes

of the proposals may vary to fit the objects, the result-

ing proposals are tighter than the sampling windows with

fixed sizes. Third, it avoids massive window sampling, and

thereby reducing the number of proposals while maintain-

ing a high recall. Experiments on the PASCAL VOC 2007

dataset show that the proposed OOP outperforms the state-

of-the-art fast methods. Further experiments show that the

rotation invariant property helps a class-specific object de-

tector achieve better performance than the state-of-the-art

proposal generation methods in either object rotation sce-

narios or general scenarios. Generating OOPs is very fast

and takes only 0.5s per image.

1. Introduction
Object detection is one of the main research problems

in computer vision in recent years. In order to detect

and recognize the objects in an image, the sliding window

paradigm is commonly used in the state-of-the-art detectors.

However, exhaustively searching for objects across different

sizes, positions and aspect ratios requires about 106 times

predictions per image, which restricts the detection tasks

from using more sophisticated classifiers.

The object proposal technique (or “objectness estima-

tion”) is proposed recently to cope with this barrier. Instead

of directly recognizing objects in the images, a small set

of object proposals (103 to 104 image windows) are first

produced to cover most of the regions that are likely to con-

tain an object. Taking advantages of recent efforts on this

Figure 1: Examples of oriented object proposals (OOPs).

Blue boxes are the ground truth, and green boxes are the

OOPs. The proposed method is able to tightly locate objects

of different orientations and achieve better detection perfor-

mance, as OOPs reduce the ambiguity caused by orientation

variation (see the realigned images with green borders).

topic [1, 26, 10, 2, 25, 6, 32], several object detection algo-

rithms use object proposals as input to significantly speed

up the detection process, including the top detectors [28, 15]

in the PASCAL VOC challenge [11].

Notwithstanding the demonstrated success, how propos-

als may help improve object detection performance is still

being explored. An important problem, which has not been

considered by existing proposal methods, is object rotation.

Most of the object detectors are trained on a dataset with

a small number of object orientations. Thus, objects with

larger orientation differences may not be detected at run-

time, as object appearances may vary largely due to ori-

entation changes (see Figure 1). The traditional solution

to this problem is to specifically train multiple classifiers at

different orientations [18]. This, however, may significantly
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increase the computation time and the number of false pos-

itives. In addition, larger bounding boxes may be produced

to cover rotated objects (e.g., the ground truth boxes in Fig-

ure 1), which may increase background distraction.

In this paper, we propose a new approach to generate ori-

ented object proposals (OOPs), which reduces object ambi-

guity and thus leads to better detection performance. In-

stead of measuring objectness of a set of windows, we take

a different approach to generate proposals according to pix-

elwise objectness. Our idea is to actively search for objects

across different positions, scales and aspect ratios to avoid

exhaustive scoring every window. (The number of windows

can be large especially when orientation is taken into con-

sideration.) We formulate the object proposal generation

problem as a generative probabilistic model, where the like-

lihood function corresponds to how likely a pixel belongs

to an object. In order to describe the objectness of a pixel

without bounding boxes, we introduce a background prior,

together with a gradient map and structured edges [9], to

construct the likelihood function. The objects are searched

and located as the local maximum log-likelihood and the

shape of the object is described by a full covariance ma-

trix. The optimum position and shape are obtained by an

efficient iterative searching algorithm.

Our new formulation of the object proposal generation

problem leads to three main advantages. First, as OOPs can

capture objects of different orientations, they help the detec-

tors efficiently recognize them. Second, OOPs have tighter

bounding boxes, as their positions and sizes may vary to

fit the objects. Third, the number of proposals needed to

achieve a high recall is reduced, as the required number of

initial positions/sizes is significantly smaller (e.g., 5K vs.

100K [1]) due to the proposed efficient searching mecha-

nism. Figure 1 shows some examples of our approach. The

detection of these objects can be challenging even if we feed

the detector with ground truth bounding boxes, due to ob-

ject orientation variations. In contrast, OOPs are invariant to

rotation, making it easier for the detector to detect. Exten-

sive experiments on the PASCAL VOC 2007 dataset show

that the proposed sampling strategy performs better than the

state-of-the-art window scoring methods. We further exam-

ine the rotation invariant property of our approach on the

Freestyle Motocross dataset [27] with two experiments. The

first experiment shows that the class-specific object detec-

tor [14] performs better in terms of accuracy and efficiency

(fewer classifiers) when fed with our proposals than with

those from the state-of-the-art methods in in-plane object

rotation scenarios. The second experiment shows that when

training a class-specific object detector [14] with arbitrarily

oriented objects, our method is still able to achieve signif-

icant better detection rates among the state-of-the-art pro-

posal methods. The proposed method is fast and takes only

0.5s to process one image.

2. Related Work

Object proposal methods aim at efficiently generating a

set of windows on an image for object detection. Depending

on how the proposals are generated, object proposal meth-

ods can be roughly divided into window scoring methods

and superpixel grouping methods. They are summarized as

follows. (See [17] for a comprehensive review.)

Window scoring methods. They generate object pro-

posals by ranking the objectness scores of a bunch of candi-

date windows. Alexe et al. [1] first sample a set of candidate

windows according to a saliency map, and then measure

objectness scores of the candidate windows by combining

different cues, including multi-scale saliency, color contrast

and superpixels straddling. Zhang et al. [31] and Rahtu

et al. [24] extend this idea to use cascaded ranking SVM

and structured output ranking, respectively, to combine dif-

ferent cues. Recently, Cheng et al. [6] propose an efficient

method to generate object proposals. They use a simple

linear classifier with the learned normed gradient features

to measure the objectness scores of the candidate windows

obtained from sliding windows. Zitnick and Dollár [32]

also sample candidate windows using sliding windows, but

then compute the objectness score by measuring the num-

ber of contours completely enclosed within a bounding box.

These scoring methods typically run very fast and are more

suitable for real-time detections. However, as they quan-

tize the initial bounding boxes into fixed sizes, they may

not produce accurate bounding boxes with a small number

of proposals.

Superpixel grouping methods. They aim at localizing

the objects by combining multiple superpixels into object

proposals. Gu et al. [16] first propose to recognize ob-

jects using bounding box proposals obtained from hierar-

chically grouped superpixels. Carreira et al. [3] and Endres

et al. [10] apply binary foreground-background segmenta-

tion on each initialized seed region. While [3] solves a con-

strained parametric min-cut (CPMC) problem to produce a

set of proposals, [10] combines a set of cues to train a re-

gressor to predict if a group of segments belong to an ob-

ject. Uijings et al. [26] propose a learning-free approach to

produce proposals by greedily merging adjacent superpixels

according to low-level features. Two works [25, 21] extend

this idea, where Rantalankila et al. [25] further considers

global consistency, and Manén Manén et al. [21] applies a

randomized Prim’s algorithm for superpixel merging. Ar-

belaez et al. [2] propose a fast normalized cut hierarchical

segmenter to combine multi-scale regions into object pro-

posals. Krhenbhl and Koltun [19] train classifiers to place

seeds in the image by computing level sets in geodesic dis-

tance transform. While these methods may produce object

proposals that well fit the objects due to the use of superpix-

els, they usually have a much higher processing time than

the window scoring methods.
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We formulate the proposal generation problem in a dif-

ferent way than both types of methods. Our OOP approach

can be conceptually regarded as a combination of both, as

we start with some seed bounding boxes and each of them

would gradually adapt to the object region. Although the

proposed method does not rely on superpixels, our efficient

greedy localization of object regions shares a similar princi-

ple to the greedy superpixel merging algorithm. As a result,

our approach is both efficient and accurate.

3. The Proposed Approach

In this section, we present how our approach adaptively

locate objects. Given a set of initial seed bounding boxes

on an image I , each of them would actively search for ob-

jects. The final proposals are produced by determining the

positions and shapes of the local maximums of a likelihood

function. For a bounding box centered at θ, its shape can be

approximated by an ellipse described by a full covariance

matrix C. The log-likelihood of a certain observed set of

features for this bounding box can be written as:

logL(θ, C) =

M
∑

m=1

log p(fm(θ, C)), (1)

where M is the total number of features within a local area.

p(fm) is the probability density function. fm is the inde-

pendent feature that describes an object and can be consid-

ered as a stochastic variable. The maximum of Eq. (1) can

be achieved by maximizing the likelihood of a set of neigh-

bor pixels [13, 23]:

M
∑

m=1

log p(fm(θ, C)) ∝
N
∑

n=1

lnK(xn; θ, C), (2)

where ln is the likelihood of a pixel belonging to an object.

xn is the pixel position. K is the kernel describing the el-

liptical region. N is total number of pixels within a finite

neighborhood of the kernel center. Our goal is to find a lo-

cal position θ and shape C that maximize the log-likelihood

function in Eq. (1) to estimate an object proposal. To do

this, we first define object likelihood ln.

3.1. Object Features

In [1], the distinctive characteristics of an object are ex-

plored. Cheng et al. [6] and Zitnick and Dollár [32] further

show that the most effective feature for locating an object

is a well-defined closed boundary (i.e., edges). Edge infor-

mation is also suitable for our case, as edge pixels likely

belong to some objects. However, using only edge infor-

mation is not enough to locate the entire object as edges

do not describe object interiors, and the searching would be

stacked at textured regions if their densities are not contin-

uous. In addition, we would expect the features to be able

to at least partially represent most of the object regions so

that no objects are missed. Hence, techniques that focus on

(a) (b) (c) (d)

Figure 2: Object confidence maps: (a) two input example

images, (b) the background prior images, (c) the combined

images of the three confidence maps, and (d) the locality-

aware confidence maps of the red bounding boxes.

certain objects, e.g., saliency map, are not appropriate. For

the sake of efficiency, we propose to use a background prior

to address this problem.

3.1.1 Background Prior

The background prior has been shown to be effective in

object-related tasks, such as salient object detection [29,

30]. It suggests that most pixels near to the image bound-

aries unlikely belong to salient objects. The same is true

for object proposal generation that majority of the colors

appeared at image boundaries unlikely belong to the colors

of an object in the image. Based on this assumption, we

propose a histogram-based method as follows.

We first extract a histogram Hbg of the image boundary

region, computed as HI −Hir, where HI is the histogram

of image I and Hir is the histogram of the inner region of I
(size is computed as 0.9× size of I) . The object weight of

pixel n is then computed as:

lbgn = 1− 1

kbg

B
∑

b=1

G(Ib, In) ·Hbg(b), (3)

where kbg is the normalization factor. B is the total number

of bins. In is the color of pixel n and Ib is the correspond-

ing quantized color of bin b. G(Ib, In) = exp(−‖Ib−In‖2

2σ2 )
is the Gaussian function to control the influence of color

distance. To obtain a more informative and distinct color

histogram, we apply the strategy in [5] to get a quantized

color histogram constructed by the most frequent colors.

Figure 2b shows two results of the background prior.

This approach is able to assign non-zero values to most

of the foreground pixels. More importantly, it serves as a

complement to the edges, to provide reliable interior object

information. Furthermore, it is able to produce a continu-
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ous likelihood map to prevent bounding boxes emphasizing

only on textured regions.

3.1.2 Final Object Likelihood

We combine the gradient map lg and the structured edges

le [9] to obtain the final object likelihood. The structured

edge detector is proposed to efficiently detect object bound-

aries, and is considered as a complement to the gradient

map here to reduce edge errors. The final weight of pixel n
is computed as:

ln = a1l
bg
n + a2l

e
n + a3l

g
n, (4)

where a1, a2, a3 are the normalized weights learned from

the training set of PASCAL VOC 2007 using linear regres-

sion to maximize the likelihood in ground truth regions1.

Figure 2c shows the resulting confidence maps. We can

see that the objects in the two images are well described

by the object features. However, if a bounding box tries to

cover the regions with highest likelihood, it may become

too large to cover them as one object due to the multiple lo-

cal maxima around the initial position (e.g., covering both

the dog’s and the man’s heads in the first row of Figure 2).

To prevent all bounding boxes being too large, we intro-

duce locality-awareness to the likelihood function. Given

the size of an initial seed bounding box Sbb, we only con-

sider the densities with the same colors as those within a

local region of 3 × Sbb. As a result, the bounding box is

constrained to cover local maxima, while it can still be able

to cover a large region with similar colors. Figure 2d shows

the locality-aware confidence maps. As can be seen, even

multiple objects (the second row of Figure 2d) can be sep-

arated if an initial bounding box is located within one of

them. Due to the proposed background prior, this sepa-

rated region is assigned with non-zero continuous values,

and thus it can be easily located by the following algorithm.

3.2. Finding Local Maximum Likelihood

Once the likelihood function is determined, finding the

local maximum likelihood is equivalent to seeking the mode

in the kernel density function. Mean-shift [7] is arguably

the best known algorithm for this purpose, but it is typically

limited to estimating the optimum position. To obtain the

position θ and shape C that maximize the log-likelihood

function in Eq. (2), we use a two-step iterative algorithm

similar to [8, 4]. For each iteration i, we use a gradient

descent procedure to find better θ and C. Our algorithm

iterates towards the gradient direction and converges always

to a local maximum. According to the Jensen’s inequality

and Eq. (2), we have:

log

N
∑

n=1

lnK(xn; θ, C) ≥
N
∑

n=1

log lnK(xn; θ, C). (5)

1The learned weights are: a1 = 0.46, a2 = 0.33, a3 = 0.21.

We let:
N
∑

n=1

log lnK(xn; θ, C) =

N
∑

n=1

log

(

lnK(xn; θ, C)

τn

)τn

,

(6)
where τn are arbitrary constants that satisfy

∑N
n=1

τn = 1
and τn ≥ 0. The maximum of Eq. (5) can be achieved if

this equality sign is satisfied.

Given the current states θi and Ci, the first step is to

keep θi and Ci fixed and to find τn to maximize Eq. (6).

The equality sign in Eq. (6) can be met if:

τn =
lnK(xn; θ

i, Ci)
∑N

n=1
lnK(xn; θi, Ci)

. (7)

In the second step, we keep τn fixed to maximize Eq. (6),

which only needs to minimize the part that depends on the

configuration of θ and C:

r(θ, C) =

N
∑

n=1

τn logK(xn; θ, C). (8)

Local Optimum Position: For K(xn; θ, C) is a Gaus-

sian kernel, the θ that achieves local maximum in the cur-

rent iteration can be estimated by ∂
∂θ r(θ, C) = 0:

θi+1 =

N
∑

n=1

τnxn

=

∑N
n=1

xnlnK(xn; θ
i, Ci)

∑N
n=1

lnK(xn; θi, Ci)
.

(9)

The local optimum position θi+1 is recursively estimated

from the current position θi. As K is a Gaussian kernel,

this estimation is equivalent to mean-shift [4].

Local Optimum Shape: Similarly, the covariance ma-

trix C that describes the local maximum shape with a Gaus-

sian kernel assumption can be obtained by:

Ci+1 =
N
∑

n=1

τn(xn − θi)(xn − θi)T . (10)

However, the local optimum shape cannot be appropriately

estimated as the maximum likelihood cannot be compared

across different Gaussian kernel scales. The local maximum

value decreases with a larger C. This bias can be eliminated

by ‘γ-normalization’, which is typically used to select the

best filtering scale [20]. The unbiased likelihood function

can be obtained by re-normalizing kernel K(xn; θ, C), so

that the total mass of the kernel within the area of C is equal

to one:
Kγ(x; θ, C) = |C|γ/2K(x; θ, C). (11)

This normalization only changes the second step (Eq. (8)),

which now becomes:

r(θ, C) =

N
∑

n=1

τn log |C|γ/2K(xn; θ, C). (12)

According to ∂
∂C r(θ, C) = 0, we have the covariance up-

date equation:

4283



Ci+1 = β
N
∑

n=1

τn(xn − θi)(xn − θi)T , (13)

where β = 1/(1− γ). For different kernels, β should be set

differently to obtain an unbiased solution [22]. According

to the cut-off range of our Gaussian kernel, where pixels

beyond 3-sigma from the kernel center are neglected in our

implementation, the unbiased solution can be obtained by

setting β ≈ 1.5.

3.3. Bounding Box Approximation

With the obtained full covariance matrix C, we now ap-

proximate it by an elliptical region and then a bounding box.

We first start from the case of an axis-aligned ellipse (i.e.,

the x- and y-axes are uncorrelated and the input data have a

zero covariance) with the lengths of its two axes being 2σx

and 2σy . It can be defined as:
(

x

σx

)2

+

(

y

σy

)2

= s, (14)

where s is a coefficient determining the size of the ellipse.

In our implementation, since the input data are distributed

in the form of a rectangle, s is set to 3 to obtain an approxi-

mated ellipse with a size similar to a rectangle. In this case,

σx and σy can be defined as the standard deviations of the

data, and the lengths of the axes can be computed as 2σx
√
s

and 2σy
√
s, which may also be approximated as the width

and height of the bounding box.

In case if the data are correlated, the above definition

holds if there is a temporary coordinate system in which the

ellipse becomes axis-aligned. The variances of the data are

parallel to the new axes and can be described by the eigen-

vectors/eigenvalues of the covariance matrix. As a result,

the lengths of the major and minor axes are computed as:

Amajor = 2
√

sλ1, Aminor = 2
√

sλ2, (15)

where λ1 and λ2 are the eigenvalues of the covariance ma-

trix. The rotation angle can be obtained by:

α = arctan
v1(y)

v1(x)
, (16)

where v1 is the eigenvector corresponding to the largest

eigenvalue of the covariance matrix.

3.4. Implementation

Having discussed how an initial bounding box locates

the object in a local area, we now discuss some implemen-

tation issues. Given an image, we first seed some initial

bounding boxes at different positions with different scales.

Seeds are placed on a regular grid at each scale. Other seed-

ing approaches like learning-based seeding [19] may also be

used. The total number of scales for both width and length

is 5. As the bounding boxes that are very long or tall are

less likely to contain an object, we neglect the scales that

Algorithm 1 Our Proposal Localization Algorithm.

Input: the object likelihood ln and the initial bounding

boxes (i = 0) with positions θi and shape Ci.

for each bounding box do

1: Compute the locality-aware likelihood – Eq. (4).

2: for i < imax do

3: Compute τn – Eq. (7).

4: Estimate new position θi+1 – Eq. (9).

5: Estimate new shape Ci+1 – Eq. (13).

6: Compute ellipse & bounding box – Eq. (15), (16).

7: if (the change of the bounding box is small) then

8: Store the new bounding box.

9: Break.

10: end if

11: end for

end for

Compute objectness score for each bounding box.

Run NMS to remove the redundant bounding boxes.

|Scalew − Scalel| > 2. The initial sizes are set to rela-

tively small, ranging from 25 to 150 (divided equally to 5

scales of widths or lengths), to allow flexible searching for

either large or small objects. (It is more likely to enlarge

than to shrink a bounding box, as a large initial bounding

box may contain multiple local maxima.)

Once the bounding boxes are initialized, each of them

would recursively search for the local maximum. The max-

imum number of iterations is set to 30, but the iteration may

stop if the change of a bounding box is small. The typical

number is around 15 to 20 iterations. The final position and

shape of a bounding box form a final object proposal. As the

proposed approach is not a scoring approach, we adopt the

scoring function of [32] to rank the bounding boxes. Other

scoring approaches [1, 6] may be used. Finally, we apply

Non-Maximum Suppression (NMS) [14] to remove the re-

dundant bounding boxes (IoU larger than 0.8). Algorithm 1

summarizes the proposed method.

4. Experimental Results
In this section, we quantitatively and qualitatively eval-

uate the proposed OOP approach. We have implemented it

in C++ and tested it on a PC with an i7 3.4GHz CPU and

8GB RAM. It takes on average 0.5s to process a 500× 400
image, with the iteration process taking about 0.4s. We first

evaluate the detection rate of the proposed localization algo-

rithm, and then test the detector performance when fed with

OOPs on scenarios with in-plane object rotations. Based

on the results of a recent comprehensive evaluation [17],

we select the top three window scoring methods (Object-

ness [1], Bing [6], EdgeBoxes [32]) and the top three super-

pixel grouping methods (Selective Search [26], MCG [2],

Geodesic [19]) for comparison. For fairness, we use the
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implementations provided by the authors with default pa-

rameter settings.

4.1. Detection Rate Comparison
We compare the detection rate of the proposed method

with the state-of-the-art methods according to the evalua-

tion results of [17] on the PASCAL VOC 2007 dataset [12],

which consists of 4,952 test images. Note that the detection

rate of the proposed OOP method is computed by ignoring

orientation in the algorithm, as the ground truth does not

consider object rotation. The effectiveness of the rotation

invariant property is examined in Section 4.2.

As a high detection rate is the most important property

of a proposal method, we first evaluate the detection rate

with respect to the number of proposals at intersection over

union (IoU) above 0.5, as shown in Figure 3a. OOP con-

sistently outperforms all the window scoring methods (solid

lines) across different numbers of proposals, especially with

a small number of proposals due to the active searching

strategy. We further show the detection rate at IoU above

0.8 in Figure 3b. The superpixel grouping methods (dashed

lines) generally perform well at this threshold, as they typi-

cally produce tight bounding boxes due to the use of super-

pixels. However, most of them are slow (Table 1) and not

able to cover most of the objects even with a large number

of proposals (e.g., above 1000), as shown in Figure 3a. As

window scoring methods (solid lines) are restricted by the

quantized window sizes, they may not produce tight bound-

ing boxes. Edgeboxes [32] produces relative tighter ones, as

it utilizes an exhaustive refinement after window sampling.

However, this process is slow and thus it can only be applied

to a small number of bounding boxes to maintain efficiency.

Our OOP approach gets rid of massive window sampling,

and our efficient searching algorithm enables windows to fit

objects with a relative large range of scales and positions.

As a result, OOP performs slightly better than Edgeboxes

at IoU above 0.8.

Figures 3c and 3d show the detection rate with respect to

the IoU threshold for 100 and 1000 proposals. Like in Fig-

ure 3a, OOP performs well when using a small number of

proposals. When using 1000 proposals, its performance is

still comparable to the state-of-the-arts. Most of the window

scoring methods show good results at low IoU thresholds

but drop dramatically as the threshold increases. The super-

pixel grouping methods have relatively lower detection rates

at low IoU thresholds. However, they only drop gradually.

Although OOP does not perform as well as the superpixel

grouping methods at high IoU thresholds, it achieves better

or comparable performance for a wide range of thresholds,

which is desirable for most practical applications.

Figure 3 also shows the performances of individual cues

that we use. We observe that none of the three cues alone

can produce a result matching the combined one. The back-

ground prior (OOP-BG) achieves very good performance,
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Figure 3: Quantitative comparison of the state-of-the-art

methods. Solid lines refer to window scoring methods, and

dashed lines refer to superpixel grouping methods. The first

row shows the detection rate with respect to the number of

proposals at IoU above 0.5 and 0.8. The second row shows

detection rates with respect to the IoU threshold, using 100

and 1000 proposals.

Method OOP Obj[1] Bing[6] EB[32] SS[26] MCG[2] GOP[19]

Time (s) 0.5 3 0.2 0.3 10 30 1.2

Table 1: Comparison on the computation time.

as it produces continuous likelihood. Structured edges

(OOP-SE) and gradient (OOP-GR) cannot produce object

response within object interior. Hence, only large bounding

boxes (obtained by re-scaling the confidence map) are able

to locate objects as the re-scaled maps are more compact

and relatively continuous (similar to Bing [6]).

Table 1 compares the computation time of the methods.

As can be seen, OOP has a comparable running time to the

state-of-the-art methods due to our efficient maximum like-

lihood locating strategy. The qualitative results are shown

in Figure 4.

Overall, we have shown in this subsection that the pro-

posed approach performs better or comparably to the ex-

isting methods, without considering the rotation invariant

property. This property is demonstrated to be important to

the object detection process in the next subsection.
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Figure 4: Qualitative evaluation of the proposed method. The red bounding boxes are the produced results closest to the

ground truth, and the green boxes further consider orientation based on the red boxes. The blue boxes are the ground truth.

Results are shown with 1000 object proposals.

4.2. Object Rotation Evaluation

We evaluate the rotation invariant property by conduct-

ing two experiments, training the detector with fixed num-

ber of orientations and arbitrary orientations to study how

orientation affects detection performance.

Training with a fixed number of orientations. We first

test the generated proposals using the DPM detector [14]

on the Freestyle Motocross dataset [27], which consists of

100 images with in-plane rotated motorbikes for testing, 65

motorbike images (all without rotation) as positive samples

and 900 random images as negative samples for training.

We divide the evaluation into 3 tasks. Each task trains mul-

tiple classifiers with a different number of orientations by

rotating the positive training data to 1, 4 and 16 orientations

to detect rotated objects. All classifiers are trained individu-

ally with the corresponding oriented positive samples. Each

proposal method is tested by feeding its proposals to the

trained classifiers. For OOP, we crop the image against the

Method OOP Obj[1] Bing[6] EB[32] SS[26] MCG[2] GOP[19]

mAP, 1 ori. 55.5 25.4 24.2 26.6 28.7 29.2 28.3

mAP, 4 ori. 93.1 54.9 54.1 57.7 59.5 60.4 59.7

mAP, 16 ori. 93.3 81.4 78.9 84.5 85.3 86.2 85.5

Table 2: Detection results on the Freestyle Motocross

dataset with respect to the number of orientations used to

train the classifiers. The proposed method consistently out-

performs the state-of-the-art methods when encountering

in-plane rotation, and is able to cover most of the cases

when using only 4 orientations to train the classifiers.

bounding box and then rotate it to the closest axis before

testing2.

Table 2 shows the detection results on the Freestyle Mo-

tocross dataset. All the compared methods perform poorly

2For 1 orientation, the bounding box will be rotated to align with the

vertical or horizontal axis, but the detector is trained only using the hori-

zontal orientation.
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at 1 orientation, where they achieve lower than 30 mAP.

This is because most of the motorbikes contain some de-

gree of rotation and are treated as unseen objects by the

detector. OOP achieves a much higher mAP, as the objects

with a small amount of rotation (within [−45◦, 45◦]) can

be placed in the correct orientation (i.e., horizontal). With

4 orientations, OOP is able to detect most of the objects.

This is because most the object orientations can be easily

approximated by these 4 orientations. As a result, the per-

formance of 16 orientations for OOP is very similar to 4

orientations. Even with 16 orientations, the state-of-the-art

methods are not able to achieve comparable detection rates

as ours. One reason is that the rotated objects may still not

be fully represented by 16 orientations. Another reason is

that the bounding boxes produced by the other methods are

not tight for rotated objects.

Training with arbitrary orientations. The previous ex-

periment trains multiple classifiers with a fixed number of

orientations. However, the orientation of an object can be

arbitrary in practice. In this experiment, we rotate the posi-

tive training samples randomly, ranging between [1◦, 360◦],
to simulate a general scenario. Only one classifier is trained

using 65 positive samples of arbitrary orientations and 900

negative samples, which have a similar statistic as a sin-

gle category in a large dataset, such as PASCAL VOC

2007. Unlike the previous experiment, we rotate the ground

truth bounding boxes to the closest axis here when training

the detector for OOP. Obviously, this training process can

only be used with oriented proposals, where the detector is

trained with the 4 axis orientations.

Table 3 shows the detection performance of training with

arbitrary orientations. OOP outperforms all the existing

proposal methods in this more general evaluation. It ef-

fectively reduces object ambiguity caused by orientation

changes in both training and testing. In addition, the ob-

ject appearance can be learned and detected very easily with

much less training data (i.e., training data needs to cover 4

orientations vs. arbitrary orientations). The training process

of OOP in this experiment is similar to the last experiment

using four orientations for training. The main differences

are this experiment contains much less positive data (i.e.,

65 vs. 4×65) and only one classifier is trained for each

compared method (more efficient and practical). Figure 5

shows some results on the Freestyle Motocross dataset. For

the sake of clarity, we only show the bounding boxes from

the best window scoring method (i.e., EdgeBoxes [32]), the

best superpixel grouping method (i.e., MCG [2]), and OOP.

As can be seen, handling in-plane rotation is beyond the ca-

pability of the existing methods. The bounding boxes gen-

erated by the proposed method are able to fit the objects of

different orientations well.

Method OOP Obj[1] Bing[6] EB[32] SS[26] MCG[2] GOP[19]

mAP 85.2 64.8 63.3 71.5 69.6 72.1 70.5

Table 3: Detection results with training with arbitrary orien-

tations on Freestyle Motocross. The proposed OOP reduces

the object ambiguity in both training and testing, and thus

significantly outperforms the existing methods.

Figure 5: Examples of the Freestyle Motocross dataset. The

green, pink and yellow bounding boxes are the best pro-

duced results of the proposed method, MCG [2] and Edge-

Boxes [32], respectively. The proposed method is able to

handle in-plane rotation of the motorbikes well.

5. Conclusion and Limitations

In this paper, we propose a new approach to gener-

ate oriented object proposals to reduce the detection errors

caused by object orientation changes. We formulate the

proposal generation problem as a generative probabilistic

model, where the location, size and orientation of each ob-

ject proposal can be determined by finding the local maxi-

mum likelihood. The likelihood function is constructed by

a background prior as well as edge information. An iter-

ative local maximum searching algorithm is used to effi-

ciently locate objects of different shapes. Experiments show

that the proposed method not only outperforms the state-

of-the-art window scoring methods, but also resolves the

object rotation problem in proposal estimation. One limita-

tion of the proposed method is that it requires training with

oriented ground truth to obtain superior detection perfor-

mance, which is laborious than annotating regular bound-

ing boxes. Although R-CNN [15] provides great flexibility

to adapt with different object proposals, it is inaccurate to

determine which box is used by comparing the IoU between

OOPs and regular ground truth. Our future work includes

annotating a large dataset and then exploring the effective-

ness of OOP on such a large dataset.
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