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Abstract

We investigate the importance of parts for the tasks of

action and attribute classification. We develop a part-based

approach by leveraging convolutional network features in-

spired by recent advances in computer vision. Our part

detectors are a deep version of poselets and capture parts

of the human body under a distinct set of poses. For the

tasks of action and attribute classification, we train holistic

convolutional neural networks and show that adding parts

leads to top-performing results for both tasks. We observe

that for deeper networks parts are less significant. In addi-

tion, we demonstrate the effectiveness of our approach when

we replace an oracle person detector, as is the default in the

current evaluation protocol for both tasks, with a state-of-

the-art person detection system.

1. Introduction

For the tasks of human attribute and action classification,

it is difficult to infer from the recent literature if part-based

modeling is essential or, to the contrary, obsolete. Consider

action classification. Here, the method from Oquab et al.

[21] uses a holistic CNN classifier that outperforms part-

based approaches [20, 30]. Turning to attribute classifica-

tion, Zhang et al.’s CNN-based PANDA system [33] shows

that parts bring dramatic improvements over a holistic CNN

model. How should we interpret these results? We aim to

bring clarity by presenting a single approach for both tasks

that shows consistent results.

We develop a part-based system, leveraging convolu-

tional network features, and apply it to attribute and ac-

tion classification. For both tasks, we find that a properly

trained holistic model matches current approaches, while

parts contribute further. Using deep CNNs we establish new

top-performing results on the standard PASCAL human at-

tribute and action classification benchmarks.

Figure 1 gives an outline of our approach. We compute

CNN features on a set of bounding boxes associated with

the instance to classify. One of these bounding boxes cor-

responds to the whole instance and is either provided by an

Figure 1: Schematic overview of our overall approach. (a) Given

an R-CNN person detection (red box), we detect parts using a

novel, deep version of poselets (Section 3). (b) The detected

whole-person and part bouding boxes are input into a fine-grained

classification engine to produce predictions for actions and at-

tributes (Section 4).

oracle or comes from a person detector. The other bounding

boxes (three in our implementation) come from poselet-like

part detectors.

Our part detectors are a novel “deep” version of pose-

lets. We define three human body parts (head, torso, and

legs) and cluster the keypoints of each part into several dis-

tinct poselets. Traditional poselets [1, 3] would then oper-

ate as sliding-window detectors on top of low-level gradient

orientation features, such as HOG [7]. Instead, we train a

sliding-window detector for each poselet on top of a deep

feature pyramid, using the implementation of [13]. Unlike

HOG-based poselets, our parts are capable of firing on diffi-

cult to detect structures, such as sitting versus standing legs.

Also, unlike recent deep parts based on bottom-up regions

[31], our sliding-window parts can span useful, but inhomo-

geneous regions, that are unlikely to group together through

a bottom-up process (e.g., bare arms and a t-shrit).

Another important aspect of our approach is task-specific

CNN fine-tuning. We show that a fine-tuned holistic model

(i.e., no parts) is capable of matching the attribute classifi-

cation performance of the part-based PANDA system [33].

Then, when we add parts our system outperforms PANDA.

This result indicates that PANDA’s dramatic improvement

from parts comes primarily from the weak holistic classi-

fier baseline used in their work, rather than from the parts

themselves. While we also observe an improvement from
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adding parts, our marginal gain over the holistic model is

smaller, and the gain becomes even smaller as our network

becomes deeper. This observation suggests a possible trend:

as more powerful convolutional network architectures are

engineered, the marginal gain from explicit parts may van-

ish.

As a final contribution, we show that our system can op-

erate “without training wheels.” In the standard evaluation

protocol for benchmarking attributes and actions [2, 8], an

oracle provides a perfect bounding box for each test in-

stance. While this was a reasonable “cheat” a couple of

years ago, it is worth revisiting. Due to recent substantial

advances in detection performance, we believe it is time

to drop the oracle bounding box at test time. We show,

for the first time, experiments doing just this; we replace

ground-truth bounding boxes with person detections from a

state-of-the-art R-CNN person detector [12]. Doing so only

results in a modest drop in performance compared to the

traditional oracle setting.

2. Related Work

Low-level image features. Part-based approaches using

low-level features have been successful for a variety of com-

puter vision tasks. DPMs [9] capture different aspects of

an object using mixture components and deformable parts,

leading to good performance on object detection and at-

tribute classification [32]. Similarly, poselets [1, 3, 14, 15,

20, 28] are an ensemble of models that capture parts of an

object under different viewpoints and have been used for

object detection, action and attribute classification and pose

estimation. Pictorial structures and its variants [10, 11, 29]

explicitly model parts of objects and their geometric rela-

tionship in order to accurately predict their location.

Convolutional network features. Turning away from

hand-designed feature representations, convolutional net-

works (CNNs) have shown remarkable results on computer

vision tasks, such as digit recognition [19] and more re-

cently image classification [18, 23]. Girshick et al. [12]

show that a holistic CNN-based approach performs signif-

icantly better than previous methods on object detection.

They classify region proposals using a CNN fine-tuned on

object boxes. Even though their design has no explicit part

or component structure, it is able to detect objects under a

wide variety of appearance and occlusion patterns.

Hybrid feature approaches. Even more recently, a number

of methods incorporate HOG-based parts into deep mod-

els, showing significant improvements. Zhang et al. [33]

use HOG-poselet activations and train CNNs, one for each

poselet type, for the task of attribute classification. They

show a large improvement on the task compared to HOG-

based approaches. However, their approach includes a num-

ber of suboptimal choices. They use pre-trained HOG

poselets to detect parts and they train a “shallow” CNN

(by today’s standards) from scratch using a relatively small

dataset of 25k images. We train poselet-like part detectors

on a much richer feature representation than HOG, derived

from the pool5 layer of [18]. Indeed, [12, 13] show an im-

pressive jump in object detection performance using pool5

instead of HOG. In addition, the task-specific CNN that we

use for action or attribute classification shares the architec-

ture of [18, 23] and is initialized by pre-training on the large

ImageNet-1k dataset prior to task-specific fine-tuning.

In the same vein, Branson et al. [5] tackle the problem

of bird species categorization by first detecting bird parts

with a HOG-DPM and then extracting CNN features from

the aligned parts. They experimentally show the superior-

ity of CNN-based features to hand-crafted representations.

However, they work from relatively weak HOG-DPM part

detections, using CNNs solely for classification purposes.

Switching to the person category, HOG-DPM does not gen-

erate accurate part/keypoint predictions as shown by [15],

and thus cannot be regarded as a source for well aligned

body parts.

Deep parts. Zhang et al. [31] introduce part-based R-

CNNs for the task of bird species classification. They dis-

cover parts of birds from region proposals and combine

them for classification. They gain from using parts and also

from fine-tuning a CNN for the task starting from ImageNet

weights. However, region proposals are not guaranteed to

produce parts. Most techniques, such as [26], are designed

to generate candidate regions that contain whole objects

based on bottom-up cues. While this approach works for

birds, it may fail in general as parts can be defined arbi-

trarily in an object and need not be of distinct color and

texture with regard to the rest of the object. Our sliding-

window parts provide a more general solution. Indeed, we

find that the recall of selective search regions for our parts

is 15.6% lower than our sliding-window parts across parts

at 50% intersection-over-union.

Tompson et al. [24] and Chen and Yuille [6] train key-

point specific part detectors, in a CNN framework, for hu-

man body pose estimation and show significant improve-

ment compared to [25]. Their models assume that all parts

are visible or self-occluded, which is reasonable for the

datasets they show results on. The data for our task contain

significantly more clutter, truncation, and occlusion and so

our system is designed to handle missing parts.

Bourdev et al. [4] introduce a form of deep poselets by

training a network with a cross entropy loss. Their system

uses a hybrid approach which first uses HOG poselets to

bootstrap the collection of training data. They substitute

deep poselets in the poselet detection pipeline [1] to cre-

ate person hypotheses. Their network is smaller than [18]

and they train it from scratch without hard negative min-

ing. They show a marginal improvement over R-CNN for

person detection, after feeding their hypothesis through R-
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CNN for rescoring and bounding box regression. Our parts

look very much like poselets, since they capture parts of a

pose. However, we cluster the space of poses instead of

relying on random selection and train our models using a

state-of-the-art network [18] with hard negative mining.

3. Deep part detectors

Figure 2 schematically outlines the design of our deep

part detectors, which can be viewed as a multi-scale fully

convolutional network. The first stage produces a feature

pyramid by convolving the levels of the gaussian pyramid

of the input image with a 5-layer CNN, similar to Girshick

et al. [13] for training DeepPyramid DPMs. The second

stage outputs a pyramid of part scores by convolving the

feature pyramid with the part models.

3.1. Feature pyramid

Feature pyramids allow for object and part detections

at multiple scales while the corresponding models are de-

signed at a single scale. This is one of the oldest “tricks”

in computer vision and has been implemented by sliding-

window object detection approaches throughout the years

[1, 9, 22, 27].

Given an input image, the construction of the feature

pyramid starts by creating the gaussian pyramid for the im-

age for a fixed number of scales and subsequently extract-

ing features from each scale. For feature extraction, we use

a CNN and more precisely, we use a variant of the single-

scale network proposed by Krizhevsky et al. [18]. More de-

tails can be found in [13]. Their software is publicly avail-

able and we build on their implementation.

3.2. Part models

We design models to capture parts of the human body

under a particular viewpoint and pose. Ideally, part models

should be (a) pose-sensitive, i.e. produce strong activations

on examples of similar pose and viewpoint, (b) inclusive,

i.e. cover all the examples in the training set, and (c) dis-

criminative, i.e. score higher on the object than on the back-

ground. To achieve all the above properties, we build part

models by clustering the keypoint configurations of all the

examples in the training set and train linear SVMs on pool5

features with hard negative mining.

3.2.1 Designing parts

We model the human body with three high-level parts: the

head, the torso and the legs. Even though the pose of the

parts is tied with the global pose of the person, each one has

it own degrees of freedom. In addition, there is a large, yet

not infinite due to the kinematic constraints of the human

body, number of possible part combinations that cover the

space of possible human poses.

We design parts defined by the three body areas, head

(H), torso (T ) and legs (L). Assume t ∈ {H,T, L}

and K
(i)
t the set of 2D keypoints of the i-th training ex-

ample corresponding to part t. The keypoints correspond

to predefined landmarks of the human body. Specifically,

KH = {Eyes, Nose, Shoulders}, KT = {Shoulders, Hips}
and for KL = {Hips, Knees, Ankles}.

For each t, we cluster the set of K
(i)
t , i = 1, ..., N , where

N is the size of the training set. The output is a set of clus-

ters Ct = {cj}
Pt

j=1, where Pt is the number of clusters for

t, and correspond to distinct part configurations

Ct = cluster
(

{K
(i)
t }Ni=1

)

. (1)

We use a greedy clustering algorithm, similar to [14].

Examples are processed in a random order. An example is

added to an existing cluster if its distance to the center is less

than ǫ, otherwise it starts a new cluster. The distance of two

examples is defined as the euclidean distance of their nor-

malized keypoint distributions. For each cluster c ∈ Ct, we

collect the M closest cluster members to its center. Those

form the set of positive examples that represent the cluster.

From now on, we describe a part by its body part type t and

its cluster index j, with cj ∈ Ct, while St,j represents the

set of positive examples for part (t, j).
Figure 3 (left) shows examples of clusters as produced

by our clustering algorithm with ǫ = 1 and M = 100. We

show 4 examples for each cluster example. We use the PAS-

CAL VOC 2012 train set, along with keypoint annotations

as provided by [1], to design and train the part detectors. In

total we obtain 30 parts, 13 for head, 11 for torso and 6 for

legs.

3.2.2 Learning part models

For each part (t, j), we define the part model to be the vec-

tor of weights wt,j which when convolved with a feature

pyramid gives stronger activations near the ground-truth lo-

cation and scale (right most part of Figure 2).

One could view the whole pipeline shown in Figure 2 as

a fully convolutional model and thus one could train it end-

to-end, optimizing the weights of the CNN for the pool5

feature extraction and the weights of the part models jointly.

We choose to simplify the problem by decoupling it. We use

the publicly available ImageNet weights of the CNN [12]

to extract pool5 feature pyramids. Subsequently, we train

linear SVMs for the part models. For each part (t, j) we

train a linear SVM with positives from St,j to obtain model

weights wt,j ∈ R
8×8×256. We use hard negative mining

from images of no people to train the model.

Figure 3 (right) shows the top few detections of a subset

of parts on PASCAL VOC val 2009 set. Each row shows

activations of a different part, which is displayed at the left

side of the same row.
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Figure 2: Schematic overview of our part detectors. (a) A gaussian pyramid is build from an input image. (b) Each level of the pyramid

is fed into a truncated SuperVision CNN. (c) The output is a pyramid of pool5 feature maps. (d) Each level of the feature pyramid is

convolved with the part models. (e) The output is a pyramid of part model scores

Figure 3: Examples of clusters for the three body areas, head,

torso and legs (left) and their top few detections on PASCAL VOC

val 2009 (right). The first two rows correspond to cluster examples

for head, the following two for torso and the last two for legs.

Evalutation of part models. We quantify the perfor-

mance of our part detectors by computing the average pre-

cision (AP) - similar to object detection PASCAL VOC - on

val 2009. For every image, we detect part activations at all

scales and locations which we non-maximum suppress with

a threshold of 0.3 across all parts of the same type. Since

there are available keypoint annotations on the val set, we

are able to construct ground-truth part boxes. A detection

AP (%) σ = 0.2 σ = 0.3 σ = 0.4 σ = 0.5

Head 55.2 51.8 45.2 31.6

Torso 42.1 36.3 23.6 9.4

Legs 34.9 27.9 20.0 10.4

Table 1: AP for each part type on PASCAL VOC val 2009. We

evaluate the part activations and measure AP for different thresh-

olds of intersection-over-union.

is marked as positive if the intersection-over-union with a

ground-truth part box is more than σ. In PASCAL VOC,

σ is set to 0.5. However, this threshold is rather strict for

small objects, such as our parts. We report AP for various

values of σ for a fair assessment of the quality of our parts.

Table 1 shows the results.

Mapping parts to instances. Since our part models op-

erate independently, we need to group part activations and

link them to an instance in question. Given a candidate re-

gion box in an image I , for each part t we keep the highest

scoring part within box

j∗ = argmax
j

max
(x,y)∈box

wt,j ∗ F(x,y)(I), (2)

where F(x,y)(I) is the point in feature pyramid for I cor-

responding to the image coordinates (x, y). This results in

three parts being associated with each box, as shown in Fig-

ure 1. A part is considered absent if the score of the part

activation is below a threshold, here the threshold is set to

−0.1.

In the case when an oracle gives ground-truth bounding

boxes at test time, one can refine the search of parts even

further. If box is the oracle box in question, we retrieve the

k nearest neighbor instances i = {i1, ..., ik}from the train-
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ing set based on the L2-norm of their pool5 feature maps

F (·), i.e.
F (box)TF (boxij

)

||F (box)||·||F (boxij
)|| . If Kij are the keypoints for

the nearest examples, we consider the average keypoint lo-

cations Kbox = 1
K

∑k

j=1 Kij to be an estimate of the key-

points for the test instance box. Based on Kbox we can

reduce the regions of interest for each part within box by

only searching for them in the corresponding estimates of

the body parts.

4. Part-based Classification

In this section we investigate the role of parts for fine-

grained classification tasks. We focus on the tasks of ac-

tion classification (e.g. running, reading, etc.) and attribute

classification (e.g. male, wears hat, etc.). Figure 4 schemat-

ically outlines our approach at test time. We start with the

part activations mapped to an instance and forward prop-

agate the corresponding part and instance boxes through a

CNN. The output is a fc7 feature vector for each part as well

as the whole instance. We concatenate the feature vectors

and classify the example with a linear SVM, which predicts

the confidence for each class (action or attribute).

4.1. System variations

For each task, we consider four variants of our approach

in order to understand which design factors are important.

No parts. This approach is our baseline and does not use

part detectors. Instead, each instance is classified according

to the fc7 feature vector computed from the instance bound-

ing box. The CNN used for this system is fine-tuned from

an ImageNet initialization, as in [12], on jittered instance

bounding boxes.

Instance fine-tuning. This method uses our part detec-

tors. Each instance is classified based on concatenated fc7

feature vectors from the instance and all three parts. The

CNN used for this system is fine-tuned on instances, just

as in the “no parts” system. We note that because some

instances are occluded, and due to jittering, training sam-

ples may resemble parts, though typically only the head and

torso (since occlusion tends to happen from the torso down).

Joint fine-tuning. This method also uses our part detec-

tors and concatenated fc7 feature vectors. However, unlike

the previous two methods we fine-tune the CNN jointly us-

ing instance and part boxes from each training sample. Dur-

ing fine-tuning the network can be seen as a four-stream

CNN, with one stream for each bounding box. Importantly,

we tie weights between the streams so that the number of

CNN parameters is the same in all system variants. This

design explicitly forces the CNN to see each part box dur-

ing fine-tuning.

3-way split. To test the importance of our part detec-

tors, we employ a baseline that vertically splits the instance

bounding box into three (top, middle, and bottom) in order

to simulate crude part detectors. This variation uses a CNN

fine-tuned on instances.

4.2. Action Classification

We focus on the problem of action classification as de-

fined by the PASCAL VOC action challenge. The task in-

volves predicting actions from a set of predefined action cat-

egories.

Learning details. We train all networks with backprop-

agation using Caffe [17], starting from the ImageNet

weights, similar to the fine-tuning procedure introduced in

[12]. A small learning rate of 10−5 and a dropout ratio of

50% were used. During training, and at test time, if a part

is absent from an instance then we use a box filled with the

ImageNet mean image values (i.e., all zeros after mean sub-

traction). Subsequently, we train linear SVMs, one for each

action, on the concatenated fc7 feature vectors.

Context. In order to make the most of the context in the

image, we rescore our predictions by using the output of

R-CNN [12] for the 20 PASCAL VOC object categories

and the presence of other people performing actions. We

train a linear SVM on the action score of the test instance,

the maximum scores of other instances (if any) and the ob-

ject scores, to obtain a final prediction. Context rescoring is

used for all system variations on the test set.

Results. Table 2 shows the result of our approach on the

PASCAL VOC 2012 test set. These results are in the stan-

dard setting, where an oracle gives ground-truth person

bounds at test time. We conduct experiments using two dif-

ferent network architectures: a 8-layer CNN as defined in

[18], and a 16-layer as defined in [23]. Ours (no parts) is

the baseline approach, with no parts. Ours is our full ap-

proach when we include the parts. For the 8-layer network,

we use the CNN trained on instances, while for the 16-layer

network we use the CNN trained jointly on instances and

their parts based on results on the val set (Table 3). For

our final system, we also present results when we add fea-

tures extracted from the whole image, using a 16-layer net-

work trained on ImageNet-1k (Ours (w/ image features)).

We show results as reported by action poselets [20], a part-

based approach, using action specific poselets with HOG

features, Oquab et al. [21], Hoai [16] and Simonyan and

Zisserman [23], three CNN-based approaches on the task.

The best performing method by [23] uses a 16- and 19-layer

network. Their 16-layer network is equivalent to Ours (no

parts) with 16 layers, thus the additional boost in perfor-
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Figure 4: Schematic overview of our approach for fine grained classification using parts. (a) We consider regions of part activations. (b)

Each part is forward propagated through a CNN. (c) The output is the fc7 feature vector for each input. (d) The features are concatenated

and fed into linear SVM classifiers. (e) The classifiers produce scores for each class.

mance comes from the 19-layer network. This is not sur-

prising, since deeper networks perform better, as is also ev-

ident from our experiments. From the comparison with the

baseline, we conclude that parts improve the performance.

For the 8-layer CNN, parts contribute 3% of mAP, with the

biggest improvement coming from Phoning, Reading and

Taking Photo. For the 16-layer CNN, the improvement from

parts is smaller, 1.7 % of mAP, and the actions benefited the

most are Reading, Taking Photo and Using Computer. The

image features capture cues from the scene and give an ad-

ditional boost to our final performance.

Table 3 shows results on the PASCAL VOC action val set

for a variety of different implementations of our approach.

Ours (no parts) is the baseline approach, with no parts,

while Ours (3-way split) uses as parts the three horizontal

splits comprising the instance box. Ours (joint fine-tuning)

shows the results when using a CNN fine-tuned jointly on

instances and parts, while Ours (instance fine-tuning) shows

our approach when using a CNN fine-tuned on instances

only. We note that all variations that use parts significantly

outperform the no-parts system.

We also show results of our best system when ground-

truth information is not available at test time Ours (R-CNN

bbox). In place of oracle boxes we use R-CNN detections

for person. For evaluation purposes, we associate a R-CNN

detection to a ground-truth instance as following: we pick

the highest scoring detection for person that overlaps more

than 0.5 with the ground truth. Another option would be

to define object categories as “person+action” and then just

follow the standard detection AP protocol. However, this is

not possible because not all people are marked in the dataset

(this is true for the attribute dataset as well). We report num-

bers on the val action dataset. We observe a drop in perfor-

mance, as expected due to the imperfect person detector, but

our method still works reasonably well under those circum-

stances. Figure 5 shows the top few predictions on the test

set. Each block corresponds to a different action.

4.3. Attribute Classification

We focus on the problem of attribute classification, as de-

fined by [2]. There are 9 different categories of attributes,

such as Is Male, Has Long Hair, and the task involves pre-

dicting attributes, given the location of the people. Our ap-

proach is shown in Figure 4. We use the Berkeley Attributes

of People Dataset as proposed by [2].

Learning details. Similar to the task of action classifica-

tion, we separately learn the parameters of the CNN and the

linear SVM. Again, we fine-tune a CNN for the task in ques-

tion with the difference that the softmax layer is replaced by

a cross entropy layer (sum of logistic regressions).

Results. Table 4 shows AP on the test set. We show re-

sults of our approach with and without parts, as well as re-

sults as reported by Zhang et al. [33], the state-of-the-art on

the task, on the same test set. With an 8-layer network,

parts improve the performance of all categories, indicat-

ing their impact on attribute classification. Also, a network

jointly fine-tuned on instances and parts seems to work sig-

nificantly better than a CNN trained solely on the instance

boxes. In the case of a 16-layer network, joint fine-tuning

and instance fine-tuning seem to work equally well. The

gain in performance from adding parts is less significant in

this case. This might be because of the already high perfor-

mance achieved by the holistic network. Interestingly, our

8-layer holistic approach matches the current state-of-the-

art on this task, PANDA [33] showcasing the importance of

deeper networks and good initialization.

Table 4 also shows the effectiveness of our best model,

namely the jointly fine-tuned 16-layer CNN, when we use

R-CNN detections instead of ground truth boxes on the

Berkeley Attributes of People test set. Figure 7 shows the
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AP (%) CNN layers Jumping Phoning Playing Instrument Reading Riding Bike Riding Horse Running Taking Photo Using Computer Walking mAP

Action Poselets [20] - 59.3 32.4 45.4 27.5 84.5 88.3 77.2 31.2 47.4 58.2 55.1

Oquab et al. [21] 8 74.8 46.0 75.6 45.3 93.5 95.0 86.5 49.3 66.7 69.5 70.2

Hoai [16] 8 82.3 52.9 84.3 53.6 95.6 96.1 89.7 60.4 76.0 72.9 76.3

Simonyan & Zisserman [23] 16 & 19 89.3 71.3 94.7 71.3 97.1 98.2 90.2 73.3 88.5 66.4 84.0

Ours (no parts) 8 76.2 47.4 77.5 42.2 94.9 94.3 87.0 52.9 66.5 66.5 70.5

Ours 8 77.9 54.5 79.8 48.9 95.3 95.0 86.9 61.0 68.9 67.3 73.6

Ours (no parts) 16 84.7 62.5 86.6 59.0 95.9 96.1 88.7 69.5 77.2 70.2 79.0

Ours 16 83.7 63.3 87.8 64.2 96.0 96.7 88.9 75.2 80.0 71.5 80.7

Ours (w/ image features) 16 84.7 67.8 91.0 66.6 96.6 97.2 90.2 76.0 83.4 71.6 82.6

Table 2: AP on the PASCAL VOC 2012 Actions test set. The first three rows show results of two other methods. Action Poselets [20] is a

part based approach using HOG features, while Oquab et al. [21], Hoai [16] and Simonyan & Zisserman [23] are CNN based approaches.

Ours (no parts) is the baseline approach of our method, when only the ground truth box is considered, while Ours is the full approach,

including parts. All approaches use ground truth boxes at test time.

AP (%) CNN layers Jumping Phoning Playing Instrument Reading Riding Bike Riding Horse Running Taking Photo Using Computer Walking mAP

Ours (no parts) 8 76.5 44.7 75.0 43.3 90.0 91.6 79.2 53.5 66.5 61.4 68.2

Ours (3-way split) 8 79.0 44.4 77.8 46.9 91.5 93.1 83.1 59.3 67.3 64.4 70.7

Ours (instance fine-tuning) 8 77.2 48.4 79.0 49.5 92.4 93.8 80.9 60.4 68.9 64.0 71.5

Ours (joint fine-tuning) 8 75.2 49.5 79.5 50.2 93.7 93.6 81.5 58.6 64.6 63.6 71.0

Ours (no parts) 16 85.4 58.6 84.6 60.9 94.4 96.6 86.6 68.7 74.9 67.3 77.8

Ours (instance fine-tuning) 16 85.1 60.2 86.6 63.1 95.6 97.4 86.4 71.0 77.6 68.3 79.1

Ours (joint fine-tuning) 16 84.5 61.2 88.4 66.7 96.1 98.3 85.7 74.7 79.5 69.1 80.4

Ours (R-CNN bbox) 8 67.8 46.6 76.9 47.3 85.9 81.4 71.5 53.1 61.2 53.9 64.6

Ours (R-CNN box) 16 79.4 63.3 86.1 64.4 93.2 91.9 80.2 71.2 77.4 63.4 77.0

Table 3: AP on the PASCAL VOC 2012 Actions val set of our approach. Ours (no parts) is our approach without parts. Ours (3-way

split) is our approach when parts are defined as the three horizontal splits comprising an instance box. Ours (joint fine-tuning) uses a CNN

fine-tuned jointly on the instances and the parts, while Ours (instance fine-tuning) uses a single CNN fine-tuned just on the instance box.

All the above variations of our approach use ground truth information at test time as the object bound. Ours (R-CNN bbox) uses R-CNN

detections for person.

AP (%) CNN layers Is Male Has Long Hair Has Glasses Has Hat Has T-Shirt Has Long Sleeves Has Shorts Has Jeans Has Long Pants mAP

PANDA [33] 5 91.7 82.7 70.0 74.2 49.8 86.0 79.1 81.0 96.4 79.0

Ours (no parts) 8 87.5 80.4 43.3 77.0 61.5 86.4 88.5 88.7 98.2 79.1

Ours (3-way split) 8 89.3 82.2 51.2 84.0 60.1 87.4 88.3 89.2 98.2 81.1

Ours (instance fine-tuning) 8 89.9 83.5 60.5 85.2 64.3 89.0 88.6 89.1 98.2 83.1

Ours (joint fine-tuning) 8 91.7 86.3 72.5 89.9 69.0 90.1 88.5 88.3 98.1 86.0

Ours (no parts) 16 93.4 88.7 72.5 91.9 72.1 94.1 92.3 91.9 98.8 88.4

Ours (instance fine-tuning) 16 93.8 89.8 76.2 92.9 73.3 94.4 92.3 91.8 98.7 89.3

Ours (joint fine-tuning) 16 92.9 90.1 77.7 93.6 72.6 93.2 93.9 92.1 98.8 89.5

Ours (R-CNN bbox) 8 84.1 77.9 62.7 84.5 66.8 84.7 80.7 79.2 91.9 79.2

Ours (R-CNN bbox) 16 90.1 85.2 70.2 89.8 63.2 89.7 83.4 84.8 96.3 83.6

Table 4: AP on the test set of the Berkeley Attributes of People Dataset. All approaches on the top use ground truth boxes for evaluation.

Ours (no parts) is the baseline approach with no parts. Ours (3-way split) is a variant of our approach, where parts are defined as the

three horizontal splits comprising an instance box. Ours (instance fine-tuning) uses a CNN fine-tuned on instance boxes, while Ours (joint

fine-tuning) uses a CNN fine-tuned jointly on instances and parts. We also show the effectiveness of our approach Ours (R-CNN bbox),

when no ground truth boxes are given at test time.

top few predictions on the test set. Each block corresponds

to a different attribute. Figure 6 shows top errors for two of

our lowest performing attribute classes.
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Figure 6: Top errors of classification for two of the attribute cate-

gories, Has Glasses (top) and Has T-Shirt (bottom).

2476



Figure 5: Top action predictions on the test set. Different blocks correspond to different actions.

Figure 7: Top attribute predictions on the test set. Each block corresponds to a different attribute
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