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Abstract

Good representations of data do help in many machine

learning tasks such as recommendation. It is often a great

challenge for traditional recommender systems to learn rep-

resentative features of both users and images in large social

networks, in particular, social curation networks, which are

characterized as the extremely sparse links between users

and images, and the extremely diverse visual contents of

images. To address the challenges, we propose a novel

deep model which learns the unified feature representations

for both users and images. This is done by transforming

the heterogeneous user-image networks into homogeneous

low-dimensional representations, which facilitate a recom-

mender to trivially recommend images to users by feature

similarity. We also develop a fast online algorithm that can

be easily scaled up to large networks in an asynchronously

parallel way. We conduct extensive experiments on a repre-

sentative subset of Pinterest, containing 1,456,540 images

and 1,000,000 users. Results of image recommendation ex-

periments demonstrate that our feature learning approach

significantly outperforms other state-of-the-art recommen-

dation methods.

1. Introduction

The nature of social networks has gradually been shifted

from the conventional user-centric networks such as Face-

book (i.e., friendship based) and Twitter (i.e., follower-

followee based), to content-centric social curation networks

such as Pinterest and Delicious. As a new concept differ-

ent from user-centric social networks, the development of

social curation networks originates from users’ emerging

need —a pure interest-based social service to explore and

collect interesting contents (such as images, videos and top-

ics), through which to communicate with people (mostly

strangers) who share similar interest. In addition to cre-

ating contents, social curation encourages users to involve

in an information filtering process to identify, collect and

aggregate images into their own stories [33]. Today, over

73% of social media marketing efforts exploit social cura-
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Figure 1. Illustrations of the two extremes in a typical social cura-

tion network, e.g., Pinterest. (a) The power-law distribution of the

number of images pinned by users. It means that the user-image

connections are long-tailed and very sparse. (b) Some exemplar

images of three interest categories. The contents of images in the

same category are very diverse.

tion as sources of marketing contents [27]. However, the

traditional recommender systems are not designed to func-

tion effectively in this new era of social curation marketing

due to the following challenges: 1) The extreme sparsity of

network structure (cf. Figure 1(a)). For instance, in Pin-

terest, an ordinary user often curates around 100 images

which is only one in a million as compared to the whole

Pinterest image collection. That is to say, it is hardly possi-

ble to infer the similarity between users based on the shared

images. Clearly, this will render collaborative filtering inef-

fective. 2) The extreme diversity of the multimedia contents

(cf. Figure 1(b)). Different from products that can be eas-

ily categorized (such as those in Amazon), the categories of

multimedia contents are usually hard to be identified au-

tomatically, causing difficulties for content-based recom-

mender systems to infer accurate user interest from the cu-

rated contents, with the problem of over-specification [1].

In this paper, we introduce a novel feature learning ap-

proach for recommendation that aims to tackle the above

two extreme challenges in social curation. Different from

conventional recommenders that indirectly rank images for

users, we directly measure the similarity between users and

images through a compact, low-dimensional vector space,

spanned by “interest”, which is the core motive of any so-

cial curation network. Our algorithm takes a social curation
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Figure 2. Our goal is to transform the users and images in a social

curation network into a compact, low-dimensional feature space.

Our approach takes user-image pairs in the social curation network

(a) as input to the proposed deep architecture (b) which is built

based on frequencies of user-image interactions. It then learns the

user and image feature representations (c) as the output. Here is a

simple illustration of our proposed method on a toy image-centric

network: blue ones are users and red ones are images. We can

see that the learned features can capture the pairwise user-image

similarity.

network with user-image links as input and produces latent

representations of users and images as output. As illustrated

by a toy network with 5 users and 6 images in Figure 2, we

expect the vectors of linked users and images to be closer

than other non-linked ones. The closer the pair of vectors,

the higher the possibility that the user-image pair belongs

to the same interest, and hence the rank of the image with

respect to the user is higher.

Our model is a novel deep learning framework that

breaks down a large and sparse network topology into a

tree-structured deep hierarchy, where the leafs are users and

images (Figure 2). Each non-leaf feature encodes the infor-

mation about the social interactions (i.e., user-image, user-

user, and image-image) and each resultant leaf embeds the

“interest” of a user or an image into a vector. Note that our

deep model is used as an “end-to-end” fashion, that is, we

start from the most basic curation behavior “a user likes or

dislikes an image” as the “low-level end”, and the latent fea-

tures forwardly propagate the curation belief into the resul-

tant user-image features as the “high-level end”. Different

from shallow methods that attempts to learn user and image

features directly [12, 15], our deep model can compactly [3]

and efficiently learned representative features to reveal the

weak correlations between images and users at the scene of

the extreme sparse connections and extreme diverse images

due to its deep structure.

In our proposed deep model, the input of user-image

pairs could be over billions. Thus, how to efficiently op-

timize such a deep model becomes a big challenge. For-

tunately, we observe that the user-image connections are

long-tailed and very sparse, and hence there should be very

limited shared parameters for different user-image pairs in

the proposed deep tree structure. Therefore, we proposed a

fast optimization algorithm that deploys an asynchronously

parallel stochastic gradient descent method that can signif-

icantly reduce the time for the training of different user-

image pairs.

We conduct extensive experiments on a representative

subset of Pinterest, which is the most popular social cura-

tion network. In particular, the subset covers 468 popular

interests on Pinterest with 1,456,540 images and 1,000,000

users who have interactions with these images. Through

image recommendations, we demonstrate that the proposed

deep model significantly outperforms the other state-of-the-

art recommender systems. Our contributions are summa-

rized as follows:

• We propose a deep learning framework for learning

compact user and image features in a unified space

from large, sparse and diverse social curation net-

works. The learnt user and image features support

effective recommendation by directly computing the

similarity between the user vector and image vector.

• We develop a fast on-line algorithm to train the pro-

posed deep learning framework.

• To our best knowledge, this is the first work on devel-

oping deep learning methods on content-centric net-

works. Extensive experimental results have demon-

strated the proposed deep model significantly outper-

forms other benchmark recommendation methods.

2. Related Work

Feature learning plays an important role in computer

vision. From low-level hand-crafted features (such as

HOG [6] and SIFT [17]), to current high-level features

(such as DCNN [16]), image contents have been sufficiently

analyzed to some degree from shallow architectures to deep

architectures. In addition to image contents, human en-

gagement such as data collection [8], annotation and knowl-

edge extraction is also curial for advancing computer vision.

Specifically, the collective intelligence of social media can

competitively enhance computer vision [4]. For example,

[11] use image relationship discovered from user behavioral

data to guide image feature learning.

Recommendation is a classic problem in Artificial In-

telligence. It is beyond the scope of this paper to do a

comprehensive review [1, 28]. In general, recommendation

methods can be classified into content-based filtering (CBF)

methods and collaborative filtering (CF) methods. CBF rec-

ommends images based on a comparison between the con-

tents of the images and a user profile [2, 26]. User pro-

files can be identified by the users themselves, or learned

from the content of the images that users have rated. The

main problem of content-based filtering is the over specifi-

cation [1]. That is, when a user only rates a limited num-

ber of images, the limited content information cannot be

generalized to discover the user’s broader interest. CF [28]

recommends images to users based on the images shared

by other users with similar interest. The similarity between
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users are often computed based on the overlap of shared im-

ages. However, CF cannot achieve satisfactory performance

when the network is very sparse. To alleviate the spar-

sity problem, matrix factorization based CF models have

been proposed, such as the Singular Value Decomposition

(SVD) [25], Weighted Matrix Factorization (WMF) [13],

and the combination of probabilistic matrix factorization

(PMF) [19] and topic models [31]. These models assume

that the user-image matrix has a low-rank reconstruction by

low-dimensional user and image features. We argue that

such methods are essentially “shallow” models since they

directly seek the resultant high-level features from user-

image matrix. When the matrix is very sparse, these meth-

ods will fail to find meaningful latent factors.

Our work is related to the recent music recommendation

work [30]. We share similar ideas in injecting contents (mu-

sic and images) using deep models (i.e., DCNN) into social

latent vectors. But, they used traditional matrix factoriza-

tion which is not as powerful as our deep model for social

networks. Besides, our deep model is related to DeepWalk

proposed by Perozzi et al. [23], in terms of similar formula-

tions. They learned latent representations for network ver-

tices by modeling a stream of short random walks. The un-

derlying reasoning is that they empirically observed that the

short random walks are similar with word distributions and

thus their formulation is identical to the one used in lan-

guage modeling [18]. However, our formulation is derived

from the nature of social network: modularity [21], which

is theoretically sound. Moreover, our model can handle het-

erogenous network of images and users.

3. Problem Definition

3.1. Recommendation by Similarity

We consider the problem of recommending images de-

noted as I or users denoted as U to users in a social cu-

ration network denoted as G = {U , I, E}, where E is the

set of edges that connect users and images. Although real-

world social curation networks allow users to connect to

other users1, without loss of generality, we only assume that

connections exist between users and images, i.e., E ⊆ U×I.

We are interested in the following user-image similarity

measure:

sui = x
T
uxi (1)

where sui ∈ R is the rating score of image i being recom-

mended to user u, xu ∈ R
d and xi ∈ R

d are the latent fea-

ture representations for users and images. In order to make

a valid recommendation score by Eq. (1), we require xu and

xi to encode interests. For example, if user u likes traveling

and image i is about traveling, we expect the values of xu

and xi to be consistently small.

1This rarely happens because most users only enjoy the curation func-

tion and ignore the social function.

In general, we seek a transformation g : G �→ R
d, where

R
d is the unified space for users and images and thus facil-

itates direct user-image similarity measure in Eq. (1). Note

that the transformation is generic since content-based filter-

ing and collaborative filtering can be viewed in this form.

For content-based filtering, it considers xu as a content fea-

ture generated from the user’s favored images. On the other

hand, collaborative filtering treats xi as the vector consist-

ing of ratings ru′i, where u′ is a friend of u, and xu is a

vector of the similarities between the friends of u. As dis-

cussed in Section 1, the extreme connection sparsity and

content diversity will make these traditional methods inef-

fective. For example, in content-based filtering, even if a

user only likes a single interest “travel”, it is difficult to gen-

erate xu that is consistently similar to diverse images about

traveling; in collaborative filtering, as the user-image con-

nections are very sparse, it is impossible to infer accurate

user similarities based on the shared images between users.

3.2. Modularity

Due to the sparsity of social networks, we wish to seek

low-dimensional features for items (i.e., images) and users,

through an objective that represents the interest communi-

ties of social networks. Modularity is a widely-used com-

munity partition measure that the larger the value, the better

the partition of the network [5]. The underlying principle of

using modularity is that the power-law distribution of con-

nections between users and items is very significant in so-

cial curation network2. Consider the partitioning network G
of n vertices (e.g., n = |U| + |I|) and m edges into k non-

overlapping interest communities. Let di represents the de-

gree of vertex i. Modularity penalizes the situations when

the number of within-group connections is smaller than the

number of uniformly random connections, whose expected

number is didj/2m. Therefore, the modularity is formu-

lated as:

J =
1

2m

∑

ij

(

Gij −
didj
2m

)

δ (i, j) , (2)

where Gij = 1 if i and j is connected and 0 otherwise,

δ(i, j) = 1 if i and j belong to the same membership and

0 otherwise. Note that 0 ≤ didj/2m ≤ 1, so the penalty

comes in if
(

Gij −
didj

2m

)

< 0. One aims to find a com-

munity partition over the network G when J is maximized.

Note that we make no difference between users and items

since our goal is to learn a unified interest space.

Although maximizing the modularity J over hard parti-

tion (i.e., σ(i, j) = 1 or 0) is NP-hard [5], a relaxed approx-

imation of the problem can be solved efficiently [29] when

we relax the membership indicator σ(i, j) = p (i|j) =

2The fraction of nodes in the network have k connections to other nodes

is proportional to k
−γ .
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Figure 3. Illustrations of the proposed deep architecture for social

network. (a) The node parameters of two paths in the deep hier-

archy encode the topology information of a random walk from a

virtual root to vertices. For example, the shared parameters cor-

respond to the overlaps of the two routes (in dashed region). (b)

Traditional deep architecture (bottom)s feed a fixed input into a

forward network, while the proposed model (top) feeds both the

output image and user features as input to every forwarding layer.

exp
(

x
T
i xj

)

/
∑

i′ exp
(

x
T
i′xj

)

as a valid probability: where

xi ∈ R
d is a latent membership feature vector and the prob-

ability function is known as the softmax function. One can

easily derive that this relaxed formulation is strongly related

to the formulation of matrix factorization for recommenda-

tion [12, 15], which usually fails in sparse social network as

we argued in Section 1.

4. Deep Learning Features for Social Networks

In general, the latent interests encoded in the topology

is difficult to be revealed by using these shallow methods

when we directly solving Eq. (2). This is analogous to the

situation in image classification, which suffers from the gap

between noisy visual cues and the target labels. For this

task, it is well-known that DCNN performs the best be-

cause they learn hierarchical features which are beneficial

for the ultimate classification [3, 16]. Inherited from this

core spirit of deep learning, we propose to solve Eq. (2) by

a hierarchical deep model, which can learn useful interme-

diate features.

4.1. Architecture

We start from introducing an approximation of p(i|j)
called “Hierarchical Softmax”, which is widely used in neu-

ral computation [20]. It approximates p (i|j) by a series

of binomial distributions along a tree-structured hierarchy.

Specifically, we assign the vertices to the leafs of a binary

tree (see Figure 2). For computation efficiency, the tree is a

Huffman tree [18] according to the frequency of user-image

interactions. Let ni(m) be the m-th node on the path from

root to i, and let Li be the length of this path. In partic-

ular, we have ni(1) as root and ni(Li) as i. In addition,

we denote lc(ni(m)) as the left child of node ni(m) and

let I(ni(m)) be an indicator function such that it is 1 if

ni(m+1) = lc(ni(m)), and −1 otherwise. Then, the hier-

archical softmax version of p (i|j) is defined as

p (i|j) =

Li−1
∏

m=1

σ
(

I[ni(m)] · xT
ni(m)xj

)

(3)

where σ(x) = 1/(1 + exp(−x)) is the sigmoid function,

which is widely-used to model the binary-valued binomial

probability and xni(m) is the representations of inner node

ni(m). In terms of computation complexity, Eq. (3) can

reduce the computation complexity of n sums (where O(n)
can be millions in our case) with normalization in Eq. (1) to

O(log2 n), which is significant.

Here, we show that the hierarchical softmax as formu-

lated in Eq. (3) can be viewed as a deep architecture that

represents the network topology. First, we can view the bi-

nary tree as a coding structure for each vertex in the net-

work because each vertex i is assigned to a path from root

to leaf. Then, the series of binary decisions from root to

bottom mimic the route in the network from a common vir-

tual root to vertex i. As shown in Figure 3(a), the route to

the vertex i is by way of vertex j. The shared nodes along

the path of j to i encode this routing information. So, we

can view the nodes in the hierarchy encodeing the topology

of the entire network. Finally, we illustrate that Eq. (3) is

in fact a forward propagation in the deep model. As illus-

trated in Figure 3(b), the difference between a traditional

deep neural network and our network is that the proposed

deep model is forwarded by using both the output features

(i.e., the leaf vectors) and the hidden units, while traditional

neural network is forwarded by using only the hidden units.

Detailed information can be seen in Equation 5.

4.2. Formulation

We are interested in recommending image i to user u (or

user u to image i). Intuitively, our learning objective seeks

for feature representations xu and xi such that

⎧

⎨

⎩

max
xu,xi

p(u|i) or p(i|u), if u likes i,

min
xu,xi

p(u|i) or p(i|u), if u dislikes i.
(4)

Note that the above objective is consistent with the mod-

ularity maximization in Eq. (2). Moreover, we deploy a

DCNN to transform images into the desired feature space:

xi = CNN(i), in order to generalize for new images. In this

paper, we adopt the AlexNet [16] where the softmax layer

is removed but an additional fully-connected layer is added

(i.e., from 4,096 to d neurons).

By incorporating the p(u|i) formulated as in Eq. (3) into

Eq. (2), the overall objective function becomes

max
xnu(m),xni(m),xu,CNN(·)

J =
∑

ui

Aui

Lu−1
∑

m=1

log σ
(

I[nu(m)] · xT
nu(m)CNN(i)

)

+
∑

iu

Aiu

Li−1
∑

m=1

log σ
(

I[ni(m)] · xT
ni(m)xu

)

(5)
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where Aui = (Gui − dudi/2m). Note that the above for-

mulation allows us to encourage p(u|i) to be larger if Aui ≥
0 and smaller if Aui < 0. Recall that 0 ≤ didj/2m ≤ 1,

so Aui ≥ 0 indicates user u likes image i and vice versa.

Also, Aui assigns a weight to encourage the connection Gui

if the expected connection dudi/2m is small. For example,

if user u is only linked to few images (i.e., small du) and

image i is only linked to few users (i.e., small di), then an

observation of u linked to i is informative. Therefore, the

likelihood for p(u|i) or p(i|u) should be emphasized in op-

timization. For Aui < 0, we only compute the pairs with

the smallest 20 values for efficiency. Note that one can try

more advanced negative sampling tricks [30], however, we

found that there is no significant improvement.

4.3. Algorithm

For a typical social curation network, the number of user-

image pair could be over billions. Therefore, it is imprac-

tical to optimize Eq. (5) even if we use the popular online

stochastic gradient descent method for deep learning [3].

Here, we design a fast algorithm for tackling the large-scale

networks. The main idea of our algorithm is that we de-

ploy an asynchronously paralleled stochastic gradient de-

scent method that can significantly reduce the time of scan-

ning the user-image pairs.

The parallelization is made possible by the two observa-

tions from the structure of the topology parameters xnu(m)

and xni(m). First, as shown in Figure 1(a), the frequency

distributions of users and images follow the power-law dis-

tribution. This observation is generally true in most social

networks [21]. It means that we have a very long tail of in-

frequent pairs and thus the chance of two computing threads

conflict when scanning the same pair is rare. Second, thanks

to the binary tree structure of the parameters, the number of

shared parameters between two leafs are limited. To see

this, suppose that u and i correspond to sibling leafs, which

is the worst case. The number of shared parameters is only

log2 n−1, where n is the total number of users and images.

When n = 107, the fraction of affected parameters is only

around 0.00002%, which is negligible.

However, the parameters of CNN is shared by all the

pairs. Therefore, jointly optimizing all the parameters in

Eq. (5) will harm parallelization. To tackle this, we pro-

pose an alternative updating algorithm as shown in Algo-

rithm (1). Specifically, we first fix the features of users X
and CNN, and only update the topology parameters (i.e., the

inner node features) T as in Algorithm 2. Note that Steps

2-11 can be run asynchronously with multiple threads. In

general, Algorithm 2 requires about 100 iterations for con-

vergence. Next, as shown in Algorithm 3, we solve for X
and CNN with fixed T . It should be noted that X and CNN

in Eq. (5) can be updated independently. In particular, they

can be trained by asynchronous stochastic gradient descent

Algorithm 1: Deep Feature Learning for Images and

Users
Input: Social curation network G, feature dimension d

Output: User features xu and image visual feature

transformation CNN

1 Initialization: Build a binary tree for the users and images

in G; randomly set topology parameters xnu(m) or

xni(m) ∈ T (0), and user feature xu ∈ X (0), initialize CNN

with ImageNet pretrained model; randomly initialize the last

layer of CNN, t ← 0
2 repeat

3 T (t+1) ← UpdateTopology
(

T (t),X (t),W(t)
)

4 X (t+1),CNN(t+1) ← UpdateFeature
(

T (t+1)
)

5 t ← t+ 1

6 until converges;

Algorithm 2: UpdateTopology
(

T (0),X ,CNN
)

1 Initialization: t ← 0, momentum ∆(0) ← 0, weight-decay

factor α, learning rate η

2 repeat

3 Online gradient descent:

4 foreach pair of u and i do

5 foreach x ∈ T do

6 ∆(t+1) = 0.9∆(t)−α ·η ·x(t)−η∇xJ(T
(t)),

7 x
(t+1) = ∆(t+1) + x

(t),

8 end

9 end

10 t ← t+ 1

11 until converges;

12 return T (t)

Algorithm 3: UpdateFeature (T )

1 Initialization: t ← 0, momentum ∆(0) ← 0, weight-decay

factor α, learning rate η

2 repeat

3 Stochastic Gradient descent:

4 foreach randomly selected mini-batch of user-image

pairs do

5 ∆(t+1) = 0.9∆(t) − α · η ·
(

X (t),CNN(t)
)

−

η∇(X ,CNN)J
(

X (t),CNN(t)
)

,

6

(

X (t+1),CNN(t+1)
)

= ∆(t+1)+
(

X (t),CNN(t)
)

,

7 end

8 t ← t+ 1

9 until converges;

10 return
(

X (t),CNN(t)
)

on a distributed computing platform as described in [7]. We

employ the momentum-based gradient descent as Steps 6-7

4278



10
0

10
1

10
2

10
3

10
0

10
2

10
4

10
6

# Interests

#
 U

se
rs

(a)

0 50 100 150 200
10

0

10
2

10
4

10
6

# Pinned Times

#
 I

m
a
g
es

(b)

Figure 4. Dataset statistics. (a) This shows the number of users’

interests; and (b) this shows the distribution of the times an image

has been pinned.

in Algorithm 2 and Steps 5-6 in Algorithm 3. This method

has been shown to result in faster learning paces [24].

5. Experiment

In this section, we conduct extensive recommendation

experiments to evaluate the effectiveness of the learnt user

and image features from the proposed deep model.

5.1. Dataset

We used Pinterest, which is one of the largest social cu-

ration networks, as the source of the content-centric net-

work for evaluating our proposed methods. To our best

knowledge, there is no publicly available social media

dataset that is large scale and image-centric with ground-

truths of images. In Pinterest, users “pin” images to

their own boards, showing their preferences of these im-

ages. In this research, we only crawled images with addi-

tional information indicating their categories3 (e.g., Fishing,

Travel, and Hockey). We used the image categories as the

groundtruth of user interests. In particular, given a user and

his/her pinned images, we first found the category labels of

these images and used these labels as the interests of this

user. We crawled the profiles of 1 million users together

with their pinned images from Pinterest. The users were

randomly sampled from the users communities found in the

468 categories we analyzed. For the pinned images, we re-

moved images without category labels, resulting in 686,457

images. We named this set of images Iu, those that actu-

ally pinned by users. In order to test the ability of recom-

mending new images not pinned by users, we also crawled

additional 770,083 images which belong to the 468 inter-

est categories but not pinned by any of the crawled users.

The new image set is named as Inew. In the process, we

also removed duplicated images which may impact the fi-

nal evaluation results. These images were used to evaluate

the performance of new image recommendation.

Figure 4 and Figure 1(a) show three distributions of our

dataset: the distribution of the number of users’ interests,

3http://www.pinterest.com/categories/

Sports

Soccer Basketball

Travel

Ireland Fishing ItalySkiing

Figure 5. Interest categories in Pinterest are organized as a forest.

the distribution of the times an image has been pinned,

and the distribution of the number of users’ pinned im-

ages. These distributions are power-law, where most users

pin only a small number of images and have only a few

interests; similarly, the images are only pinned by a very

small number of users as compared to the total number of

users. These distributions showed the sparsity and diversity

of a typical social curation network. In order to demonstrate

that our method can perform consistently well on different

network topology, we randomly divided our dataset into 10
groups, each of which contains 100, 000 users and around

1, 000, 000 images. The set of images includes those images

pinned by the users in the group, with remaining randomly

sampled from Inew set. The experiments were conducted

on all the 10 groups. We reported averaged results with sig-

nificance tests (applying t-test) and published the dataset 1.

5.2. Implementation Details

For deep CNN, we depoyed Caffe framework [14] for

CNN implementation on a NVIDIA Titan Z GPU. In par-

ticular, we used the well-known AlexNet architecture [16],

which consists of 5 convolutional layers with max-pooling

and 2 fully connected layers before the loss layer. Our CNN

added an additional fully connected layer for the resultant

d-dimensional feature space. We used the author provided

ImageNet pretrained model (in Caffe format) as initializa-

tions. The initial learning rate was set to 1e−4 with dynamic

momentum. The size of the batch was 128 and it took 20

epochs to converge using Algorithm 3. Each epoch took

about 40 mins. For Algorithm 2, we randomly initialized all

the parameters, and the starting learning rate was set to 1e−5

with dynamic momentum. We used 8 computing threads on

a 8-core machine. It took around 100 epochs to converge

with each epoch taking about 10 mins. For the above al-

gorithms, we used �2-norm weight decay with 5e−5 coeffi-

cient. For Algorithm 1, we found that 2 iterations were suf-

ficient for a good solution. The choice of feature dimension

is crucial. We tuned the values within {100, 200, ..., 1, 000}
and found that 300 was the best choice.

5.3. Evaluation Metrics

We evaluated our method and other compared ones on

image recommendation. We adopted the widely-used Nor-

malized Discounted Cumulative Gain (NDCG) as the eval-

1https://sites.google.com/site/xueatalphabeta/academic-projects
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uation metric for both tasks. NDCG is defined as:

NDCGk =
1

IDCGk

×

k
∑

i=1

2ri−1

log2(i+ 1)
(6)

where IDCGk is the maximum NDCGk that corresponds

to the optimal ranking list so that the perfect NDCGk is 1,

and ri is the degree of relevance of the image in position

i. We adopted a 3-scale r ∈ {0, 1, 2} relevance score, rep-

resenting irrelevant, relevant, and highly relevant, respec-

tively. For image recommendation, we defined a recom-

mended image to be: (a) highly relevant if the interest cat-

egory of the image falls within the groundtruth interests of

users; (b) relevant if the interest category of the image maps

to sibling interests of users’ groundtruth interests (Figure 5

illustrates a part of the interest category forest collected

from Pinterest); and (c) irrelevant if none of the above.

In addition to NDCG which measures the relevance of

the recommended images, users may also prefer the recom-

mended images to be more diverse, i.e., if a user has many

interests, results that cover more interests are preferred.

Therefore, we used entropy Hk = −
∑R

i=1 pi ln pi to mea-

sure the diversity of the recommendation results, where Sk

is the set of successfully recommended (highly relevant and

relevant) images up to position k, R is the total number of

types of interests in Sk, and pi is the proportion of images

belonging to the ith type of interest in Sk. Here, a larger Hk

represents more diverse results.

5.4. Comparing Methods

We compared the performance of our proposed Deep

User-Image Feature (DUIF) with the following five base-

line methods: a) Content-based filtering (CBF) [22, 28]: It

generates a user feature vector by averaging all the image

features (we used the state-of-the-art 4,096-d DeCAF [10]

feature) pinned by the user and then recommend images

based on the similarity between the image features and

the user features. b) User-based collaborative filtering

(UCF) [32]: It analyzes the user-image matrix to compute

the similarities between users and then recommends images

to people with similar tastes and preference. c) Item-based

collaborative filtering (ICF) [9]: This technique first an-

alyzes the user-image matrix to identify relationships be-

tween different images, and uses these relationships to in-

directly compute recommendations for users. d) Weighted

Matrix Factorization (WMF) [30]: It decomposes the user-

image matrix into latent user and image features by the

weighted matrix factorization [13] and uses CNN to regress

images to the image vectors. e) Deep Walk (DW) [23]: It

learns the user and image latent representations of vertices

in a social network by applying a language model. Then,

images are recommended by the similarity between the user

features and the image features. We empirically tested dif-
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Figure 6. Performances (NDCGk) of various methods on recom-

mending new images to users based on (a) existing pinned set (Iu)

and (b) new image set Inew.
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Figure 7. Performances of diversity (Hk) of various methods on

recommending new images to users based on (a) existing pinned

set (Iu) and (b) new image set (Inew).

ferent configurations of baseline methods and employed the

best ones as baselines.

5.5. Results and Analysis

For our evaluation, we want to test the effectiveness of

the recommendation methods to recommend new images

based on those pinned by existing user community Iu and

those unseen images Inew not pinned by existing user com-

munity. We note that among the five baseline methods, CBF

is based on the contents of the images, UCF and ICF are

traditional collaborative filtering methods, while WMF and

DW are based on latent factors. We note that UCF, ICF and

DW cannot be used to recommend new images, which are

unseen in existing networks. Hence for testing recommend-

ing new unpinned images from set Inew, we only compare

our proposed method with CBF and WMF.

Figure 6 and 7 compare the performance of recommen-

dation methods to recommend relevant images to users

based on existing pinned set Iu and new image set Inew.

Figure 6 presents the performance in terms of relevance

based on NDCG@K; while Figure 7 presents the perfor-

mance in terms of diversity based on H@K. In addition,

Table 1 and Table 2 separately lists the respective results

with significant test on image recommendation at the top 5,

10, 20, 50 and 100 positions. Some illustrative examples

are shown in Figure 8.

As can be seen from the results, the proposed DUIF
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Table 1. Detailed recommendation performance (NDCGk) on

recommending new images to users based on existing pinned set

(Iu) and new image set (Inew) with significance test. Results la-

beled with ‡ are highly significant (p<0.01), and † indicates sig-

nificant (p<0.05), against the best comparing method.

Existing Image Recommendation

NDCG5 NDCG10 NDCG20 NDCG50 NDCG100

CBF 0.098 0.099 0.100 0.122 0.139

UCF 0.308 0.290 0.226 0.129 0.081

ICF 0.338 0.338 0.314 0.244 0.165

WMF 0.356 0.354 0.352 0.346 0.334

DW 0.457 0.451 0.443 0.416 0.342

DUIF 0.550‡ 0.537‡ 0.519‡ 0.472‡ 0.368†

New Image Recommendation

NDCG5 NDCG10 NDCG20 NDCG50 NDCG100

CBF 0.079 0.080 0.081 0.080 0.081

WMF 0.103 0.110 0.108 0.111 0.110

DUIF 0.304‡ 0.298‡ 0.289‡ 0.276‡ 0.265‡

Table 2. Detailed recommendation performance (Hk) on recom-

mending new images to users based on existing pinned set (Iu)

and new image set (Inew) with significance test. Results labeled

with ‡ are highly significant (p<0.01), and † indicates significant

(p<0.05), against the best comparing method.

Existing Image Recommendation

H5 H10 H20 H50 H100

CBF 0.000 0.000 0.002 0.027 0.071

UCF 0.034 0.035 0.035 0.035 0.035

ICF 0.147 0.243 0.335 0.430 0.465

WMF 0.025 0.052 0.095 0.169 0.230

DW 0.082 0.117 0.152 0.201 0.233

DUIF 0.194‡ 0.350‡ 0.481‡ 0.581‡ 0.589†

New Image Recommendation

H5 H10 H20 H50 H100

CBF 0.002 0.005 0.010 0.020 0.037

WMF 0.005 0.025 0.078 0.312 0.551

DUIF 0.022‡ 0.071‡ 0.180‡ 0.354‡ 0.470

significantly outperforms the other methods for image rec-

ommendation. The comparatively good performance of

DUIF mainly comes from the following aspects. As previ-

ously introduced, the multimedia contents are very diverse,

even for the same interest topic, hence methods (e.g., CBF)

that only consider image contents would have poor perfor-

mance. Moreover, each user often has many different in-

terests. Such diverse images and varying users would re-

sult in a more sparse and complex user-item matrix, which

renders those matrix decomposition based methods such as

UCF and WMF ineffective in revealing the underlying user

interests. Further, we observe that the latent factor based

models such as WMF often outperforms the traditional col-

laborative filtering methods such as UCF and ICF. The find-

ings verified that methods that attempt to discover compact

latent vectors for users and images tend to perform better

than those that directly apply the user-image matrix. Fi-

nally, although DW which is similar to DUIF, it does not

consider the contents of images and the intrinsic property

of social curation network, namely modularity. Hence it

Recommended Images (b)

nail nail hair-style hair-style

cake cake makeup makeup

bird rose rose makeup

kid parenting street style street style street style

fruits makeupcoffeecoffee

shampoo bar makeup coffee hair-style

Users (a)

makeup hair-stylecake

nail cakehair-style

DUIF

WMF

CBF

Figure 8. Illustrative examples of recommending new images to

users using different methods (b) based on users’ pinning profiles

(a).

performs worse than DUIF on the recommendation task.

Overall, DUIF differs from the baseline methods in that it

jointly considers image content analysis and social curation

network topology. Experimental results have shown that it

can effectively map images and users into a unified space

for effective image recommendation.

6. Conclusion

We proposed a novel deep learning framework for learn-
ing the representations for topological user nodes and vi-
sual images in large, very sparse and diverse social cu-
ration network and applied the resulting model to rec-
ommender system. Experimental results on a representa-
tive subset of Pinterest with about 1.4 million images and
1 million users have demonstrated that the proposed ap-
proach can significantly outperform other methods. Ex-
ploiting social media data to generate features could be a
promising research direction in computer vision commu-
nity.
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