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Abstract

Person re-identification is an open and challenging prob-

lem in computer vision. Existing re-identification ap-

proaches focus on optimal methods for features matching

(e.g., metric learning approaches) or study the inter-camera

transformations of such features. These methods hardly

ever pay attention to the problem of visual ambiguities

shared between the first ranks. In this paper, we focus on

such a problem and introduce an unsupervised ranking op-

timization approach based on discriminant context informa-

tion analysis. The proposed approach refines a given ini-

tial ranking by removing the visual ambiguities common to

first ranks. This is achieved by analyzing their content and

context information. Extensive experiments on three pub-

licly available benchmark datasets and different baseline

methods have been conducted. Results demonstrate a re-

markable improvement in the first positions of the ranking.

Regardless of the selected dataset, state-of-the-art methods

are strongly outperformed by our method.

1. Introduction

Person re-identification is the problem of re-associating

a same person moving between the disjoint Fields-of-View

of a wide area camera network. Due to the inherent chal-

lenges present in a multi-camera setting, the person re-

identification is still an open problem. In particular, when a

person is sensed by the different viewpoints of disjoint cam-

eras, his/her appearance undergoes significant illumination

and color variations as well as pose changes. The non-rigid

shape of the human body, as well as background clutter, in-

troduce additional challenges.

In the recent past, the research community endeavored

to overcome the aforementioned issues by proposing differ-

ent methods based on: (i) discriminative signatures exploit-

ing multiple local and global features [39, 22, 25, 24] to

Figure 1: Typical cumulative matching characteristics

(CMC) curve achieved by re-identification approaches. In

the background, a bar-chart indicates the number of true

matches for each rank. In the first ranks the matched per-

sons share visual ambiguities, while higher ones have visual

disparities.

compute the persons representations. These representations

have been combined with reference sets [3], patch match-

ing strategies [42, 28], saliency learning [36] and joint at-

tributes [16]; (ii) feature transformations addressing the re-

identification problem by finding the transformation func-

tions that affect the visual features acquired by disjoint cam-

eras [44, 27]. In [14], a unique brightness transfer function

(BTF) computed between features was used to match per-

sons across camera pairs. Recent works [26, 44, 7] also con-

sidered that the transformation is not unique and it depends

on several factors; (iii) metric learning where approaches

still rely on particular features but also advantage of a train-

ing phase to learn distances used to compute the match in

a different feature space [26, 35]. In [6], a metric learning

framework which minimizes the distance between features

of pairs of true matches, while maximizing the same be-

tween pairs of wrong matches. Performance were improved

by learning a relaxed Mahalanobis metric [12], by consider-
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ing multiple metrics [29] in a transfer learning set up [19],

or by relying on equivalence constraints [35].

Despite all such efforts, the currently achieved perfor-

mance are not satisfactory and sufficient to provide systems

able to autonomously solve the re-identification problem.

Indeed, the re-identification problem is usually cast as a

ranking problem whose results need the final judgment of

the end user. The majority of the works proposed so far

assume that the provided ranking list is optimal and it is

suitable for end user inspection. It is our believe that such

a ranking is not the optimal one for the task and it is just a

first step to remove the majority of the possible mismatches.

Thus, additional inspections on the ranking can be applied

to refine the output. The current work is based on the idea

that any ranking can carry useful information to increase the

position of the true match.

In Figure 1 first ranks share images with visual ambigu-

ities, while higher ones have visual disparities [23]. The

visual disparities, introduced by variations in viewpoints,

pose, illumination changes, etc., induce current methods

to assign a high rank to true match. When the visual dis-

parities are not significantly affecting the visual appearance

of the true match, this is usually located in the first ranks.

However, it is often the case that persons in such first ranks

share a similar visual appearance (i.e., visual ambiguities)

and existing methods have not collected enough ability to

precisely locate the true match among these. This motivates

a study of the visual ambiguities occurring at first ranks so

as discriminative information can be used to improve the

true match rank.

The proposed discriminant context information analysis

builds upon such motivation and introduces an unsupervised

post-ranking framework able to increase the true matches in

the first ranks. Since the approach is specifically designed

to focus on visual ambiguities, it is assumed that the true

match is located in the first ranks. The main goal is to find

the visual ambiguities in a ranking and remove them. For

such a purpose, the concepts of content and context infor-

mation carried by the initial ranking are taken from [17]. In

our formulation, the content information is given by the fea-

tures belonging to the gallery persons that have low dissimi-

larity with respect to the probe (i.e., the correlated matches).

While, the context information is given by the features ex-

tracted from gallery persons that have low dissimilarity with

both the probe and a correlated match. In this way, con-

tent and context information lead to extract the global ap-

pearance shared by the probe and the correlated matches,

thus the visual ambiguities. Then, this is removed before

re-ranking. We named such a framework discriminant con-

text information analysis (DCIA).

2. Related Work

Post-ranking methods for person re-identification is a

relatively unexplored area. Earliest works following the

post-ranking approach exploited ranking SVMs [34], boost-

ing techniques for feature selection [10] or additional cues

coming from soft biometrics [2]. Ranked lists computed

for multiple probe persons were exploited to refine a single

probe ranking [30]. Therefore, the approach works only

if additional rankings (minimum 3 or 4) besides the one

obtained for the current probe are available. Bidirectional

ranking [17] and a saliency-based matching scheme [4]

were also introduced. In the former case, first direction is

usual ranking of the probe with the gallery. Second direc-

tion is the ranking obtained by matching each gallery with

the probe and the rest of the gallery. Hence, differently from

our approach, the whole gallery for post-ranking is consid-

ered, and no focus is placed on the visual ambiguities shared

between first ranks. In the latter, the saliency similarity is

computed between the probe and the gallery only, not be-

tween galleries themselves. Such similarities are adopted to

revise the initial ranking within a local gallery window.

The post-ranking optimization was also studied by in-

cluding human feedback in the loop. The end user had to

identify both similar and dissimilar samples [1, 37], to pro-

vide relative feedback [31], or to select a single strong neg-

ative feedback to refine the ranking [23] in the deployment

stage. In contrast to all such methods, we propose a single-

shot approach that does not require human intervention.

A slightly different approach was recently introduced

in [22], where an iterative extension to sparse discriminative

classifiers was adopted to ensure that the best candidates are

ranked at each iteration. However, such method did not di-

rectly consider the content and the context similarities of

ranked individuals. It cast the problem by analyzing the

reconstruction error and by partially ranking the gallery in

terms of similarity to the probe.

Two main differences between the proposed approach

and all such existing works can be highlighted: (i) there

is no human neither in the training nor in the deployment

loops; (ii) most importantly, the proposed approach is the

only one studying the visual ambiguities shared between

first ranks to improve re-identification performance, thus re-

ranking is performed on a subset of the gallery.

3. Our Approach

3.1. Overview

The proposed re-identification architecture is shown in

Figure 2. It consists of three main modules: ranking com-

putation, re-ranking training and re-ranking computation.

The ranking computation module resembles common re-

identification pipelines and defines the basis for our ap-

proach. Let T be the set of training image pairs (IATr, I
B
Tr)

acquired by disjoint cameras A and B. To model the ap-

pearance of each image a feature vector x ∈ R
d is extracted.

The set of corresponding pairs of feature vectors, here de-

noted as {xA
Tr,x

B
Tr}, is used to learn the model parameters

LxBxA of a classifier/metric that distinguishes between pos-
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Figure 2: Overview of the proposed person re-identification system consisting of three modules: ranking computation, re-

ranking training and post-ranking optimisation.

itive and negative pairs. Then, these are used to compute the

distance between a test probe x
A and every gallery feature

vector xB . This yields to the initial ranking RRR for the set

{xA,xB}.

The purpose of the re-ranking training module is to

learn the parameters of a classifier/metric by exploiting the

discriminative persons’ details identified by analyzing the

given training ranking. The first step is to compute the

training rankings RRRTr. This is accomplished by comput-

ing the distance between each pair in the training set fea-

ture vectors {xA
Tr,x

B
Tr} using the classifier/metric parame-

ters LxBxA . Then, the information carried by RRRTr is ex-

ploited by the discriminant context information analysis to

transform the feature vector set {xA
Tr,x

B
Tr}. The obtained

transformed feature vector set {x∗A
Tr ,x

∗B
Tr } contains the dis-

criminative persons’ details. Finally, the classifier/metric

parameters L∗
xBxA are learned to compute the distance for

the re-ranking of the set {x∗A
Tr ,x

∗B
Tr }.

In the test phase, the re-ranking module exploits the

model parameters L∗
xBxA to compute the final ranking

RRR∗. Precisely, given the initial ranking RRR produced by

the ranking computation module on the feature vectors set

{xA,xB}, discriminant context information analysis is ap-

plied. Then, the final ranking is obtained by computing the

distance between each pair in the transformed feature vec-

tor set {x∗A,x∗B} with the learned classifier/metric model

parameters L∗
xBxA .

3.2. Preliminaries and Definitions

Let A = {IAp }
N
p=1 be the set of N probe images and B =

{IBg }
M
g=1 be the set of M gallery images. Given a probe

image I
A
p its initial ranking is defined as Rp = {IBi }

M
i=1

where the gallery images I
B
i are sorted depending on the

dissimilarity to the probe. In other words, d(IBi , I
A
p ) <

d(IBi+1, I
A
p ), where d(·, ·) is a suitable dissimilarity mea-

Figure 3: Selection of the correlated matches. Gallery im-

ages in the first ranks share visual ambiguities with the

probe. The content information threshold ThCORR deter-

mines which gallery images should be included in the cor-

related matches (orange rectangle).

sure 1 and i goes from 1 to M − 1. RRR = {Rp}
N
p=1 denotes

the set of such initial rankings computed for the N probes.

Our aim is to improve the rank of the true match in Rp.

Towards this objective we first select the content informa-

tion for the probe image. The content information is defined

as the set of features extracted from the correlated matches,

i.e., a subset of gallery images Bcn ⊆ B present in the

first ranks and which are likely to share visual ambiguities

with the probe. Then, the context information is computed.

The context information consists of those features extracted

from gallery persons that share visual ambiguities with both

the probe and any correlated match. Content and context

information are exploited to remove the visual ambiguities

encoded in the original feature vectors, thus to obtain the

discriminant feature vectors. These are used to compute the

final ranking R∗
p.

1In the following presentation, the cosine distance applied to the output

of KCCA has been considered.
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(a) (b) (c) (d) (e)

Figure 4: Selection of the correlated matches threshold. In (a), ranks and corresponding distances obtained for all the probe

images are shown. In (b), an example of the results obtained by applying K-means clustering algorithm to the distances

between a probe and all the gallery images. In (c), (d), (e) three common behaviors of the distances in the visual ambiguities

region are shown. Blue dashed lines represent the limits of the similar appearances cluster. The correlated matches thresholds

(ThCORR) are drawn in magenta.

3.3. Content Information

Existing methods try to locate the true match in the first

ranking positions out from a large set of possible gallery

matches. As shown in Figure 3, the visual ambiguities bring

false matches in the first ranks, often before the true match.

To study the discriminative information shared among the

first ranked images, we define the content information for a

given probe I
A
p . Before computing the content information,

the set of correlated matches Bcn have to be selected. Ele-

ments in such a set are selected from the top m positions in

the initial ranking Rp which have a matching distance less

than ThCORR.

To select such m correlated matches, we propose a dy-

namic method that does not require ThCORR to be fixed a

priori but let it vary for every probe. Such dynamic method

requires two steps: definition of the visual ambiguities re-

gion and analysis of the distances distribution.

The solution to the first step is inspired by the shape of

the distances vs ranks plots depicted in Figure 4(a). In-

deed, Figure 4(a) shows that there exists a significant trend

among all distance vectors highlighting that: (i) at first

ranks, distances with the probe image increases abruptly,

then flatten (first elbow); (ii) from the first elbow, distances

grow linearly till reaching high ranks, where they finally

start increasing significantly. According to such trend we

have identified three classes of gallery images (see Fig-

ure 4(b)): (i) similar appearance class (Csa) which corre-

spond to gallery images with distances located before the

first elbow; (ii) dissimilar appearance class (Cda) corre-

sponding to gallery images having distances located be-

tween the two elbows and (iii) opposed appearance class

(Coa) which correspond to all the other galleries.

As shown in Figure 4(b), Csa represents gallery im-

ages lying in the visual ambiguities region (first positions

of the ranking). To identify such a cluster, we propose

to use the K-means clustering algorithm as follows. Let

D = {d(IB1 , I
A
p ), . . . , d(I

B
M , IAp )} be the set of distances

used to generate the ranking Rp = {IBi }
M
i=1. Then, the ob-

jective is to divide D in the three clusters Csa, Cda and Coa.

This task is accomplished by minimizing:

argmin
C

K
∑

i=1

∑

d(IBj ,IAp )∈Ci

‖d(IBj , I
A
p )− µi‖

2, j = 1, . . . ,M

(1)

where µi is the mean of the distances within cluster Ci ∈
C and K = 3 corresponds to the number of clusters.

Once the minimization is concluded, Csa is defined by

{d(IB1 , I
A
p ), . . . , d(I

B
k , I

A
p )}, where distances are sorted in

ascending order. Thus, k represents the index of the largest

distance in Csa.

Once the similar appearance images (i.e., the visual am-

biguities region) are detected, the m correlated matches are

selected by analyzing the distribution of the distances in

Csa. Such a process is carried out considering that not all

the gallery images corresponding to distances within Csa

are likely to share visual ambiguities with the probe. In-

deed, as shown in Figure 4(c), (d) and (e) it may happen

that, due to the appearance of the probe image or the ability

of the baseline model, the ranked distances are close to the

centroid but not to each other. As a result large differences

between consecutive rank distances can appear.

We hypothesize that only the gallery images correspond-

ing to distances occurring before the largest gap are relevant

to identify the visual ambiguities. These define a subspace

where visual ambiguities are present, therefore removing

them may help in distinguish the true match from the other

gallery images with similar appearance. Following this

idea, three cases can be identified: (i) the most of gallery

images are considered as correlated matches since the gap

among distances is practically uniform (Figure 4(c)); (ii) a

few gallery images occurring before the largest gap are se-

lected (Figure 4(d)); (iii) only the first gallery image is se-

lected to form the correlated matches (Figure 4(e)). In such

a case, the gallery generally corresponds to the true match.

To locate the largest gap in the visual ambiguities re-

gion, hence to obtain the threshold for correlated matches

selection ThCORR we proceed as follows. Given the set of
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Figure 5: Representation of content and global context information for a probe image. Gallery images inside the red rectangle

represent the content information set. Gallery images in the blue ellipse represent the global context information set.

ordered distances Csa = {d(IB1 , I
A
p ), . . . , d(I

B
k , I

A
p )}, the

correlated matches threshold ThCORR is computed as

argmax
d(IBi ,IAp )

{d(IBi , I
A
p )− d(IBi+1, I

A
p )}, i = 1, . . . , k − 1 (2)

The set of m correlated matches equals Bcn =
{IBi |d(I

B
i , I

A
p ) ≤ ThCORR}. Therefore, the content in-

formation set Ccn
p = {xcn

1 , . . . ,xcn
m} contains the m fea-

ture vectors extracted from the correlated matches in Bcn.

Notice that, only persons in the correlated matches are re-

ranked. This is compliant with the assumption that the true

match is located in the first rank positions that share visual

ambiguities.

3.4. Context Information

Context information can be defined as the object fre-

quency appearance in a particular domain. In image re-

trieval, the context information is the set of images contain-

ing the target object. We provide a similar definition for the

person re-identification problem: the context information is

given by the K-common nearest neighbors of the probe and

a correlated match.

Figure 5 shows the steps to obtain the context informa-

tion for a probe I
A
p using its correlated matches. First,

we compute the initial ranking list Rg for each correlated

matching image I
B
g ∈ Bcn. In such a case, the ranking

is computed by evaluating its similarity with images in the

gallery set B∗ = (B\IBg ) ∪ I
A
p using the model parameters

LxBxA and distance d(·, ·).
Then, given Rp and Rg , we define four clusters using

the distance measure d(·, ·) and two thresholds Th
Rp

CORR

and Th
Rg

CORR computed using the method proposed in sec-

tion 3.3. The clustering conditions are given in Table 1.

Table 1: Proposed context clustering conditions. Each

I
BB∗

i ∈ B ∩ B∗ is assigned to the cluster that satisfies both

conditions.

Distances C1 C2 C3 C4

d(IBB∗

i , IAp ),Th
Rp

CORR
> < > <

d(IBB∗

i , IBg ),Th
Rg

CORR
> > < <

C4 is the context relevant cluster. The clustering pro-

cess is carried for each correlated match, thus generating m
clusters denoted as C

g
4 , for g = 1, . . . ,m. The elements

in each C
g
4 represent the images that have high similar-

ity with both the probe and the correlated match I
B
g itself

(i.e., the nearest neighbors). The context information is ex-

tracted from the K common context matches. These are

the gallery images having the K highest frequencies in the

set C4C4C4 = {Cg
4}

m
g=1 (see Figure 5). The feature vectors ex-

tracted from such images form the context information set

Ccx
p = {xcx

1 , . . . ,xcx
n }, where n = max(| ∪m

g=1 C
g
4 |,K).

The hard threshold K has been introduced to reject

gallery images that are likely to have different visual ap-

pearance in the context information computation. Finally,

Ccx
p is updated by removing feature vectors that are in du-

plicated in Ccn
p , i.e. Ccx

p = Ccx
p \Ccn

p .

3.5. Discriminant Information Analysis

The content and context information provide a set of im-

ages with similar global appearance. The goal of this analy-

sis is to detect, hence to remove the visual ambiguities from

the corresponding feature vectors. This allows to focus on

discriminant features that might help to correctly locate the

true match within the correlated matches and increase its

position in the initial ranking.

1309



We hypothesize that visual ambiguities mainly corre-

spond to the global appearance, hence to remove such in-

formation the principal components of such feature vectors

should be considered. Thus, to remove the visual ambigui-

ties, we use principal component analysis (PCA) as follows.

Given a probe image I
A
p , let Dp = {xp, C

cn
p , Ccx

p } be the

set composed of its feature vector and of feature vectors ob-

tained in the content and context information. We redefine

Dp as a feature matrix Dp ∈ R
d×l with zero mean, where

l = 1 +m+ n is the number of vectors. Let P ∈ R
d×k be

the first k principal components of Dp selected to represent

the common appearance subspace. We project Dp to the

subspace as PP
T
Dp. Thus, the discriminant information

can be obtained as:

D
∗
p = Dp −PP

T
Dp (3)

where each column of D∗
p represents a discriminant feature

vector x∗.

Re-Ranking Training: The proposed discriminant con-

text information analysis is applied to each ranking RTr
p ∈

RRRTr. As result, for each probe p we get the dis-

criminant feature vectors x
∗A
p and x

∗B
g ∈ {Ccn

p , Ccx
p }.

The resulting sets x
∗A
Tr = {x∗A

p }
|T |
p=1 and x

∗B
Tr =

{

x
∗B
g |x∗B

g ∈ {Ccn
p , Ccx

p }
}|T |

p=1
together with the pairwise la-

bels are used to learn a classifier/metric parameters L∗
xBxA .

Post-Ranking Optimisation: In a similar way, given

a test ranking in RRR, the discriminant context information

analysis is performed to obtain the discriminative test fea-

ture vectors x∗A
p , x∗B

g . Then, the set of such vectors {x∗A,

x
∗B} is evaluated by the classifier/metric having learned pa-

rameters L∗
xBxA . The so computed final distance is used to

re-rank the correlated matches, hence to compute the final

ranking RRR∗.

4. Experimental Results

In this section we on report the performance of our ap-

proach on three publicly available datasets. First, datasets

details and settings are given. Second, we introduce the

baseline models selected to obtain initial rankings and our

implementation details. Then, an evaluation of our ap-

proach for each baseline model and discussions about the

results obtained using our post-ranking optimisation are

provided. Finally, comparisons with state-of-the-arts meth-

ods are shown.

4.1. Datasets

VIPeR Dataset2: The VIPeR dataset [8] is consid-

ered the most challenging person re-identification dataset.

It contains images of 632 persons viewed by two non-

overlapping cameras. The 1264 images have severe light-

ing variations, different viewpoints and background clutter.

2Available at http://soe.ucsc.edu/˜dgray/

Following the commonly adopted procedure [8, 15, 21], the

dataset has been split into two subsets of 316 persons each,

for training and test respectively.

PRID Dataset3: The PRID dataset [10] contains 1134

images acquired by two disjoint cameras, named camera A
and camera B. 385 persons appears in camera A and 749

in camera B, but only 200 persons are contained in both

cameras. This dataset comes with numerous persons with

similar appearance, hence the visual ambiguities are higher

than in the VIPeR. For the evaluation, we have adopted the

same protocol proposed in [12]: persons from camera A
are used as probes and persons from camera B as gallery.

Among the 200 persons appearing in both cameras, we have

randomly selected 100 persons for training and 100 for test-

ing. The remaining 549 persons appearing only in camera

B are referred to as the “distractors”. We provide results for

the case where distractors are included in the gallery.

CUHK02 Dataset4: The CUHK02 dataset [18] contains

1816 persons and five camera pairs which have 971, 306,

107, 193 and 239 persons, respectively. Each person has

two images in each camera view. It is a challenging dataset

due to pose variations and lighting changes that occurs be-

tween camera pairs. To evaluate our approach we have used

the same protocol as in [18], hence selected the camera pair

having 971 persons. We have split into two sets, containing

485 (training) and 486 (test) persons, respectively.

4.2. Implementation Details

To model the person appearance we have used the rep-

resentation in [21]. Images have been resized to 64 × 128
pixels. Feature vectors are represented by isotropic Gaus-

sian weighted color histograms extracted from 8 horizon-

tal stripes. From each stripe we extract 24-bins histograms

from the Hue-Saturation (HS), RGB and Lab channels. His-

togram of oriented gradients (HOG) quantized in 4 bins, and

local binary patterns (LBP) sampled from a grid with cell

size equal to 16 pixels, have been concatenated to form the

final 4842-dimensional feature vector.

We have used four baseline models to evaluate the per-

formance of the proposed discriminant information analysis

algorithm, namely KCCA [21], KISSME [15], LADF [20]

and the Euclidean distance. Following our notation, LxBxA

and L∗
xBxA represent the set of parameters learned by such

algorithms trained on feature vector sets {xA
Tr,x

B
Tr} and

{x∗A
Tr ,x

∗B
Tr }, respectively. For KCCA d(·, ·) is the cosine

distance applied in the KCCA space while for KISSME and

LADF it is the learned non-Euclidean metric.

We have selected K = 10 as the maximum number of

common context matches in our current framework. k prin-

cipal components corresponding to the 55% of energy of

the set of feature vectors, have been used to represent the

3Available at http://lrs.icg.tugraz.at/download.php
4Available at http://www.ee.cuhk.edu.hk/˜xgwang/

CUHK_identification.html
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common appearance subspace. To make a fair compari-

son, for each experiment, we have run 10 trials using ran-

dom person IDs. The results averaged over these 10 trials

are shown in terms of Cumulative Matching Characteristics

(CMC) curve.

4.3. Analysis of the Proposed Approach with differ­
ent baseline models

Figure 6 shows the performances of DCIA applied on

baseline models, for VIPeR, PRID and CUHK02 datasets.

On the right side of each sub-figure, a zoom of the 3 first

ranks is shown to remark the improvement of DCIA with re-

spect to the baseline models. Since only correlated matches

are re-ranked, variations mainly occurs at first ranks. Thus,

we show the results for the first 25 ranks. For the rest of

ranks, we obtain comparable results to baseline models.

In Figure 6(a), comparisons with baseline models are

given for the VIPeR dataset. KCCA obtains a recognition

percentage of 42.09% for rank 1, whereas KCCA+DCIA

achieves a 63.92%, thus improving the baseline model re-

sults by more than 20%. Similarly, for KISSME, LADF and

Euclidean distance models, the rank 1 recognition percent-

age increases from 33.8% to 38.87%, 40.53% to 44.67%
and from 12.97% to 16.29%, respectively. Though the

DCIA boosts all baseline results, the most remarkable im-

provement is achieved using the KCCA baseline model. In

such a case DCIA improves the first 18 ranks. The first 5,

4 and 5 ranks are improved when the DCIA is applied over

KISMME, LADF and Euclidean distance.

As is shown in Figure 6(b), DCIA provides a remark-

able performance gain over baseline models when the PRID

dataset is considered. It improves the initial results up to

the first 21 ranks for Euclidean distance, the first 15 ranks

for KCCA, the first 14 ranks for KISSME and the first 17
ranks for LADF. In particular, the recognition percentage

increases from 18.0% to 39.0% for rank 1 using KCCA

as baseline model, from 14.0% to 23.5% using KISSME,

from 29.5% to 36.5% using LADF and from 11% to 18%
using the Euclidean distance. Notice that the performance

boost affects more ranks than for the VIPeR. This is because

the PRID dataset has several persons that looks very similar

to each other. Hence, the content information set includes

more images from which our method is able to extract the

discriminative features.

Figure 6(c) shows the performance of the proposed ap-

proach on CUHK02 dataset. The best performance is ob-

tained using KCCA. In such a case the rank 1 improvement

is of about 24%. DCIA improves the initial results for the

first 24 ranks using KCCA and Euclidean distance and for

the first 8 and 10 ranks using KISMME and LADF.

Finally, to analyze the contribution of the content and

context information we have computed the results in Ta-

ble 2. Results are shown in terms of rank 1 recognition

performance. Results demonstrate that by removing the

content information (3rd column) initial performances de-

crease. The opposite occurs when context information is

removed (4th column). Results show that for every dataset,

the optimal performance are achieved when both of them

are exploited (last column). To summarize, while content

information is more important than the context one, both

form the whole similar appearance space thus should be

jointly used to obtain better results.

Table 2: Contribution of content and context information in

DCIA. Rank 1 results obtained for each dataset are shown.

Best performance are highlighted in boldface font.

Dataset
Baseline DCIA

Model No Content No Context All

VIPeR 42.09 32.66 54.42 63.92

PRID 18.00 14.00 29.50 39.00

CUHK02 38.52 26.25 53.57 61.67

4.4. Comparison with state­of­the­art methods

In this section we compare the proposed algorithm with

state-of-the-art methods on the three selected datasets. Fig-

ure 7 shows the CMC curves up to rank 25 for each method

on every dataset. Similar to the previous section, we include

a zoom for the 3 first ranks on the right side.

In Figure 7(a), performances of DCIA on VIPeR dataset

are compared with existing methods for which either the full

CMC curve or the code is available, namely KISSME [15],

LF [33], LADF [20], LMF [43], LMF+LADF [43] and

KCCA [21]. KCCA+DCIA outperforms existing ones es-

pecially for the most representative ranks. In particular,

we achieve a correct recognition percentage of 63.92% for

rank 1, while none of the other reach a recognition percent-

age higher than 45%. The performance gap decreases for

higher ranks. This is due to the fact that we perform the

post-ranking on correlated matches only.

Figure 7(b) shows comparisons with those ob-

tained by KISSME [15], DDC [10], EIML [11],

RPLM [12], LADF [20] and KCCA [21] on PRID

dataset. KCCA+DCIA and LADF+DCIA perform sim-

ilarly but outperforms all states-of-the-art methods up

to rank 9 where similar results to baseline models are

achieved. In particular, KCCA+DCIA reaches a rank

1 recognition percentage of 39.0% thus improving the

baseline performance by more than 20%.

In Figure 7(c), we report on the performance obtained

by DCIA on the CUHK02 dataset and compare with

those of CCA [13], ITML [5], LDM [41], mLMNN [38],

LADF [20], KISSME [15], SWF [29], LAFTV [18] and

KCCA [21] . As for previous scenarios KCCA+DCIA

achieves a rank 1 recognition rate of 61.7% and outper-

forms existing approaches up to rank 20. For the same rank,

recognition rates of 5.2%, 9.6%, 11.3%, 14.3%, 22.2% ,

22.8%, 25, 8% and 38.5% are reached by the methods used

for comparison.
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(a) (b) (c)

Figure 6: Performance of the proposed algorithm using different baseline models on: (a) VIPeR dataset, (b) PRID dataset

and (c) CUHK02 dataset. Results are shown as CMC curves and compared to the baseline approach.
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Figure 7: Comparisons of the proposed algorithm with state-of-the-art methods: (a) on the VIPeR dataset, (b) on the PRID

dataset (including distractors) and (c) on the CUHK02 dataset.

Table 3: Comparison with re-ranking methods on the

VIPeR dataset. Recognition percentages for some relevant

ranks are shown. Best results are in boldface font.

Rank → 1 5 10 25 50

Euc. Dist.+ DCIA 16.29 33.38 47.46 58.86 72.78

DDC [10] 19 - 52 69 80

KISSME+SB [2] 19.3 50.7 63.3 78.2 90.6

KISSME+CCRR [17] 22 49 69 87 95

RIRO [37] (1 Iteration) 28 30 34 51 64

PRRS [4] 33.29 - 78.35 - 97.53

KISSME+ DCIA 38.87 67.96 82.01 93.62 98.36

IRT [1] (1 Iteration) 43 45 46 53 61

LADF+ DCIA 44.67 71.54 83.56 93.82 98.52

POP [23] (1 Iteration) 59.05 60.95 63.10 72.20 -

KCCA+ DCIA 63.92 78.48 87.50 96.36 99.05

4.5. Comparison with post­ranking methods

To demonstrate the benefits DCIA with respect to other

post-ranking methods we have included Table 3. Since the

majority of the re-ranking methods provide results using the

VIPeR dataset only, we compare our performance on such

a dataset. RIRO [37], IRT [1] an POP [23] have an iterative

operation which requires users being in the loop. To make

a fair comparison, we considered the performance obtained

using a single iteration. Results show that KCCA+DCIA

outperforms all existing methods. In particular, it improves

the best performance (59.05%) obtained so far by POP [23]

(1 iteration) by more than 4%. Concerning a comparison

with post-ranking models for generic image search and re-

trieval like [40, 9], the proposed solution performs better

since such methods, as shown in [23], achieve worse re-

sults than POP [23]. More interestingly, notice that SB [2]

and CCRR [17] provide the performance achieved using

the KISSME baseline model. Using such baseline model,

SB and CCRR improve the rank 1 baseline performance by

0.7% and 2%, respectively. DCIA improves the rank 1 per-

formance by 5%. Thus, it is more effective than existing

methods when applied to the same baseline model.

5. Conclusion

In this paper we have proposed a novel unsupervised

post-ranking approach to improve the first rank person re-

identification performance. We have focused on the visual

ambiguities share between first ranked persons. A discrimi-

nant information analysis, based on content and context in-

formation, has been proposed to remove common global

appearance. The performance of our method has been

compared with state-of-the-art methods using three public

benchmark datasets. Results demonstrated that first rank

performance improves. In particular, previously rank 1 per-

formances have been improved by more than 20% on two

datasets. This strongly support our believes,i.e., that the ini-

tial ranking includes relevant information that can be used

to improve first rank performance.

As future works we will investigate different approaches

to identify the persons sharing visual ambiguities, e.g. [32].
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