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Abstract

Feature dimensionality reduction has been widely used

in various computer vision tasks. We explore feature selec-

tion as the dimensionality reduction technique and propose

to use a structured approach, based on the Markov Blan-

ket (MB), to select features. We first introduce a new MB

discovery algorithm, Simultaneous Markov Blanket (STMB)

discovery, that improves the efficiency of state-of-the-art al-

gorithms. Then we theoretically justify three advantages of

structured feature selection over traditional feature selec-

tion methods. Specifically, we show that the Markov Blanket

is the minimum feature set that retains the maximal mutual

information and also gives the lowest Bayes classification

error. Then we apply structured feature selection to two

applications: 1) We introduce a new method that enables

STMB to scale up and show the competitive performance

of our algorithms on large-scale image classification tasks.

2) We propose a method for structured feature selection to

handle hierarchical features and show the proposed method

can lead to big performance gain in facial expression and

action unit (AU) recognition tasks.

1. Introduction

Large scale computer vision problems become increas-

ingly relevant in the age of big data. Recognition tasks in

these vision problems are often aided by large-scale fea-

tures. Many such high-dimensional features, such as Fisher

Vector (FV) [33], Vector of Locally Aggregated Descriptors

(VLAD) [18], and Super Vectors [49], have been proposed

for different visual recognition and image retrieval tasks,

and they have achieved state-of-the-art performance. How-

ever, these large dimensional features significantly increase

computational complexity as well as memory requirement.

If one chooses to adopt schemes such as spatial pyramid

matching structure [5], the feature size becomes even larger.

As a result, dimensionality reduction techniques such as

feature compression [35, 13] have been widely used to al-

leviate the computational burden. In particular, Product

Quantization (PQ) methods [17, 27, 12] have achieved a lot

of success in the recognition tasks [6]. Other dimension

reduction techniques such as feature extraction and sub-

space learning [37, 26, 28, 43] are also regularly used by

the vision community. Recently, studies [48] have shown

that feature selection may perform equally well or better

for certain vision tasks, as the linear projection assumption

in feature compression methods can be easily violated in

real domains. Furthermore, for well-defined features such

as human body joint positions and facial component loca-

tions, projection-based methods would lose features’ phys-

ical meanings.

In this work, we explore feature selection as the dimen-

sionality reduction technique and propose a structured fea-

ture selection approach based on Markov Blanket (MB) dis-

covery. From the graph-theoretic point of view, the Markov

Blanket of a variable consists of its immediate neighbors in

a graphical model. Probabilistically, the MB has an unique

and valuable property: given the MB of a target node, all

other nodes are independent of the target node. Given this

property of the MB, feature selection for a target variable

can be formulated as finding the features that are the MB

of the target node. Feature selection can therefore be car-

ried out as the MB discovery for the target variable such as

class labels. Unlike the traditional feature selection meth-

ods, feature selection using the MB considers the structural

information among variables. We introduce a new MB dis-

covery algorithm that improves the efficiency over the ex-

isting MB discovery method. We also theoretically show

that the optimal Markov Blanket is the minimum feature set

that retains the maximal amount of mutual information to

the target node, and also gives the lowest Bayes classifica-

tion error. We then apply the proposed MB-based method

to large-scale and hierarchical feature selection in computer

vision tasks to show its effectiveness.

2. Related Work

Feature selection have been applied in many vision tasks

such as face recognition [15], eye movement analysis [4],

medical imaging [50], image annotation [20], object and

scene recognition [34], and digit and texture classification

[7]. Their methods can be roughly divided into three dif-
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ferent approaches: the wrapper, embedded, and filter ap-

proaches. The wrapper approach uses the classification ac-

curacy as the criterion to select features. The embedded

approach uses a classifier-specific criterion to select fea-

tures. In comparison, filter methods select features by using

only the statistics of the data. They make the least amount

of assumption, are classifier-independent, are the easiest to

scale up, and can be used in conjunction with any super-

vised learning models. For this work, we will focus on the

filter-based approach.

Although most feature selection methods try to achieve

the best classification accuracy, they do not explicitly con-

sider structure relationships among features. Structure rela-

tionships are the essence of human reasoning and decision-

making. If we know the relationships among several fea-

tures or factors, we can then predict the consequences of

certain actions [29]. This motivates us to use MB-based

structured feature selection methods1. They are a type of fil-

ter feature selection methods. Many principled algorithms

have been proposed to find the Markov Blanket. The Koller

and Sahami algorithm (KS) [19] is the first method to find

the MB via an approximated search. Since then, many pop-

ular methods such as HITON-MB [2] and Iterative Parent-

Child based search of MB (IPCMB) [10] algorithms have

been proposed to improve both the accuracy and efficiency

of MB discovery. Almost all of them use independence tests

to infer the MBs and have been successfully applied to fea-

ture selection [19, 41, 31] in the field of drug discovery, clin-

ical diagnosis, text categorization, document collection, and

many machine learning datasets. Extensive experiments [3]

show the extremely competitive performance of MB-based

structured feature selection.

Although structured feature selection considers the

structure information, it is very different from traditional

structural pattern recognition [1, 47]. Structural or Syntac-

tic pattern recognition considers the structure in physical

shapes to construct either a grammar or isomorphic graphs.

The nodes in the graph are deterministic and classification

relies on graph-matching techniques.

3. Structured Feature Selection

3.1. Background

We use the standard definitions for probabilities, entropy,

and mutual information. Let V denote a set of random vari-

ables. A Bayesian Network for V is represented by a pair

(G, θ). The structure G is a directed acyclic graph (DAG)

with nodes corresponding to the random variables in V and

directed links capturing the dependencies between the con-

nected nodes. If a directed link exists from node X to node

Y , X is a parent of Y and Y is a child of X . Two non-

1Existing work sometimes also refers to MB-based feature selection as

Causal Feature Selection [3].

adjacent nodes that share the same children are spouses.

Descendants of T include T ’s children, children’s children

and so on. The parameters θ represent the conditional prob-

ability distribution of each node X ∈ V given its parents.

For the rest of the paper, we use | · | to represent the size of

a set, and X ⊥⊥ Y and X ⊥\⊥ Y to represent independence

and dependence between X and Y , respectively.

In a Bayesian network (BN), the Markov Blanket [29]

of a target variable T , MBT , is the minimal set of nodes

conditioned on which all other nodes are independent of T ,

denoted as X ⊥⊥ T |MBT , ∀X ⊆ {V \ T \MBT }. MBT

is minimal if none of its proper subsets satisfies the above

property. In a BN, the MB of a node consists of the node’s

parents, children, and spouses. Given its MB, all paths from

the target node to the remaining nodes are cut off and all

the remaining nodes become irrelevant to the target node.

For example, in Figure 1, the MB of node T , MBT , con-

sists of its parent node P , its child node C, and its spouse

S. All other nodes A, B, R, D, and E are independent

of T , given MBT . Given an unknown distribution P that

satisfies the Markov condition with respect to an unknown

DAG G, Markov Blanket discovery is the process used to

estimate the MB of a target node from independently and

identically distributed (i.i.d) data samples D of P . Assum-

ing the faithfulness condition holds and independence tests

correctly reflect independence, the MB of a target node is

uniquely identifiable.

T 

C 

S 

D 

P 

R 

A 

B E 

Figure 1. Sample Bayesian Network. Black node T is the target

node and the shaded nodes are the Markov Blanket of T .

Lastly, one of the main concepts in MB algorithms is the

symmetry constraint, which states that for a node X to be a

parent or child of T , both of the following statements must

hold true: X must be in the parent and children (PC) set of

T and T must be in the PC set of X , i.e. X ∈ PCT and T ∈
PCX . Recent state-of-the-art algorithms [2, 10] employ

the symmetry constraint to remove those false positive PC

nodes in the returned PC set. In Figure 1, for example, using

the IPCMB algorithm, node D would be in the returned PC

set of T due to D ⊥\⊥ T |Z, ∀Z ⊆ {P,C}, and D can be

removed using the symmetry constraint.
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3.2. MB Discovery Algorithms

Existing Markov Blanket discovery algorithms typically

first identify the PC nodes of the target node and then the

spouse nodes. The detailed description of previous works

can be found in the supplementary material. We propose a

new Simultaneous Markov Blanket (STMB) discovery al-

gorithm, building on the state-of-the-art algorithm IPCMB

[10] to improve MB discovery efficiency. Compared with

IPCMB, STMB does not use the very costly symmetry con-

straint that requires to find the MBs of each PC node of

the target. STMB is based on the BN and MB topology,

and systemically performs independence tests to identify

the PC set of a target node first and then find the spouses.

The proposed algorithm, shown in the Algorithm 1, has two

steps; 1) the first step of STMB identifies the PC set us-

ing the same step 1 as IPCMB. It returns the learned PC set

of T and separation sets for each non-PC variable X (i.e.,

X ⊥\⊥ T |SepT {X}). 2) in Step 2, STMB finds the spouses

and removes the non-MB descendants from the PC set at

the same time. Previous finding concludes that potential

non-MB descendants may exist in the identified PC set in

Step 1 [31], and we introduce a new method instead of the

symmetry constraint to remove them. Specifically in Step

2 of Algorithm 1, STMB looks for a node Y ∈ PCT that

unblocks one path from T to some node X ∈ V\PCT (i.e.,

a candidate spouse set). If such a Y was found, X could be

a spouse (Line 13) and Y could be a child or non-MB de-

scendant node. If Y is a non-MB descendant (Line 9), Line

10 removes Y from PCT . Then starting at Line 19, STMB

tests for false positive spouses X by conditioning on other

nodes that are unblocked by each child Y . If X and T are

independent, X is removed from the spouse candidate set

(Line 23). STMB then tests for other non-MB descendants

X in the PC set that may have multiple unblocked paths to

the target. If X and T are conditionally independent, X is

removed from the PC set (Line 29).

STMB reduces the worst-time complexity of the state-

of-the-art algorithm IPCMB [10] by O(C), where C =
maxi |PCi|, i ∈ PCT . Overall, STMB belongs to stan-

dard constraint-based BN learning procedures [30]. For

more detailed analysis and empirical evaluation of STMB

on standard machine learning datasets, please refer to the

supplementary material. The soundness and completeness

of STMB can be proven from the algorithm procedure.

3.3. Properties of MB-based Feature Selection

MB discovery can be thought of as an information-

theoretic filter approach (i.e., classifier independent) to se-

lect features, as it only tests independence relationships

among features. Compared to standard filter feature selec-

tion methods, structured feature selection using MB have

several advantages [3]: 1) it guarantees the selection op-

timality, 2) it returns the minimum feature set, 3) and it

Algorithm 1 STMB Algorithm

1: Input: Data, D; target node, T

2: CanMBT ← V \ T ;

{step 1: find the PC set }
3: [PCT ,SepT ]← RecogPC(T ,CanMBT ,D);

{step 2: find spouses and remove descendants}
4: spouseT ← ∅;
5: remove← ∅;
6: for each Y ∈ PCT do

7: for each X ∈ { CanMBT \PCT } do

8: if X ⊥\⊥ T |SepT {X} ∪ Y ) then

9: if Y ⊥⊥ T |Z, Z ⊆ {PCT ∪X \ Y } then

10: remove← remove ∪ Y ;

11: break;

12: else

13: spouseT {Y } ← spouseT {Y } ∪X;

14: PCT ← PCT \ remove;

15: for each Y in spouseT do

16: for each S in nonempty spouseT {Y } do

17: testSet← PCT ∪ spouseT {Y } \ S;

18: if S ⊥⊥ T |testSet then

19: remove S from spouseT {Y };
20: for each X ∈ PCT do

21: if X ⊥⊥ T |{PCT ∪ spouseT \X} then

22: PCT ← PCT \X;

23: MB← spouseT ∪PCt;

has minimum Bayes classification error. Although empiri-

cal studies [14, 3] on machine learning datasets support the

superiority of MB methods, there are no current theoretical

justifications on these advantages, besides Koller & Sahami

[19] who showed the first advantage of the optimality by

minimizing cross entropy. Aiming to enrich the theoreti-

cal analysis, we first show the feature selection optimality

from the mutual information point of view, in preparation to

justify other advantages later.

Theorem 1. Maximal Mutual Information. Let MB be

the Markov Blanket for a target T and V be the entire fea-

ture set of the target T , I(MB;T ) ≥ I(S;T ), ∀S ⊆ V .

Theorem 1 states that features selected by the MB dis-

covery methods contain all the information about the target

variable. Following Theorem 1, it can be shown that the

MB is the smallest feature set that contains the most mutual

information to the target. Adding features to the MB feature

set does not increase the mutual information and removing

features from MB loses mutual information.

Theorem 2. Minimum Feature Set. Let MB be the

Markov Blanket for a target T and V be the entire feature

set to the target T . Let X ∈ V \MB and Y ∈MB, then:

1)I(MB;T ) = I(MB ∪ X;T ), and 2)I(MB;T ) >

I(MB \ Y ;T ).
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Several works [36, 46] argue that feature selection is

ultimately for classification and it is ideal to choose fea-

tures that minimize the classification error directly, with the

Bayes error as the discriminative optimal criterion. Here

we prove that using MB as the feature set also minimizes

the Bayes classification error. Specifically, let V be a n-

dimentional feature vector, C be the classes with a prior dis-

tribution p(C) and a probability density function p(V |C),
Bayes error [11] or the probability of misclassification is

defined as:

ǫ = 1−

∫
Rn

max
1≤i≤C

p(i)p(V |i)dV (1)

The feature selection discriminative criterion can be for-

mulated as the following, where S indicates different fea-

ture subsets:

Ŝ = argmin
S

ǫS (2)

Direct minimization of the Bayes error is a difficult prob-

lem, and many indirect approaches have been proposed. We

choose to minimize the Bayes error by minimizing Bayes

error bounds related to mutual information. Two important

bounds, Fano’s lower bound (LB) [9] and Hellman’s upper

bound (UB) [16] are particularly helpful:

LB : ǫS ≥
H(T )− I(T ;S)−H(p(ǫ))

log
2
(C − 1)

(3)

UB : ǫS ≤
H(T )− I(T ;S)

2
(4)

where S is a feature set and C is the total number of

classes in the class variable T .

Theorem 3. Minimal Bayes Error. Let MB be the

Markov Blanket for a target T and V be the entire feature

set to the target T . The MB feature set minimizes both the

LB and UB of ǫS .

The formal proofs for the above three theorems can be

found in the supplementary material.

4. Computer Vision Applications

In this section, we demonstrate the performance of the

proposed structured feature selection for two computer vi-

sion applications: large-scale feature selection and hierar-

chical feature selection.

4.1. Large-Scale Feature Selection using MB

MB discovery is computationally expensive. Despite its

improved efficiency over the existing methods, STMB still

cannot effectively scale up to large datasets. To address this

issue, we propose a new method that enables MB discovery

methods to scale up with minimal or no property violations.

Inspired by feature compression methods such as PQ

[17], we divide the entire feature space into d different seg-

ments with K features in each segment Si, with ∪iSi =
V, i = 1, ..., d. Then we find one MB, MBi, of the target

T within each segment Si. It can be shown that the PC set

of T , PCT , will always be in ∪iMBi, because PCT is al-

ways dependent on the target regardless of its conditioned

set and will always remain in one of MBi. However, the

learned MB’s from each segment are mostly likely not the

MB learned from the entire feature space. With this pro-

cedure, the true MB variables are not necessarily present at

each individual segment and learned MBs of each segment

may contain false positive MB variables. This problem is

solved by repeating this divide-and-conquer procedure (line

5∼6). From ∪iMBi, we can break current features into a

few more segments and re-discover a MB within each seg-

ment to further prune features, if the returned feature size

still remains undesirably large. This procedure breaks down

the large number of features and eases the computational

load, while still finding the true PC set in the end. If de-

sired, after finding MBs for each segment, left-out spouse

nodes are added back in by finding features that are condi-

tionally dependent on the target. The procedure is listed in

Algorithm 2.

Algorithm 2 Large-Scale MB Feature Selection

1: Input: Feature, D; target node, DT ; Folds, d

{Step 1: find MB for each segment}
2: break D into Di, i ∈ 1, ..., d;

3: find MBi of T within each Di using STMB;

4: Feat← ∪iMBi;

{Step 2: repeat if smaller feature size is desired}
5: DFeat ← D(:, Feat);
6: Repeat Step 1 with DFeat;

{Step 3: add back some spouses}
7: for each Xi ∈ V \ Feat do

8: if Xi ⊥\⊥ T |Feat then

9: Feat← Feat ∪Xi

10: return Feat;

Algorithm 2 ensures MB is preserved with only the min-

imal property that could be violated. It could happen if the

MB set for each segment contains false positive PC nodes.

It is possible to further prune out of these undesirable vari-

ables by calling the MB discovery algorithm on the joint

feature set once more.

Existing feature selection algorithms do not scale up to

tens or hundreds of thousands features (even for algorithms

with quadratic time complexities) [21]. The method pro-

posed in [48] is the first work that aims to use feature se-

lection in large-scale. Our proposed method tackles such

a complexity issue by operating on a very small subset of

variables and guaranteeing the optimality as if operating on
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the entire feature set, while all the other methods cannot

guarantee so. In addition, it is unclear whether using al-

gorithms with symmetry constraints such as IPCMB with

Algorithm 2 would succeed to find all PC nodes of the tar-

get. PC of neighbor nodes of a target on a subset of features

can be very different from those on the entire feature set and

thus could potentially remove the correct PC nodes. There-

fore, IPCMB cannot guarantee to find the correct MB with

Algorithm 2, while STMB does not have this problem.

We empirically compare the performance of our struc-

tured feature selection in Algorithm 2 to existing feature se-

lection and feature compression methods. We use the popu-

lar VOC 2007 dataset [8] and extract Fisher Vector on dense

SIFT features from 8 spatial pyramid regions, following ex-

isting works [5, 48]. To handle the large feature size s of

FV (s = 262144), we employ Algorithm 2 with mutual-

information-based independence tests. The tests check if

the (conditional) mutual information between two variables

is bigger than a predefine significance level; if so, these two

variables are dependent, otherwise independent. In addi-

tion, to quantize continuous FV features, we use a 1-BIT

quantization to calculate the mutual information [48]: a real

number x becomes 0 if x <= 0, or 1 if x > 0. The pro-

posed STMB has the innate compression ratio of 32 due to

the 1-BIT quantization. We break down the features into

segments of sizes K, and compare the performance of the

selected features with existing methods [42, 48]. The results

are shown in Table 1. The compression ratio is calculated

as 32 · s

m
, where m is the average feature size over all the

object categories. Different compression ratios in Table 1

indicate different numbers of selected features. The pro-

posed MB-based method achieves −5% relative mAP (to

the baseline) at the compression ratio of 608, while the MI-

based method [48] achieves −5.87% relative performance

at the compression ratio of 512 and PQ achieves −4.8%
relative performance at the compression ratio of 128. More-

over, Figure 2 shows that some categories only need a few

features to achieve similar performance. For example, Cat-

egory 5 needs 2320 features for the compression ratio 608

to maintain a −6.05% relative performance, which has a

category compression ratio of 3616! The results show our

method can select a smaller set at high compression ratios

with less loss than other approaches. We believe with a bet-

ter independence test our method can perform even better.

In addition, results from Table 1 show that different K

sizes have minimal impact on the final accuracy. This indi-

cates that more speed-ups can be achieved by dividing data

into more segments and using more threads simultaneously

with similar performance. It is also worth noting that al-

though breaking data into single elements in each segment

is the most efficient, but they would save many more false

positive nodes.

Table 1. mAP and Feature Size on VOC 2007 with linear SVM

Method Compression Ratio mAP (%) mean Feature Size

MB 1 59.4 262144

608, K = 100 54.4 13415

704, K = 200 54.0 11405

MI [48] 1 58.57 262144

256 56.82 32768

512 52.70 16384

1024 46.52 8192

PQ [42] 1 58.8 262144

128 (d = 8) 54.0 262144

256 (d = 8) 50.3 262144

4.2. Hierarchical Feature Selection

In this section, we demonstrate the application of struc-

tured feature selection for hierarchical feature selection, i.e.,

features with different levels of abstractions. Specifically,

we apply our method to feature selection for facial expres-

sion and action unit (AU) recognition. For facial expres-

sion recognition, features can be divided into shape fea-

tures, e.g., facial feature points (FFP), and local facial mo-

tions, e.g., facial AUs. They form a top down hierarchy as

Expression → AUs → FFPs . Selected FFPs can be used

for AU recognition, and selected FFPs and AUs can be used

for expression recognition. We apply the proposed method

to select features for both AU and expression recognition.

Features. We use the popular CK+ face dataset [24], which

consists of 593 video sequences from 123 subjects. We use

the peak frame data for the expression and the most popular

15 AU labels in each video sequence. We use the provided

shape features only (i.e., FFPs) to predict AUs and expres-

sions, and do not use any appearance or dynamic features.

We normalize faces to a fixed facial model by interocular

distance [38] and use the normalized frontal 51 FFPs as fea-

tures. We further quantize the FFPs into 4 directions, by

their relative positions to neutral positions (i.e., peak frame

positions versus the first frame positions). All the procedure

follows standard protocols [45, 23, 22].

Methodology. We first find the MBs using STMB for the

expression with respect to all 15 AUs and 51 FFPs (i.e., the

target variable is the expression), and for each AU with re-

spect to the expression and FFPs (i.e., the target variable is

each AU). To fully capture the hierarchical structure infor-

mation, we build a global hierarchical BN from the learned

MBs. To preserve the independence relationships among

variables, we first orient all the V-structures and use the

Meek rules2 [25] to orient as the rest of links as possible.

Then any unresolved edges are oriented as Exp → AU →
FFP to lower the number of parameters, thus reducing the

2The details of Meek rules can be found in the supplementary material.
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Figure 2. Selected feature sizes for each category in VOC 2007 by our proposed method, with different compression ratios (CRs), corre-

sponding to results from Table 1.

graph complexity and data requirement for accurate learn-

ing. This local-to-global hierarchical BN structure learning

procedure is summarized in Algorithm 3. Note that directly

learning such a BN is not feasible. BN structure learning al-

gorithms generally require O(2N ) memory [39]. They can-

not handle the 67 nodes in the CK+ dataset, which would

need 1011 GB memory. MB discovery can be seen as a

subproblem of BN structure learning, and can be used to

build BN (as seen by Algorithm 3), which enables BN struc-

ture learning to handle much large sizes of variables with a

divide-and-conquer approach.

We only find the MBs of the expression and AUs, and

enforce the symmetry constraint only during the local-to-

global hierarchical structure learning process but not during

the local discovery. It is mainly because finding the MBs

of the FFPs, which have very dense local structures, takes

a very long time. MB algorithms with the symmetry con-

straint would need to find MBs for these FFPs, which may

take much longer time and limit the practical usage. We

divide data into five subject-independents [38] folds, and

learn the global hierarchical structure and parameters on

four folds and test on the other. Figure 3 shows the learned

hierarchical structures on two different folds. Ideally the

learned structures should be the same across all folds, but

the pure data-driven approach can learn different structures

to capture the joint distribution of the variables in a BN.

During testing, we use the MAP inference, based on the

junction tree method, to infer AUs with selected FFPs as

Algorithm 3 Local-to-Global BN Structure Learning

1: Input: Data, D; total variables, V

{Step 1: find MB for emotion and each AU}
2: for each Xi ∈ AU ∪Exp, do

3: MBi ← STMB(D, Xi);

{Step 2: combine local structures}
4: DAG← zeros(|V |, |V |);
5: if Xm ∈MBn, ∀m ∈ V, n ∈ AU ∪Exp,, then

6: DAG(n,m) = 2; //undirected

7: if DAG(m,n) 6= DAG(n,m), ∀m ∈ V, n ∈ AU ∪
Exp, then

8: DAG(m,n)← 0;
9: DAG(n,m)← 0; //enforce symmetry

10: if n ∈ Spousem,m ∈ Spousen, ∀m ∈ V, n ∈ AU ∪
Exp, then

11: find the common children Z;

12: DAG(n,Z) = 1;

13: DAG(m,Z) = 1; //V-structure

{Step 3: Resolve edge orientation}
14: enforce Meek Rule [25] on DAG;

15: if DAG(m,n) = 2, then

16: orient DAG(m,n) following Exp→ AU → FFP ;

17: return DAG;

evidence. We then use the inferred values of AUs and FFPs

jointly as evidence to infer the expression with MAP.
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Figure 3. Learned Global Structures of CK+ dataset for 5-fold Cross Validation. a) is learned from fold 2 to 5, and b) is learned from fold

1, 3,4, and 5.

4.2.1 AU Recognition Experiment Results

First we show the performance for AU recognition using

the learned hierarchical structure. We use F1-score to mea-

sure the accuracy and results are shown in Table 2. Using

the selected FFPs from STMB leads to a 6% improvement

over using all the FFPs with SVM, and our proposed local-

to-global method has a performance increase of about 16%
over SVM with the same selected FFPs. We also compare

our feature selection method with some standard feature se-

lection methods, such as ReliefF, Lasso, and mRMR [32].

We test these algorithms with an SVM classifier and the

BN constructed using Algorithm 3. Although selected fea-

tures from STMB are not the best with SVM, the proposed

method with BN outperforms all other feature selection and

classifier combinations.

The results from Table 2 also show that, despite our sim-

ple features and less training data with fewer fold numbers,

the AU recognition rate on a smaller set of AUs (15 vs. 17)

is very close to the previous state-of-the-art BN result [40].

If we consider the expression as a feature, our method can

lead to an even bigger improvement on smaller folds’ cross-

validation, as seen in the bottom part of Table 2, on smaller

folds cross validation.

4.2.2 Expression Recognition Experiment Results

We train an SVM using the FFP features as the baseline

method and compare the Average Recognition Rate (ARR),

Table 2. AU Recognition, Average F1-score, on CK+

Method Fold Features F1-score

SVM 5 All FFP 52.42 %

BN-Lasso 5 Selected FFP 55.38 %

SVM-RELIEFF 5 Selected FFP 56.64 %

SVM-STMB 5 Selected FFP 58.67 %

SVM-Lasso 5 Selected FFP 58.97 %

SVM-MRMR 5 Selected FFP 67.36 %

BN-MRMR 5 Selected FFP 70.91 %

BN-STMB 5 Selected FFP 74.52 %

BN [40, 44] LOSO FFP & Appearance 76.70%

HRMB[44] LOSO FFP & Appearance 82.44%

SVM 2 All FFP & Exp 70.64 %

SVM-STMB 2 Selected FFP & Exp 68.18%

BN-STMB 2 Selected FFP & Exp 86.68%

calculated from the diagonal of the confusion matrix, for

different methods. The results are shown in Table 3. Us-

ing the selected FFPs (of average size 22.3) has a lower

ARR compared to using all the FFPs (of size 51) with SVM,

but our proposed hierarchical method uses less than half of

the total FFPs and inferred AUs, and outperforms baseline

SVM methods by about 3%. SVM may not perform well

when selected features are not optimal. This is, however,

less a problem for BN since it can still use the structural

relationships among selected features. Compared to other

feature selection algorithms, the proposed approach also
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gives the best ARR overall. Moreover, we test the expres-

sion recognition using ground truth AUs in addition to FFPs

as features, shown in the bottom part of Table 3. We only

use 2 folds, which contains less training data compared to

the standard 15-fold or even leave-one-subject-out (LOSO)

cross validation. This shows the upper bound for the expres-

sion recognition performance using the learned BN struc-

tures. It validates that the learned hierarchical structures

can capture the correct relationships among AUs and FFPs,

and the proposed method can lead to significant improve-

ment, potentially with better AU estimation from a richer

set of features.

Table 3. Expression Recognition Rate on CK+

Method Fold Features ARR

BN-LASSO 5 Selected FFP 55.29 %

SVM-RELIEFF 5 Selected FFP 59.75 %

SVM-STMB 5 Selected FFP 63.43 %

SVM-LASSO 5 Selected FFP 64.02 %

SVM-MRMR 5 Selected FFP 65.29 %

SVM 5 All FFP 69.50 %

BN-MRMR 5 Selected FFP 69.89%

BN-STMB 5 Selected FFP 72.28 %

Lucey et al [24] LOSO Appearance & Shape 83.3%

ITBN [45] 15 Dynamic & FFP 86.3%

SVM 2 All FFP & AU 89.59 %

SVM-STMB 2 Selected FFP & AU 91.19%

BN-STMB 2 Selected FFP & AU 96.81 %

Note that the proposed method has 56% and 50% recog-

nition rates on “Fear” and “Sadness”, two expressions that

have a very small sample size (25 and 28 respectively),

while achieving a mean ARR of 82% on the other 4 ex-

pressions. Since our approach is purely data driven, it is

more sensitive to sample sizes than the knowledge-driven

approaches [45].

5. Discussion and Conclusion

This paper proposes to use MB-based feature selection

for dimensionality reduction in computer vision tasks, and

contains four major contributions. First, we propose a new

MB discovery algorithm, improving the efficiency of exist-

ing algorithms. Secondly, we further enrich and prove the

theoretical advantages of structured feature selection using

MB discovery compared to traditional feature selection ap-

proaches. Thirdly, we propose a scaling-up method for MB-

based feature selection in large-scale feature selection tasks

and apply it to image classification. Lastly, in facial ex-

pression recognition tasks, we show the competitive perfor-

mance of the MB-based feature selection method for hierar-

chical features. In particular, for high feature compression

ratios, the proposed method can achieve higher accuracy

than state-of-the-art methods with a lower number of fea-

tures. The structures that the proposed hierarchical feature

selection method discovers can also lead to big performance

gain in recognition tasks.

It is worth noting that, compared to existing MB dis-

covery algorithms, STMB does not use the symmetry con-

straint, which improves the efficiency of the MB discovery

by O(|PC|). In addition, it is unclear whether other MB al-

gorithms with the symmetry constraint can guarantee to find

all MB nodes of the target with the proposed large scale fea-

ture selection algorithm. Moreover, for some applications,

the symmetry constraint would need to find MBs for non-

target or trivial nodes (such as FFPs in hierarchical feature

selection), whose MB sizes can be very large, limiting the

practical usage of MB discovery algorithms. For example,

IPCMB cannot be directly applied to large computer vision

datasets because of the time complexity with its symme-

try check step, which can take up to 262144/200 = 1311

(K = 200) more times than STMB in VOC07 and 67 more

times in the CK+ dataset.

The experimental results also show that structures among

features can provide additional information to increase clas-

sification accuracy, and it would be an interesting direction

to study methods of incorporating these structure informa-

tion into traditional classifiers like SVM systematically. For

example, one intuitive approach is to encode the structure

information (such as features’ identities with respect to each

other and the target in terms of parents, children, or neither)

as additional features. We would also like to test this pro-

posed method on other large-scale computer vision datasets

and on other tasks like human gesture recognition, which

contains similarly rich structure information.
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