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Abstract

For many computer vision applications, the data sets dis-

tribute on certain low-dimensional subspaces. Subspace

clustering is to find such underlying subspaces and clus-

ter the data points correctly. In this paper, we propose

a novel multi-view subspace clustering method. The pro-

posed method performs clustering on the subspace repre-

sentation of each view simultaneously. Meanwhile, we pro-

pose to use a common cluster structure to guarantee the

consistence among different views. In addition, an efficient

algorithm is proposed to solve the problem. Experiments on

four benchmark data sets have been performed to validate

our proposed method. The promising results demonstrate

the effectiveness of our method.

1. Introduction

In recent years, subspace clustering has been explored

extensively. It assumes that the data points are drawn from

multiple low-dimensional subspaces. Therefore, many sub-

space clustering models have been proposed to uncover

such underlying subspaces such that all data points can be

segmented correctly and each group fits into one of the low-

dimensional subspaces.

A number of subspace clustering approaches have been

developed in recent years. For instance, the iteration based

methods such as [21] and [11], the factorization based meth-

ods such as [5] and [12], statistical approaches such as [20],
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and spectral clustering based approaches such as [25] and

[10]. Besides, sparse subspace clustering (SSC) has been

proposed in [8] to find a sparse representation correspond-

ing to the data points from the same subspace. After obtain-

ing the representation of the subspace, the spectral cluster-

ing can be performed on such new representation. The low-

rank subspace segmentation (LRR) was proposed in [16]

to find the subspace structure with a low-rank representa-

tion. Additionally, [18] proposed another subspace discov-

ery method, which is to discover the number of the sub-

space, its dimension and the data points in each subspace.

However, these methods mostly focus on the features from

single source rather than multiple ones. In this paper, we

will apply the subspace clustering on the data set with multi-

view features to uncover the subspace structure of the data

set and perform clustering on it.

Many problems in computer vision are concerned with

the data set represented by multiple distinct feature sets.

Different feature sets characterize different and partly in-

dependent information about the data set. For instance, an

image can be described by the color, texture, shapes and so

on. As another example, in multi-lingual information re-

trieval, a document is simultaneously described by several

different languages. These different features can provide

useful information from different views so as to improve

the clustering performance.

The multi-view clustering is to integrate these multiple

feature sets together to perform clustering. Much progress

has been made in developing effective multi-view clus-

tering method. The multi-view spectral clustering model

was proposed in [3] to integrate heterogeneous visual de-

scriptors for image categorizations. The co-regularized

multi-view spectral clustering was introduced in [13] to
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perform clustering on different views simultaneously with

a co-regularization constraint. To solve the large-scale

multi-view clustering problems, [2] proposed multi-view

K-means clustering method. However, these methods only

focus on the clustering directly, rather than mining the struc-

ture of the features. The other structured sparse learning

based multi-view clustering method was proposed in [22]

to perform feature selection and multi-view clustering si-

multaneously.

In this paper, we propose a novel multi-view subspace

clustering model. Unlike the method in [4] where perform-

ing clustering on a common view, we perform subspace

clustering on each view simultaneously, meanwhile guar-

antee the consistence of the clustering structure among dif-

ferent views. Specifically, we perform clustering on the

subspace representation of each view simultaneously. To

make sure the consistence among different views, we adopt

a common indicator to guarantee the common cluster struc-

ture. That is to enforce the points in different views to be

classified into the same cluster. We also propose an efficient

algorithm to solve our novel optimization problem. At last,

extensive experiments on four benchmark data sets show

the effectiveness of our method.

2. Multi-View Subspace Clustering

In this section, we will introduce the standard subspace

clustering method, that is to obtain the subspace structure

of the original data set and perform clustering on such sub-

space representation of the data set. After that, we will give

the motivation of our multi-view subspace clustering.

2.1. Subspace Clustering

For a data set, it usually lies in an underlying low-

dimension subspace rather than distribute uniformly in the

entire space. Thus, the data points can be represented by

a low-dimension subspace. After obtaining the subspace

structure of the data set, we can perform clustering based

on the subspace rather than the entire space.

Given n data points X = {x1, x2, ..., xn} ∈ ℜd×n, the

subspace clustering uses the self-expression property [8] of

the data set to represent itself as:

X = XZ + E , (1)

where Z = {z1, z2, ..., zn} ∈ ℜn×n is the subspace rep-

resentation matrix, and each zi is the representation of the

original data point xi based on the subspace. E ∈ ℜd×n is

the error matrix.

The subspace clustering needs solve the following opti-

mization problem:

min
Z

||X −XZ||2F s.t. Z(i, i) = 0, ZT 1 = 1 . (2)

The constraint ZT 1 = 1 denotes that the data point lies in a

union of affine subspaces, rather than linear subspaces. The

constraint Z(i, i) = 0 eliminates the case that a data point is

repesented as a combination of itself, which means that each

data point xi can only be represented as the combination of

other points xj(j 6= i). Solving the optimization problem

(2), we will get the representation zi for each data point xi.

The nonzero elements of zi correspond to points from the

same subspace [8]. Thus, we can get the subspace structure

Z of the original data set X .

After obtaining the subspace structure, we will get the

affinity matrix W = |Z|+|ZT |
2 for the data set. Thus, we

can perform spectral clustering on such a subspace affinity

matrix:

min
F

Tr(FTLF ) s.t. FTF = I , (3)

where F is the cluster indicator matrix, and L = D − W
where D is a diagonal matrix whose diagonal elements are

defined as dii = Σjwij .

2.2. MultiView Subspace Clustering

In this section, we will introduce our novel multi-view

subspace clustering model. Given the data set Xv ∈
ℜdv×n, which denotes the features in the v-th view (v =
1, 2, 3, ..., k, totally we have k views). If we perform the

subspace learning on each single view, we can get the sub-

space representation Zv for the v-th view. The nonzero el-

ements in Zv correspond to the data points from the same

subspace. In fact, how to combine multi-view features in

subspace clustering is challenging. The naive method is to

concatenate all the features together and perform clustering

on the concatenated features. However, in such a method,

the more informative view and the less informative one will

be treated equally. Thus, the solution is not optimal. In

fact, it is better to perform the clustering on individual view

perspectively and then unify them together. In order to com-

bine the multi-view subspace clustering results, we can per-

form the subspace learning on different views simultane-

ously by simply solving:

min
Zv,Z

∑

v

||Xv −XvZv||
2
F + λ

∑

v

||Z − Zv||

s.t. ZT
v 1 = 1, Zv(i, i) = 0 ,

(4)

where Z is the unified subspace representation result and

then spectral clustering can be performed on Z. The above

multi-view feature learning strategy has been used in previ-

ous computer vision research, but it doesn’t work for sub-

space clustering. Although the data block structures in dif-

ferent Zv are similar, the magnitude of element values in Zv

can be dramatically different, just as shown in Fig. 1. Thus,

how to integrate subspace clustering using multi-view fea-

tures is not trivial.
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(b) CMT
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(e) SIFT

Figure 1. By solving Eq. (2) on Caltech101-7 dataset, we get the structure of subspace representation Z for five views respectively.

Although different Z shows similar block structure, the magnitude of element values are different.

Instead of computing a common Z to unify different Zv ,

we propose to integrate the clustering results using different

Zv such that the data block structures can be jointly learned

by multi-view visual features. Meanwhile, we consider the

existing subspace clustering methods used a separated spec-

tral clustering post-processing step, which may lead to sub-

optimal results. We propose a novel multi-view subspace

clustering method to address these challenges by solving:

min
Zv,F

∑

v

||Xv −XvZv||
2
F

+ λ
∑

v

Tr(FT (Dv −Wv)F )

s.t. ZT
v 1 = 1, Zv(i, i) = 0, FTF = I ,

(5)

where Wv =
|Zv|+|ZT

v |
2 , Zv is the subspace representation

matrix of the v-th view, F is the cluster indicator matrix,

and Dv is a diagonal matrix with diagonal elements defined

as dvii =
∑

j wvij
.

In our new objective, we use the same indicator matrix

F for all of the views, thus the clustering results will be

consistent for all of the views, which means that the corre-

sponding points in different view will be in the same cluster.

Note that, in Eq. (5) we do not adopt the low rank sub-

space representation for multi-view features, such as [16].

Because the result of this method is bad for the low dimen-

sion features, such as the Color Moment feature shown in

Figure 2, due to the rigor restriction for the rank.

Moreover, for the real-world data set, the data point does

not perfectly lie in a subspace, it is usually corrupted by

the outlying entries due to some inevitable reasons. Thus,

to make our method be more robust to different data set,

we generalize the above objective to our final objective as

follows:

min
Zv,Ev,F

∑

v

||Xv −XvZv − Ev||
2
F

+ λ1

∑

v

Tr(FT (Dv −Wv)F ) + λ2

∑

v

||Ev||1

s.t. ZT
v 1 = 1, Zv(i, i) = 0, FTF = I ,

(6)
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Figure 2. By solving the low rank subspace problem as [16], we get

the subspace representation Z for Color Moment feature whose

dimension is far smaller than the number of data points.

where Ev = {ev1
, ev2

, ..., evn
} is the outlying entries ma-

trix whose column evi is the outlying entry for data point

xvi
. Due to the number of outlying entries not very much,

we use the ℓ1-norm regularization term to guarantee the

sparsity of the outlying entries matrix.

3. Optimization Algorithm

It is difficult to solve the constrained problem in Eq. (6).

In this section, we propose an alternative algorithm to solve

this optimization problem efficiently.

3.1. Update cluster indicator matrix F

The first step is fixing Zv and Ev , updating the clustering

indicator matrix F . When Zv and Ev are fixed, the problem

in Eq. (6) can be rewritten as the following problem with

respect to F :

min
F

∑

v

Tr(FT (Dv −
|Zv|+ |Zv|

T

2
)F )

s.t. FTF = I .

(7)
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Furthermore, it can be rewritten as the following:

min
F

Tr(FTMF )

s.t. FTF = I ,
(8)

where M =
∑

v

(Dv − |Zv|+|Zv|
T

2 ). The solution of such a

problem (8) are the eigenvectors corresponding to the small-

est k eigenvalue of the Laplacian matrix M .

3.2. Update subspace representation matrix Zv

The second step is fixing F and Ev , updating the sub-

space representation matrix Zv . When F and Ev are fixed,

we have

min
Zv

∑

v

||Xv −XvZv − Ev||
2
F

+ λ
∑

v

Tr(FT (Dv −
|Zv|+ |Zv|

T

2
)F )

s.t. ZT
v 1 = 1, Zv(i, i) = 0 .

(9)

Specifically, Zv can be solved separately for each view v as

follows:

min
Zv

||Xv −XvZv − Ev||
2
F

+ λTr(FT (Dv −
|Zv|+ |Zv|

T

2
)F )

s.t. ZT
v 1 = 1, Zv(i, i) = 0 .

(10)

For convenience, ignoring the subscript tentatively, we get

min
Z

||X −XZ − E||2F

+ λTr(FT (D −
|Z|+ |Z|T

2
)F )

s.t. ZT 1 = 1, Z(i, i) = 0 .

(11)

When we replace X with [XT , α ∗ 1]T where α approaches

to infinity and E with [ET , 0]T , it is equivalent to the fol-

lowing problem:

min
Z

||X −XZ − E||2F

+ λTr(FT (D −
|Z|+ |Z|T

2
)F )

s.t. Z(i, i) = 0 .

(12)

We can prove problem (11) is equivalent to (12) by expand-

ing the problem (12) as following:

||X −XZ − E||2F

= ||Xoriginal −XoriginalZ − Eoriginal||
2
F

+ α||1T − 1TZ − 0T ||2F ,

(13)

where Xoriginal and Eoriginal are the original X and E.

When α approaches to infinity, ZT 1 approaches to 1. Thus,

problem (11) is equivalent to problem (12). To reformulate

the problem (12), we need the following theorem.

Theorem 1. For Laplacian matrix L ∈ ℜn×n and the ma-

trix F ∈ Rn×c, we have

Tr(FTLF ) =
1

2
Tr(WP )

where Pij = ||f i − f j ||22, f i is the i-th row of matrix F .

It was proved in [1]. From theorem 1, it is easy to refor-

mulate problem (12) as following:

min
Z

||X −XZ − E||2F +
λ

2
Tr(|Z|TP )

s.t. Z(i, i) = 0 ,
(14)

where Pij = ||f i − f j ||22. Then, we can use alternative

optimization strategy to solve problem (14). When all the

rows except the i-th row are fixed, we can update the i-th
row of Z by solving the following problem:

min
z

||X1 − xzT ||2F +
λ

2
|z|T p

s.t. zi = 0 ,
(15)

where zT is the i-th row of Z, and p is the i-th column of

P , and X1 = X − (XZ − xzT )−E. We can easily verify

that problem (15) is equivalent to problem (16), since their

objectives differ only by a constant.

min
z

xTxzT z − 2zTXT
1 + x+

λ

2
|z|T p

s.t. zi = 0 .
(16)

Also, the objective in problem (16) differs with the follow-

ing problem only by a constant:

min
z

||z − v||22 +
λ

2
|z|T p

s.t. zi = 0 ,
(17)

where v =
XT

1
x

xT x
. Thus, problem (15) has the same solution

with problem (17) which has closed form solution. In detail,

if k = i, then zk = 0. If k 6= i, we can solve the following

problem:

min
zk

1

2
(zk − vk)

2 +
λpk
4

|zk| . (18)

The solution of problem (18) is as following:

zk = sign(vk)(|vk| −
λpk
4

)+

=











vk − λpk

4 , if vk > λpk

4

vk + λpk

4 , if vk < −λpk

4

0, otherwise

(19)
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3.3. Update the outlying entries matrix Ev

The third step is fixing Zv and F , updating the outlying

entries matrix Ev . When Zv and F are fixed, we have

min
Ev

∑

v

||Xv −XvZv − Ev||
2
F + λ

∑

v

||Ev||1 . (20)

Specifically, Ev can be solved separately for each view v.

For convenience, we ignore the subscript as follows:

min
E

1

2
||E − (X −XZ)||2F +

λ

2
||E||1 . (21)

We solve problem (21) column-wise as follows:

min
ei

1

2
||ei − (X −XZ)i||

2
2 +

λ

2
||ei||1 , (22)

where ei is the i-th column of E. For problem (22), it has

closed form solution just as equation (19). Thus, the solu-

tion of problem (21) is as follows:

Eij = sign(X −XZ)ij(abs(X −XZ)ij −
λ

2
)+

=











(X −XZ)ij −
λ
2 , if (X −XZ)ij >

λ
2

(X −XZ)ij +
λ
2 , if (X −XZ)ij < −λ

2

0, otherwise

(23)

By the above three steps, we alternatively update the Zv ,

Ev , F and repeat the process again and again until the ob-

jective function approaches to convergence. We summarize

the above algorithm in Alg. 1

4. Experiment

In this section, we have evaluated our algorithm on three

widely used benchmark data sets. That is Caltech-101 [9],

Microsoft Research Cambridge Volume [23] and the ETH

Zurich ETH-80 [15].

4.1. Feature Description

For the three image dataset, we extract different fea-

tures to construct a multi-view visual features. The features

adopted in this paper is shown as the following.

• CENTRIST [24] is a holistic representation for the

image. It can capture structural properties such as rect-

angular shapes, flat surfaces and so on. Thus, we can

use it to capture the geometrical information based on

the histogram of the gradients, especially for the global

shape structure within an image.

• Color Moment (CMT) [26] calculates the first and

second moments as the representation of the image

pixel distribution, describing the local photometrical

and spatial information based on pixel values. With it

we can obtain the distribution of the color within an

image.

Algorithm 1 Algorithm to solve the problem in Eq. (6).

Input:

X = {X1, X2, ..., Xk}, Xv ∈ Rdv×n

Output: F ∈ Rn×c

Initialize Zv = 0, Ev = 0, F .

repeat

Update F by Eq. (8):

min
FTF=I

Tr(FTMF )

Solve it by eigenvalue decomposition of M ;

Update the i-th row of Zv by Eq. (19):

For k = i, zk = 0;

For k 6= i,

zk =











vk − λpk

4 , if vk > λpk

4

vk + λpk

4 , if vk < −λpk

4

0, otherwise

Update Ev by Eq. (23)

Eij =











(X −XZ)ij −
λ
2 , if (X −XZ)ij >

λ
2

(X −XZ)ij +
λ
2 , if (X −XZ)ij < −λ

2

0, otherwise

until Converges

• HOG [6] is based on evaluating well-normalized local

histograms of image gradient orientations in a dense

grid. It can capture edge or gradient structure that is

very characteristic of local shape. We can extract the

local object appearance and shape within an image.

• LBP [19] computes the histogram of local binary pat-

terns in an encoded image to capture the textures. It is

a texture descriptor, we can use it to extract the texture

information within the image.

• SIFT [17] extracts key points from the image at first,

and then keypoint descriptor is calculated as the rep-

resentation that allows for significant levels of local

shape distortion and change in illumination. We use

LIBPMK 1 tookit to build the similarity matrix.

We utilize these features to construct multiple feature

sets. In Fig. 3, we show the visual patterns extracted from

three sample images of Caltech101-7 with CENTRIST,

ColorMoment, LBP, HOG and SIFT .

4.2. Data Set Descriptions

The detailed information about these data sets are shown

as the following.

1http://people.csail.mit.edu/jjl/libpmk/
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(a) Motorbike (b) CENTRIST (c) Color Moment (d) LBP (e) HOG (f) SIFT

(g) Snoopy (h) CENTRIST (i) Color Moment (j) LBP (k) HOG (l) SIFT

(m) Garfield (n) CENTRIST (o) Color Moment (p) LBP (q) HOG (r) SIFT

Figure 3. The visual patterns of descriptors CENTRIST, ColorMoment, LBP, HOG and SIFT on three sample images from Caltech101-7.

• Caltech101-7 [7] is a widely used subset of the im-

age dataset Caltech101 which contains 101 categories.

In this subset, there are 7 categories, including Dolla-

Bill, Faces, Garfield, Motorbikes,Snoopy, Stop-Sign

and Windsor-Chair, and there are 441 images totally

selected from the 7 categories. For each image, we

extract the above 5 visual features. In detail, the di-

mension of CENTRIST feature is 1302, the diension

of Color Moment (CMT) is 48, the dimension of HOG

is 100, the dimension of LBP is 256 and SIFT is 128.

• MSRCV1 data set consists of 240 images and 8 object

classes. Just as [14], we select 7 classes, including

tree, building, airplane, cow, face, car and bicycle. For

each class, we randomly sample 30 images. Just as

Caltech101 data set, we extract the same features from

each image to construct different view features.

• ETH-80 data set contains 8 categories, including ap-

ples, pears, tomatoes, cows, dogs, horses, cups and

cars. We sample 50 images from each categories, and

extract different features, including LBP, HOG, CEN-

TRIST and CMT, to obtain the multiple view represen-

tation for the data set.

• Caltech101-20 data set also comes from Caltech101

data set. However, 20 categories have been selected to

evaluate the performance of our algorithm on the com-

plex data set. They are binocular, brain, camera, car-

side, faces, ferry, garfield, hedgehog, leopards, moto-

bike, pagoda, rhino, snoopy,stapler, stop-sign, water-

lily, windsor, chair, wrench and yin-yang. There are

1230 images totally. Just as Caltech101-7 data set, we

extract the same kinds of visual features to construct

different view representations for the data set.

4.3. Experiment Setup

To evaluate the perfomance of our method, we have

compared our method with each single-view counterpart.

We have also compared with methods on the concate-

nated features. Besides, we compare with other state-of-

the-art methods, including centroid co-regularized multi-

modal spectral clustering (CC-MSC) [13], and pair-wised

co-regularized multi-modal spectral clustering (PC-MSC)

[13]. To evaluate the performance quantitatively, the Clus-

tering Accuracy and Normal Mutual Information are re-

sorted to measure the performance of multi-view subspace

clustering. The detailed information about the comparison

is as the following:

• Single View with SSC: For each single view feature,

at first we use the subspace learning method proposed

in [8], to get the its subspace representation, and then

we run spectral clustering method on the subspace rep-

resentation.

• Single Modality with LRR: We run LRR [16] on each

view features to get the low-rank subspace representa-

tion, and then run spectral clustering on such represen-

tations.

• MLRR Con and MSSC Con: We concatenate all

features together and run LLR [16] and SSC [8] re-

spectively to get the subspace representation of the
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data set. After that, following [16] we perform spectral

clustering on the subspace representation.

• MLRR Add and MSSC Add: Different with

MLRR Con method, MLRR Add method is to run

LLR [16] on each view features to get the subspace

representation of each view, and then sum these repre-

sentations together and perform spectral clustering on

it. The same procedure is performed by MSSC Add

method except that we run SSC [8] method on each

view features.

• CC-MSC [13] : This method enforces the correspond-

ing point in different modality to be in the same clus-

ter by a centroid-based co-regularization term, which

makes different views to be same to a common one.

• PC-MSC [13] : This method is similar to CC-MSC,

other than a pair-wised co-regularization term, which

makes different views to be same to each other.

When we implement the single view method, for each sin-

gle view features, we run the subspace learning method to

get its subspace representation Zv at first, and then we use

(|Zv| + |ZT
v |)/2 as the affinity matrix to perform spectral

clustering. In addition, in our experiments, we initialize F
in our method with the result of spectral clustering.

Table 1. Clustering results on Caltech101-7 data set

Methods ACC NMI

CEN SSC 0.6390(±0.0257) 0.5592(±0.0219)

CMT SSC 0.3730(±0.0108) 0.2510(±0.0081)

HOG SSC 0.6286(±0.0125) 0.5503(±0.0087)

LBP SSC 0.4113(±0.0061) 0.2922(±0.0053)

SIFT SSC 0.6735(±0.0001) 0.6418(±0.0054)

CEN LRR 0.5764(±0.0014) 0.4052(±0.0038)

CMT LRR 0.3451(±0.0049) 0.2510(±0.0081)

HOG LRR 0.6417(±0.0001) 0.4686(±0.0028)

LBP LRR 0.4138(±0.0031) 0.2914(±0.0039)

SIFT LRR 0.6667(±0.0095) 0.5777(±0.0077)

MLRR Con 0.3610(±0.0014) 0.2498(±0.0023)

MSSC Con 0.5605(±0.0018) 0.3786(±0.0071)

MLRR Add 0.7168(±0.0007) 0.5926(±0.0027)

MSSC Add 0.7102(±0.0009) 0.5645(±0.0011)

PC-MSC 0.6599(±0.0401) 0.6499(±0.0208)

CC-MSC 0.7188(±0.0420) 0.6768(±0.0170)

MVSC 0.7415(±0.0532) 0.7153(±0.0151)

4.4. Experiment Results

The experiment results of the four dataset are shown in

Tables 1, 2, 3 and 4. As shown in these tables, we can

see that some individual view features are more discrimina-

tive for performing clusters, such as HOG descriptor, while

Table 2. Clustering results on MSRCV1 data set

Method ACC NMI

CEN SSC 0.6262(±0.0406) 0.5643(±0.0092)

CMT SSC 0.3429(±0.0214) 0.2181(±0.0242)

HOG SSC 0.6190(±0.0441) 0.5268(±0.0236)

LBP SSC 0.6233(±0.0450) 0.5046(±0.0388)

SIFT SSC 0.3967(±0.0129) 0.2404(±0.0094)

CEN LRR 0.4543(±0.0056) 0.3602(±0.0069)

CMT LRR 0.3305(±0.0056) 0.1212(±0.0045)

HOG LRR 0.6062(±0.0023) 0.4971(±0.0066)

LBP LRR 0.5990(±0.0049) 0.4582(±0.0067)

SIFT LRR 0.4748(±0.0055) 0.2924(±0.0076)

MLRR Con 0.5071(±0.0075) 0.3942(±0.0060)

MSSC Con 0.5714(±0.0000) 0.4954(±0.0000)

MLRR Add 0.6252(±0.0055) 0.5384(±0.0135)

MSSC Add 0.6343(±0.0129) 0.5415(±0.0118)

PC-MSC 0.6667(±0.0055) 0.5745(±0.0071)

CC-MSC 0.6567(±0.0420) 0.5645(±0.0264)

MVSC 0.7047(±0.0102) 0.5814(±0.0430)
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Figure 4. The convergence curve of our MVSC on Caltech101-7

and MSRCV1 data set

other views are less discriminative, such as CMT descriptor.

It is consistent with the Fig. 1 where the block structures of

CENTRIST, HOG and SIFT are more clearer than the other
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two. In addition, almost all of the multi-view methods out-

perform the single view method. In addition, our proposed

MVSC method can improve the clustering performance ap-

parently compared with single view clustering. At the same

time, our MVSC can also outperform the other multi-view

methods. Comparing table 1, which has 7 classes, with Ta-

ble 4, which has 20 classes, our proposed MVSC still has

good performance on large scale data set, outperforming the

other methods apparently.

To show the advantage of combining multi-view fea-

tures, we apply our method to increasing-view features.

Due to the limitation of the space, we only show the result

of MSRCV1 dataset. The result is show in Table 5. Each re-

sult is the average of all the corresponding number of views.

Apparently, the performance becomes better when increas-

ing the number of views. Additionally, from the deviation

we can see that the performance of different views is differ-

ent dramatically. Some have better performance than others.

Thus, combining multiple views is better than using only a

certain view features.

Table 3. Clustering results on ETH-80 data set

Method ACC NMI

CEN SSC 0.4990(±0.0139) 0.4832(±0.0197)

CMT SSC 0.5182(±0.0314) 0.5021(±0.0144)

HOG SSC 0.5640(±0.5048) 0.6408(±0.0434)

LBP SSC 0.5048(±0.0425) 0.6059(±0.0276)

SIFT SSC 0.4832(±0.0392) 0.4681(±0.0128)

CEN LRR 0.3635(±0.0032) 0.3001(±0.0020)

CMT LRR 0.2310(±0.0126) 0.1212(±0.0043)

HOG LRR 0.5540(±0.0021) 0.5952(±0.0015)

LBP LRR 0.4902(±0.0087) 0.4613(±0.0083)

SIFT LRR 0.3200(±0.0001) 0.3410(±0.0054)

MLRR Con 0.3980(±0.0153) 0.3410(±0.0271)

MSSC Con 0.4672(±0.0036) 0.4213(±0.0052)

MLRR Add 0.5127(±0.0038) 0.5200(±0.0098)

MSSC Add 0.5247(±0.0053) 0.5143(±0.0110)

PC-MSC 0.5556(±0.0465) 0.5843(±0.0355)

CC-MSC 0.5512(±0.0619) 0.6147(±0.0335)

MVSC 0.5650(±0.0012) 0.6459(±0.0139)

In our experiment, the stop criteria is defined as follow-

ing:

|f (t+1) − f (t)|

f (t)
< 10−2 , (24)

where f (t) is the objective value in the t-th iteration. In

Fig. 4, we show the convergence of our proposed MVSC

method. Due to the limitation of the space, we only re-

port the results of Caltech101-7 and MSRCV1 data set. As

shown in Fig. 4, the algorithm approaches to convergence

quickly.

Table 4. Clustering results on Caltech101-20 data set

Method ACC NMI

CEN SSC 0.5074(±0.0202) 0.5654(±0.0087)

CMT SSC 0.2481(±0.0042) 0.2840(±0.0054)

HOG SSC 0.3120(±0.0091) 0.2966(±0.0049)

LBP SSC 0.2941(±0.0043) 0.3367(±0.0046)

SIFT SSC 0.2450(±0.0006) 0.2658(±0.0047)

CEN LRR 0.5158(±0.0092) 0.4732(±0.0094)

CMT LRR 0.2939(±0.0070) 0.2887(±0.0040)

HOG LRR 0.3223(±0.0091) 0.2603(±0.0080)

LBP LRR 0.2904(±0.0052) 0.3058(±0.0056)

SIFT LRR 0.3312(±0.0039) 0.2974(±0.0038)

MLRR Con 0.2520(±0.0050) 0.2978(±0.0051)

MSSC Con 0.3102(±0.0050) 0.3288(±0.0033)

MLRR Add 0.4617(±0.0079) 0.4457(±0.0052)

MSSC Add 0.5527(±0.0069) 0.5151(±0.0057)

PC-MSC 0.5714(±0.0182) 0.6164(±0.0121)

CC-MSC 0.5225(±0.0318) 0.5897(±0.0131)

MVSC 0.6130(±0.0068) 0.6532(±0.0197)

Table 5. Increasing views on MSRCV1 dataset

No.of Views ACC NM

One 0.4445(±0.1057) 0.2879(±0.1190)

Two 0.4902(±0.1231) 0.3296(±0.1174)

Three 0.5446(±0.1185) 0.3864(±0.1124)

Four 0.6161(±0.1005) 0.4494(±0.0850)

Five 0.6767(±0.0060) 0.5289(±0.0050)

5. Conclusions

In this paper, we have proposed a novel multi-modal sub-

space clustering model. To utilize the different modal fea-

tures, we perform subspace clustering on individual modal-

ity respectively and then unify them. Since the magnitude

of the subspace representation for different modalities is

different, we unify them with a common indicator matrix

rather than a common subspace representation. Thus, the

proposed method can guarantee the data points in different

modalities to be classified in the same cluster. The exper-

iments show that our algorithm outperform other state-of-

the-art algorithm apparently.
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