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Abstract

We present a new, massively parallel method for high-

quality multiview matching. Our work builds on the Patch-

match idea: starting from randomly generated 3D planes

in scene space, the best-fitting planes are iteratively propa-

gated and refined to obtain a 3D depth and normal field per

view, such that a robust photo-consistency measure over all

images is maximized. Our main novelties are on the one

hand to formulate Patchmatch in scene space, which makes

it possible to aggregate image similarity across multiple

views and obtain more accurate depth maps. And on the

other hand a modified, diffusion-like propagation scheme

that can be massively parallelized and delivers dense mul-

tiview correspondence over ten 1.9-Megapixel images in

3 seconds, on a consumer-grade GPU. Our method uses

a slanted support window and thus has no fronto-parallel

bias; it is completely local and parallel, such that compu-

tation time scales linearly with image size, and inversely

proportional to the number of parallel threads. Further-

more, it has low memory footprint (four values per pixel,

independent of the depth range). It therefore scales excep-

tionally well and can handle multiple large images at high

depth resolution. Experiments on the DTU and Middlebury

multiview datasets as well as oblique aerial images show

that our method achieves very competitive results with high

accuracy and completeness, across a range of different sce-

narios.

1. Introduction

Reconstructing dense 3D shape from multiple images

has been a topic of interest in computer vision for many

years. Since camera pose estimation and multiview trian-

gulation can be considered solved (at least for images that

are suitable for subsequent dense reconstruction), the prob-

lem boils down to the fundamental task of image match-

ing, i.e. establishing dense correspondence between images.

The majority of the literature deals with the basic stereo

setup with two images, e.g. [20, 23, 33, 31, 32]. It is evi-

dent that using more than two viewpoints will improve both

Figure 1: Results on one of the 80 evaluated objects on

the DTU benchmark [22]. Top left: Ground truth point

cloud; top right: reconstructed point cloud with texture;

bottom left: color-coded surface normals; bottom right: re-

constructed surface.

the accuracy of the reconstructed 3D points (by triangu-

lating from more rays) and the robustness against grossly

wrong matches (by checking the coherence of redundant

observations). Moreover, using more than two viewpoints

alleviates the occlusion problem, and can reconstruct ob-

jects more completely, e.g. [7, 12]. On the other hand, the

multiview setup exacerbates the problem that already many

successful stereo methods do not scale up to realistic im-

age sizes of several million pixels. Nevertheless, guided

by the quality metrics used in standard benchmarks such

as KITTI and Middlebury, most authors concentrate on ac-

curacy and pay limited attention to scalability and runtime

performance. Many existing algorithms become impracti-

cal when moving to larger sets of high-resolution images.

In this work we present a multiview matching method

that delivers dense, accurate 3D point clouds while at the

same time being efficient enough to handle large images.

Our goal is a fast matcher which is nevertheless very accu-

rate. On the recent DTU benchmark, our method reaches

the best compromise between accuracy and completeness
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(best accuracy with 2nd-best completeness, or best com-

pleteness with 2nd-best accuracy; see example in Fig. 1) still

it can match ten 2-Megapixel images in less than 3 seconds

on a standard desktop PC.

Local vs. global matching. Successful image match-

ing has to strike a balance between photo-consistency of

the corresponding image locations and regularity (typically

piecewise smoothness) of the underlying surface.

Early models usually were local, meaning that the cor-

respondence computation at a given location depends only

on a local neighborhood. Local methods range from sim-

ple block matching to more sophisticated approaches that

avoid a strong fronto-parallel bias, either by directly warp-

ing the image to a common plane [6, 10, 14], or using an

oriented matching window that adapts to the surface geom-

etry [5, 9]. Moreover, to avoid the characteristic fatten-

ing of foreground objects, it is common to adapt either the

window shape [13, 23] or the weight of pixels within the

window [38] at (putative) depth discontinuities.

Later research attempted to include the correlations in-

duced by the smoothness prior in a more principled way,

which leads to global methods that approximately maxi-

mize an objective defined over all pixels, usually via dis-

crete labeling e.g. [11, 18, 27] or variational inference [31].

Nowadays photographic images routinely have on the or-

der of 10 million pixels. Therefore there is a need for match-

ing algorithms whose complexity is low – ideally at most

linear in the number of pixels. At the same time, the large

image dimensions also call for algorithms that are memory-

efficient, especially in the multiview case, where evidence

of multiple images is exploited to create the correct match.

Consequently, there has been a renewed interest for local

matching algorithms. In spite of their simplicity, modern

local matchers [5, 12, 32] are accurate enough to compete

with their global counterparts, as demonstrated for example

by the DTU [22] and KITTI [15] benchmarks.

Local multiview methods. In their seminal work, Oku-

tomi and Kanade [30] accumulate Sum of Squared Differ-

ence (SSD) cost values from different stereo pairs in a set

of multiple images, and select the depth with the lowest cu-

mulative cost. The plane-sweeping method [8] is an early

example of true multiview matching. Evidence from multi-

ple images is accumulated on a plane that moves through the

scene space along its normal. For every cell on the plane the

position with the highest support is chosen. More recently

Gallup et al. [14] have proposed to align the plane to the

dominant orientation in the scene. Hu and Mordohai [19]

also start from plane-sweeping, and carefully propagate the

uncertainty in order to exploit it during the subsequent fu-

sion of multiple depth maps.

Furukawa and Ponce [12] relax the requirement to find

a correspondence for every single pixel. Instead, they start

from sparse, reliable seed points and iteratively grow the set

of point matches from there, to obtain a quasi-dense point

cloud. The method introduces several heuristic filters and

delivers quite impressive results. Tola et al. [37] directly ad-

dress the problem of high resolution image sets by matching

a fast descriptor between pairs of images over the epipolar

line and reconstructing only points with unique response.

Campbell et al. [7] explicitly address the problem of am-

biguous matching by considering multiple depths per point

and including an unknown state in their MRF optimization.

Points vs. surfaces. Multi-view stereo methods can be

classified according to which representation they are based

on, following the taxonomy of Seitz et al. [34]. In partic-

ular, the 3D scene can be represented by voxels, level-sets,

polygon meshes, or depth maps. In this context it should

be emphasized that depth maps are still a point-wise repre-

sentation – triangulating every pixel in a depth map leads

to a 3D point cloud, similar to those generated with RGBD

sensors or laser scanners. On the contrary, the three other

representations all must solve (at least implicitly) the addi-

tional step from the point cloud to the underlying surface.

This may be useful for many applications, but is a consid-

erably harder and less well-defined task. Moreover, some

application domains like industrial metrology or surveying

in fact prefer 3D point clouds as a primary product. In our

work we mainly aim to recover depth maps, respectively 3D

point clouds. We see surface fitting as a subsequent step that

is largely independent of the matching – in fact the most

popular approaches [21, 25, 28] are rather agnostic about

the preceding matcher, and we found the widely used Pois-

son method [25] to work well for our point clouds.

Exhaustive vs. randomized search. Typically, match-

ing algorithms require a large amount of memory, because

they keep track of the cost associated with every possible

disparity value, in order to select the most suitable one,

e.g. [11, 18, 23, 32]. Note that for a fixed depth range

the number of observable disparities grows linearly with

the image resolution, too. A recent exception from the

strategy of “comparing all possible disparities” is Patch-

Match Stereo [5]. That method adopts a randomized, itera-

tive algorithm for approximate patch matching [3], which

allows one to quickly find a good solution within a vast

search space without having to browse through all possibil-

ities. The resulting low memory requirements (independent

of the disparity range) make Patchmatch Stereo well-suited

for large images or memory-constrained environments, in-

cluding implementation on GPU which modify the origi-

nal sequential propagation scheme [1, 2, 17, 40]. Zheng

et al. [40] employ the Patchmatch propagation scheme for

multiview reconstruction, but without considering slanted

surfaces. Their focus lies on view selection when aggregat-

ing evidence over multiple cameras. A probabilistic graphi-

874



cal model serves to jointly address view selection and depth

estimation. To the best of our knowledge, [35] is the only

other work that runs Patchmatch Stereo in scene space, for

only pairwise stereo matching.

Contribution. We present Gipuma, a simple, yet pow-

erful multiview variant of Patchmatch Stereo with a new,

highly parallel propagation scheme.

Our first contribution addresses computational effi-

ciency: standard Patchmatch is sequential in nature, since it

propagates information diagonally across the image pixel-

by-pixel. A little parallelisation can be achieved by proce-

dures such as aligning the propagation direction with the

image axes and running rows/columns in parallel [1, 2, 17,

40], but these still do not fully harness the capabilities of

current hardware. Instead, we propose a new diffusion-like

scheme that operates on half of all pixels in an image in par-

allel with a red-black (checkerboard) scheme. It turns out

that this arguably more local propagation, which is particu-

larly suitable for modern many-core GPUs, works as well as

the standard Patchmatch procedure, while being a lot faster.

The second contribution aims for accuracy and robust-

ness: we extend PatchMatch Stereo from a two-view to a

multiview matcher to better exploit the redundancy in multi-

view datasets. The Patchmatch Stereo method by construc-

tion recovers also a normal in disparity space at every pixel.

The starting point for our extension is the observation that

one can just as well define the normals in Euclidean 3D

scene space. In that case they immediately define a local

tangent plane at every surface point, and thus an associated

homography (respectively, a pair of slanted support win-

dows) between any two images viewing the surface. The

explicit estimation of the surface normal makes it possi-

ble to utilize plane-induced homographies when checking

photo-consistency between different views. It avoids epipo-

lar rectification and allows one to aggregate evidence over

multiple images in generic configuration.

The described multiview setup still needs a reference im-

age to fix the parametrization of the surface. Hence, we first

compute depth using every image in turn as reference, and

then fuse the results into one consistent 3D reconstruction.

However, we prefer to carefully exploit the multiview in-

formation at the level of photo-consistency, and then use a

rather basic fusion scheme to merge them into a consistent

3D point cloud. This is in contrast to some other meth-

ods that start from efficiently computable, but noisy depth

maps and merge them with sophisticated fusion algorithms,

which (at least implicitly) have to solve the additional prob-

lem of surface fitting [21, 28, 39].

We will show in our experiments that our implementa-

tion yields state-of-the-art multiview reconstruction on a va-

riety of datasets.

2. Patchmatch Stereo

We start by briefly reviewing the original Patchmatch

Stereo method [5], to set the scene for our extensions.

Patchmatch for rectified stereo images. The core of

Patchmatch stereo is an iterative, randomized algorithm to

find, for every pixel p, a plane πp in disparity space such

that the matching cost m in its local neighborhood is mini-

mized. The cost at pixel p is given by a dissimilarity mea-

sure ρ, accumulated over an adaptive weight window Wp

around the pixel. Let q denote the pixels in the reference

image that fall within the window, and let πp be a plane that

brings each pixel q in correspondence with a pixel location

q′
πp

in the other image. Then the matching cost is

m(p, πp) =
∑

q∈Wp

w(p,q) ρ(q,q′
πp
). (1)

The weight function w(p,q) = e−
‖Ip−Iq‖

γ can be seen

as a soft segmentation, which decreases the influence of pix-

els that differ a lot from the central one. We use a fixed

setting γ = 10 in all experiments.

The cost function ρ consists of a weighted combination

of absolute color differences and differences in gradient

magnitude. More formally, for pixels q and q′
πp

with colors

Iq and Iq′
πp

ρ(q,q′
πp
) = (1− α) ·min(‖Iq − Iq′

πp

‖, τcol)
+ α ·min(‖∇Iq −∇Iq′

πp

‖, τgrad) ,
(2)

where α balances the contribution of the two terms and

τcol and τgrad are truncation thresholds to robustify the cost

against outliers. In all our experiments we set α = 0.9,

τcol = 10 and τgrad = 2.

Sequential propagation. The Patchmatch solver initial-

izes the plane parameters (disparity and normal) with ran-

dom values. It then sequentially loops through all pixels

of the image, starting at the top left corner. Good planes

are propagated to the lower and right neighbors, replacing

the previous values if they reduce the cost over the slanted

support window. Additionally, it is proposed to also propa-

gate planes between the two views. The propagation is in-

terleaved with a refinement of the plane parameters (using

bisection). After finishing a pass through all pixels of the

image, the entire process is iterated with reversed propaga-

tion direction. Empirically, 2-3 iterations are sufficient. For

optimal results the disparity image is cleaned up by (i) re-

moving pixels whose disparity values are inconsistent be-

tween the two views; (ii) filling holes by extending nearby

planes; and (iii) weighted median filtering.

Plane parameterization. In Patchmatch stereo, the

πp are planes in disparity space, i.e. 3D points P =
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(a) (b) (c)

Figure 2: The propagation scheme: (a) Depth and normal

are updated in parallel for all red pixels, using black pixels

as candidates, and vice versa. (b) Planes from a local neigh-

borhood (red points) serve as candidates to update a given

pixel (black). (c) Modified scheme for speed setting, using

only inner and outermost pixels of the pattern.

[x, y, disp]⊤ must fulfill the plane equation

ñ⊤P = −d̃ , disp = − 1

ñz

(d̃+ ñxx+ ñyy) , (3)

with normal vector ñ and distance d̃ to the origin. This

definition yields an affine distortion of the support windows

in the rectified setup [17].

3. Red-Black Patchmatch

3.1. Surface normal diffusion

The standard Patchmatch procedure is to propagate in-

formation diagonally across the image, alternating between

a pass from top left to bottom right and a pass in the op-

posite direction. The algorithm is sequential in nature, be-

cause every point is dependent on the previous one. Al-

though several authors have proposed a parallel propagation

scheme [1, 2, 17, 40], all of them still inherited from the

original Patchmatch that one propagates sequentially across

the whole image.

Instead, we propose a new diffusion-like scheme specif-

ically tailored to multi-core architectures such as GPU pro-

cessors. We partition the pixels into a “red” and “black”

group in a checkerboard pattern, and simultaneously update

all black and all red ones in turn. Possible candidates for the

update at a given pixel are only points in a local neighbor-

hood that belong to the respective other (red/black) group,

see Fig. 2a.

The red-black (RB) scheme is a standard trick to par-

allelize message-passing type updating schemes, c.f . the

red-black Gauss-Seidel method for linear equation solving.

Red-black acceleration has also been proposed for Belief

Propagation [11]. In fact Patchmatch can be interpreted as

a form of Belief Propagation in the continuous space [4].

In contrast to these applications of the RB-scheme we look

beyond the immediate neighbors. Our standard pattern uses

20 local neighbors for propagation, Fig. 2b. Thanks to the

Figure 3: Left: Accuracy and completeness for increasing

number of iterations for the object visualized on the right.

Right: Reconstruction after iteration 2, 3, 4 and 8.

larger neighborhood we converge to a good solution already

with a low number of iterations, see Fig. 3. The depicted

scheme turned out to be a good compromise between the

cost for each propagation step and the number of iterations

needed to diffuse the information far enough. The number

of iterations is fixed to 8 in all our experiments. At this point

the depth map has practically converged and changes only

marginally.

3.2. Sparse matching cost

We use a similar matching cost as proposed in the orig-

inal Patchmatch paper [5]. The only difference is that we

consider only intensity rather than color differences. The

performance improvement when using RGB is tiny and in

our view does not justify a threefold increase in runtime. To

further speed up the computation we follow the idea of the

so-called Sparse Census Transform [41] and use only ev-

ery other row and column in the window when evaluating

the matching cost, resulting in a 4× gain. Empirically, we

do not observe any decrease in matching accuracy with this

sparse cost.

The method is particularly useful for Patchmatch-type

methods. Such methods require larger window sizes, be-

cause compared to the disparity a larger neighborhood is

needed to reliably estimate the normal. Depending on the

image scale, the necessary window size is typically at least

11x11 pixels, but can reach up to 25x25 pixels.

3.3. Implementation details

We have implemented Gipuma in CUDA, and tested it

on recent gaming video cards for desktop computers. For

our experiments we use the Nvidia GTX 980. Images

are mapped to texture memory, which provides hardware-

accelerated bilinear interpolation to warp the support win-

dow between views. To limit the latency when reading from

GPU memory we make extensive use of shared memory and

cache the support window of the reference camera. We re-

lease our code as open-source software under the GPLv3

license.
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Runtime. The runtime of our method is influenced

mainly by three factors: the number of images consid-

ered for matching, the image resolution, and the size of the

matching window (which in practice is roughly proportional

to the image size).

For images of resolution 1600×1200 the runtime to gen-

erate a single depthmap with 10 images and window size of

25 is 50 seconds, when using our fast setting as described

in Sec. 5.1 and windows size 15 the runtime for the same

number of images is 2.7 seconds.

To generate a Middlebury depthmap from 10 views with

a resolution of 640× 480 the runtime is 2.5 seconds.

4. Multi-view Extension

4.1. Parameterization in scene space

Disparity, by definition, is specific to a pair of rectified

images. Instead, we propose to operate with planar patches

in Euclidean scene space. This variant has several advan-

tages. First, it avoids epipolar rectification, respectively ex-

plicit tracing of epipolar lines, which is a rather unnatural

and awkward procedure in the multiview setup. Second, it

delivers, as a by-product, a dense field of surface normals in

3D scene space. This can be used to improve the subsequent

point cloud fusion (e.g. one can filter pixels with consistent

depth but inconsistent normal) as well as directly provide

the necessary normal used for surface reconstruction [26].

Then, it allows the data cost to directly aggregate evidence

from multiple views: the cost per-pixel is computed by con-

sidering the cost of the reference camera with respect to all

the other selected views.

Finally, the modification comes at little extra cost: the

mapping between any two images is a plane-induced ho-

mography [16], corresponding to a 3D matrix-vector multi-

plication, see Fig. 4.

In the Euclidean scene-space the plane equation

n⊤X = −d holds for 3D object points X = [X,Y, Z]⊤.

Finding the object point amounts to intersecting the viewing

ray with the plane in space. W.l.o.g. one can place the refer-

ence camera at the coordinate origin. With the intrinsic cal-

ibration matrix K, the depth at a pixel x= [x, y]⊤= [K|0]X
is then related to the plane parameters by

Z =
−dc

[x−u, α(y−v), c] · n , K =





c 0 u
0 c/α v
0 0 1



 . (4)

where u, v is the principal point in pixels and c, c
α

represent

the focal length of the camera in pixels.

The image point x in the reference camera K[I|0] is then

related to the corresponding point x′ in a different camera

K
′[R|t] via the plane-induced homography

Hπ = K
′(R− 1

d
tn⊤)K−1 , x′ = Hπx . (5)

X

Cr

C1

C2

C3x

x'

x''

x'''

Hπ,1

π

Hπ,2

Hπ,3

Figure 4: Multi-view setup with four cameras and homo-

graphies from reference camera Cr to three other cameras.

Initialization. When operating in scene space, one has to

take some care to ensure a correct, unbiased random ini-

tialization of the Patchmatch solver. To efficiently generate

random normals that are uniformly distributed over the vis-

ible hemisphere we follow [29]. Two values q1 and q2 are

picked from a uniform distribution in the interval (−1, 1),
until the two values satisfy S = q2

1
+ q2

2
< 1. The mapping

n =
[

1− 2S , 2q1
√
1− S , 2q2

√
1− S

]⊤
(6)

then yields unit vectors equally distributed over the sphere.

If the projection [u, v, c]⊤n onto the principal ray is posi-

tive, the vector n is inverted.

Furthermore, one should account for the well-known fact

that the depth resolution is anisotropic: even if the matching

is parametrized in scene space, the similarity is nevertheless

measured in image space. It follows that the measurement

accuracy is approximately constant over the disparity range,

respectively inversely proportional to the depth. Therefore

it is advisable to uniformly draw samples from the range of

possible disparities and convert them to depth values (i.e.

supply a more densely sampled set of depths to chose from

in the near field, where they make a difference; and a sparser

set in the far field, where small variations do not produce

an observable difference). For the same reason, the search

interval for the plane refinement step should be set propor-

tional to the depth.

4.2. Cost computation over multiple images

When using multiple views, the question arises how to

best combine the pairwise dissimilarities between images

into a unified cost. In our implementation, we only consider

the pairwise similarities between the reference image and

all other overlapping views, but not those between pairs of

non-reference images.

View selection For a given reference image, we first ex-

clude all views whose viewing directions differ from the ref-

erence image by less than αmin or by more than αmax. The

two thresholds correspond to the empirical observation that

baselines < αmax are too small for triangulation and lead

to overly high depth uncertainty, whereas baselines > αmax
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have too big perspective distortions to reliably compare ap-

pearance [37]. The selection of αmin and αmax is dataset

dependent.

In big datasets where the angle criteria still produces too

many views, we propose to randomly pick a subset S of

views within this selection only if the runtime performance

is preferred over accuracy, see Sec. 5. When used, we set

S = 9.

Cost aggregation For a specific plane π, we obtain a cost

value mi from each of the N comparisons. There are dif-

ferent strategies how to fuse these into a single multiview

matching cost.

One possible approach is to accumulate over all n cost

values, as proposed by Okutomi and Kanade [30]. However,

if objects are occluded in some of the views, these views

will return a high cost value even for the correct plane, and

thereby blur the objective. In order to robustly handle such

cases we follow Kang et al. [24]. They propose to include

only the best 50% of all N cost values, assuming that at

least half of the images should be valid for a given point. We

slightly change this and instead of the fixed 50% introduce a

parameter K, which specifies the number of individual cost

values to be considered,

msrt = sort↑(m1 . . .mN ) , mmv =

K
∑

i=1

mi . (7)

The choice of K depends on different factors: in general,

a higher value will increase the redundancy and improve

the accuracy of the 3D point, but also the risk of includ-

ing mismatches and thereby compromising the robustness.

Empirically, rather low values tend to work better, in our

experiments we use K = 3 or less for very sparse datasets.

4.3. Fusion

Like other multiview reconstruction schemes, we first

compute a depth map for each view by consecutively treat-

ing all N views as the reference view. Then, the N depth

maps are fused into a single point cloud, in order to elimi-

nate wrong depth values and to reduce noise by averaging

over consistent depth and normal estimates. Our approach

follows the philosophy to generate the best possible individ-

ual depth maps, and then merge them into a complete point

cloud in a straightforward manner.

Consistency Check Mismatches occur mainly in texture-

less regions and at occlusions, including regions outside of

a camera’s viewing frustum. Many such cases can be de-

tected, because the depths estimated w.r.t. different view-

points are not consistent with each other. To detect them,

we again declare each image in turn the reference view, con-

vert its depth map to a dense set of 3D points and reproject

them to each of the N − 1 other views, resulting in a 2D

coordinate pi and a disparity value d̂i per view. A match

Figure 5: Reconstruction results of two DTU objects. From

left to right: ground truth point cloud, textured point cloud

and triangulated mesh surface.

is considered consistent if d̂i is equal to the disparity value

di stored in the corresponding depth map, up to a tolerance

of fǫ pixels. The threshold depends on the scale of the re-

constructed scene. We further exploit the estimated surface

normals and also check that the normals differ by at most

fang , in our experiments set to 30◦. If the depth in at least

fcon other views is consistent with the reference view, the

corresponding pixel is accepted. Otherwise, it is removed.

For all accepted points the 3D position and normal are av-

eraged directly in scene space over all consistent views to

suppress noise.

Accuracy vs. completeness The fusion parameters fǫ ,

fang and fcon filter out 3D points that are deemed unreli-

able, and thus balance accuracy against completeness of the

multiview reconstruction. Different applications require a

different trade-off (e.g., computer graphics applications of-

ten prefer complete models, whereas in industrial metrology

sparser, but highly accurate reconstructions are needed).

We explore different setting in our experiments, see Sec. 5.

Note that the fusion step is very fast (≈ 15 seconds for 49

depthmaps of size 1600 × 1200) and does not change the

depthmaps. One can thus easily switch from a more ac-

curate to a more complete reconstruction, or even explore

different levels interactively.

5. Results

We evaluate our multiview stereo GPU implementation

on different datasets. We start with quantitative results on

the recent DTU dataset for large scale multiview stereo [22].

To put our method in context we also evaluate on the Mid-

dlebury multiview benchmark [34], although the images in

the dataset are very small by today’s standards, and perfor-

mance levels have saturated. When a triangulated mesh is

required, we directly use our point cloud and normals with

Screened Poisson reconstruction [26] with the program pro-
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Figure 6: Reconstruction results for our three different set-

tings. From left to right: ours, ours comp, ours fast. Note

how the complete version is able to close the holes around

the eye but suffers from boundary artifacts along the crest.

On the other hand, the fast version, similar to the original,

presents bigger holes around the eye and on the right side

of the mantle.

vided by the authors.

Additional qualitative results on aerial images are shown

in Sec. 5.3 to demonstrate the broad applicability of our

method.

5.1. DTU Robot Image Dataset

As our main testbed, we use the recent DTU large scale

multiview dataset [22]. It contains 80 different objects, each

covered by 49–64 images of resolution 1600× 1200 pixels.

The captured scenes have varying reflectance, texture and

geometric properties and include fabric, print, groceries,

fruit and metallic sculptures, see Fig. 5. The images have

been captured with different lighting conditions, and with

two different distances to the object, using a robot arm to

accurately position the cameras. We use only the most dif-

fuse lighting to select the same set of images as used by the

other methods. The ground truth has been acquired with a

structured light scanner.

We followed the protocol specified by the authors of the

dataset, i.e. we compute the mean and median reconstruc-

tion errors, both for the estimated 3D point cloud and for

a triangulated mesh derived from the points. Accuracy is

defined as the distance from the surface to the ground truth,

and completeness from the ground truth to the surface. In

this way completeness is expressed in mm and not as a per-

centage.

Compared to other methods, we achieve the highest ac-

curacy, marked as ours in Tab. 1, while at the same time de-

livering the second-highest completeness, behind [7] which

has much lower accuracy. For this setting we employ

fǫ = 0.1 and fcon = 3 for fusion.

There is always a trade-off between accuracy and com-

pleteness, which depends on how strict one sets the thresh-

olds for rejecting uncertain matches. We thus also run

Accuracy Completeness

Mean Med. Mean Med.

P
o

in
ts

ours 0.273 0.196 0.687 0.260

ours comp 0.379 0.234 0.400 0.188

ours fast 0.289 0.207 0.841 0.285

tola [36] 0.307 0.198 1.097 0.456

furu [12] 0.605 0.321 0.842 0.431

camp [7] 0.753 0.480 0.540 0.179

S
u

rf
ac

es

ours 0.363 0.215 0.766 0.329

ours comp 0.631 0.262 0.519 0.309

ours fast 0.358 0.221 0.939 0.350

tola [36] 0.488 0.244 0.974 0.382

furu [12] 1.299 0.534 0.702 0.405

camp [7] 1.411 0.579 0.562 0.322

Table 1: Quantitative comparison with three different set-

tings on the DTU dataset [22]. The quality metrics accuracy

and completeness were computed in accordance to [22],

stating the mean and median error in millimeters.

our method with different setting for the fusion, chosen

to achieve high completeness (ours comp in Tab. 1) with

fǫ = 0.3 and fcon = 2. In that setting we surpass [7] in

terms of completeness, while still achieving the second best

accuracy, slightly below [36] which is a lot sparser. The

runtime is ≈50 seconds per depthmap when the number of

selected views is 10, growing linearly as more views are

considered.

Speed settings To explore the behavior of our method

when tuned for high speed, we also tried an extreme setting.

To speed up the reconstruction we set the window size to 15,

restrict the similarity computation in the window to every

fourth row and column, and use at most 10 (randomly cho-

sen) views within the view selection criteria for a depthmap.

Furthermore, we stop the propagation after 6 iterations in-

stead of 8 and use a reduced set of update candidates in the

propagation step, as depicted in Fig. 2c. For fusion we used

the parameters fǫ = 0.3 and fcon = 3. With these settings,

the method needs ≈2.7 seconds per depthmap on the GPU,

respectively 7 minutes per complete object (including disk

I/O). These extreme settings do lead to some loss in com-

pleteness, whereas the accuracy remains high. Even when

tuned for speed the method is competitive with the state of

the art, see row ours fast in Tab. 1.

Fig. 6 presents a qualitative comparison of the three dif-

ferent parameter settings presented.

5.2. Middlebury

We evaluated our method also on the popular Middle-

bury multiview benchmark [34]. It was the first benchmark

for multiview reconstruction, and by now is rather saturated.

Moreover, the images are rather small at 640 × 480 pixels,
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Figure 7: Screenshots from the Middlebury evaluation for

Dino Full and Temple Full, sorted by accuracy at the stan-

dard threshold of 90%. Our method is highlighted in yellow.

Figure 8: Ground truth surfaces and reconstructions for

Temple Full and Dino Full of the Middlebury multiview

stereo evaluation dataset [34].

and the dataset consists of only two objects, in three differ-

ent settings with varying number of views. Fig. 8 shows our

reconstructions of the two objects Dino and Temple (“full”

setting with more than 300 views each).

On Dino we rank 1st for the “full” version, 3rd for the

“ring” version, and 7th for the “sparse” version. On Temple

we rank 5th on “full”, 7th on “ring” and 5th on “sparse”. For

all six reconstructions the completeness lies between 97.0

and 99.9%, see Fig. 7. It is interesting to note that several

methods perform well only on one of the two objects. We

achieve excellent performance on both datasets, in terms of

both accuracy and completeness. To generate a depthmap

from 10 views for (resolution of 640 × 480) our method

needs 2.5 seconds, with window size 11.

5.3. Outdoor Images

We have also tested our method on oblique aerial im-

ages from the city of Enschede. Oblique viewing angles

are becoming popular in aerial mapping to cover vertical

structures such as building facades, and are an ideal testbed

for us. Aerial mapping images are routinely recorded in

such a way that multiple overlapping views are available.

They present a challenge for conventional matching meth-

ods, because the depth range is much larger compared to

conventional nadir views. And they deviate strongly from

Figure 9: Point clouds generated from aerial images. Top:

selection of input images. Bottom: textured and normal

color coded point clouds.

the fronto-parallel setup assumed by many matching algo-

rithms, but do tend to have piecewise constant normals, e.g.

on the ground, building walls, roofs etc. The results in

Fig. 9 highlight the properties of Gipuma: planes in gen-

eral orientation are recovered without stair-casing artifacts

(see the reconstruction with color coded normals); match-

ing is less reliable on structures without well-defined nor-

mals (e.g. trees in the near-field) but errors are detected and

removed.

We show additional results for the stereo data of the

KITTI Vision Benchmark Suite [15] in the supplementary

material.

6. Conclusion

We have presented Gipuma, a massively parallel multi-

view extension of Patchmatch stereo. The method features

a new red-black propagation scheme tailored to modern

GPU processing, and exploits multiview information dur-

ing matching. Switching to a common 3D scene coordinate

system, in which all camera poses reside, makes it possi-

ble to directly integrate information from multiple views in

the matching procedure, via the planar homographies in-

duced by a point and its associated normal vector. Like the

original Patchmatch stereo, the method is based on slanted

planes, and therefore allows slanted support windows with-

out fronto-parallel bias. It is thus particularly well-suited for

the frequent case of locally smooth scenes with large depth

range. As a by-product, the resulting multiview matcher de-

livers not only dense depth maps, but also dense normal vec-

tors in metric scene space. Our method achieves accurate

and complete reconstruction with low runtime. Quantita-

tive results on the DTU and Middlebury benchmark confirm

that it is both more accurate and much faster than state-of-

the-art methods such as PMVS. Gipuma is released to the

community as open-source software1.

1www.igp.ethz.ch/photogrammetry/research/gipuma
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