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Abstract

The contour-guided color palette (CCP) 1 is proposed

for robust image segmentation. It efficiently integrates con-

tour and color cues of an image. To find representative

colors of an image, color samples along long contours be-

tween regions, similar in spirit to machine learning method-

ology that focus on samples near decision boundaries, are

collected followed by the mean-shift (MS) algorithm in the

sampled color space to achieve an image-dependent color

palette. This color palette provides a preliminary segmen-

tation in the spatial domain, which is further fine-tuned by

post-processing techniques such as leakage avoidance, fake

boundary removal, and small region mergence. Segmenta-

tion performances of CCP and MS are compared and an-

alyzed. While CCP offers an acceptable standalone seg-

mentation result, it can be further integrated into the frame-

work of layered spectral segmentation to produce a more

robust segmentation. The superior performance of CCP-

based segmentation algorithm is demonstrated by experi-

ments on the Berkeley Segmentation Dataset.

1. Introduction

Automatic image segmentation is a fundamental prob-

lem in computer vision. It plays an important role in di-

verse applications, such as object detection, scene parsing,

and image retrieval. It partitions an image into a small num-

ber of disjointed coherent regions with low-level features,

with the goal of minimizing intra-variance and maximizing

inter-variance among regions. It is desired that the segmen-

tation result is close to human semantic understanding and

not sensitive to parameter setting and/or image content.

To segment an image, pixel (or superpixel) grouping in

the spatial and spectral domains were performed in the lit-

erature. Typically, spatial-domain pixel grouping is guided

by contours [2, 7] while spectral-domain pixel grouping is
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1The MATLAB code of CCP Segmentation can be downloaded at

https://github.com/fuxiang87/MCL_CCP.

achieved by clustering in a color space [17, 4, 5, 8, 11, 12,

18]. Thus, contours and colors are two widely used features

in image segmentation, yet each of them has its own limita-

tions. For example, contours are not reliable if they are short

and fragmented. They might fail to separate two regions if

parts of their common boundaries are blurred and/or with

a low contrast. The color feature is not effective to han-

dle regions with textures or gradual color transition, lead-

ing to over-segmentation. One common challenge in these

methods is the selection of proper parameters, such as the

color clustering bandwidth. In general, these optimal pa-

rameters are image dependent and difficult to determine. In

this work, we integrate contour and color cues under one

unified framework, and propose the contour-guided color

palette (CCP) for robust image segmentation. That is, it has

only one key parameter and its performance is stable when

the parameter lies in a suitable range.

The basic idea of CCP is described as follows. To find

representative colors of a given image, we collect color

samples from both sides of long contours, and conduct the

mean-shift (MS) algorithm [4] in the sampled color space to

define an image-specific color palette. This scheme reduces

color complexity of the original image, yet keeps a suffi-

cient number of representative colors to separate distinctive

regions and yield a preliminary segmentation. This result

is further refined by post-processing techniques in the spa-

tial domain, which leads to a robust standalone segmenta-

tion. The CCP result can be applied to any superpixel-based

segmentation algorithm by replacing the over-segmentation

layer, such as mean-shift (MS) [4], Felzenszwalb and Hut-

tenlocher’s graph-based (FH) [8], and SLIC [1] superpix-

els. Furthermore, it can be integrated into the layered spec-

tral segmentation framework, such as multi-layer spectral

segmentation (MLSS) [11] and segmentation by aggregat-

ing superpixels (SAS) [12], and used as a coarse layer in

this context for a more robust segmentation. The supe-

rior performance of CCP-based segmentation algorithms

are demonstrated in the experiments on the Berkeley Seg-

mentation Dataset (BSDS) [13].

The rest of this paper is organized as follows. Related
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Figure 1. The block diagram of the proposed contour-guided color palette (CCP) method.

work is reviewed in Sec. 2. The CCP method is described

in detail in Sec. 3. The advantages of CCP over MS are an-

alyzed in Sec. 4. Then, the integration of CCP with layered

spectral segmentation is introduced in Sec. 5. Experimental

results are shown in Sec. 6. Finally, concluding remarks are

given in Sec. 7.

2. Related Work

According to the studies on human visual perception

[10, 3], people pay more attention to dissimilarities between

two regions and lean to group similar regions in appear-

ance, which correspond to the contour (1D) and regional

(2D) cues, respectively. Both of the two cues are needed for

a better image segmentation. Regional cues are contributed

by color and texture. Most image segmentation algorithms

can be classified into two categories, i.e., region-based and

contour-based methods.

Region-based methods find the similarity among spa-

tially connected pixels and group them together using sur-

face properties such as luminance and color. Representative

approaches include watershed [17], k-means, mean-shift

(MS) [4], normalized cuts (NCut) [5, 18], Felzenszwalb

and Huttenlocher’s graph-based (FH) [8], multi-layer spec-

tral segmentation (MLSS) [11], and segmentation by ag-

gregating superpixels (SAS) [12]. However, these meth-

ods might neglect obvious discontinuities between two re-

gions. To overcome this limitation, contour-based methods,

such as gPb-OWT-UCM [2], and saliency driven total vari-

ation (SDTV) [7] were developed to find connected regions

blocked by detected contours. However, it is still challeng-

ing to detect closed contours in low-contrast or blurred re-

gions for segmentation.

One can combine region and contour cues to overcome

their individual limitations, and several ideas were intro-

duced in [9, 16]. For example, one can take the contour cue

as a post-processing step to correct region-based segmen-

tation results or treat the contour as a barrier in an affinity

measure.

In this work, a new method called CCP is proposed to ef-

fectively integrate contour and color cues. Unlike the other

methods, we take the contour cue as guidance to form an

image-dependent color palette. It reduces color complexity

of the original image, yet keeps a sufficient number of rep-

resentative colors to separate distinctive regions. The CCP

method is detailed in the following section.

3. Contour-guided Color Palette Method

3.1. System Overview

The basic idea of the CCP method can be simply stated

as follows. Long contours play an important role in image

segmentation since they provide useful spatial-domain in-

formation in region partition. However, they may not form

a closed region due to weak boundaries in some parts, lead-

ing to the leakage problem. To assist contour-guided seg-

mentation, we use the color information as an auxiliary cue.

That is, we collect color samples along both sides of each

long contour and perform clustering in the sampled color

space for color quantization. Once color is quantized, we

get a number of closed regions with long contours as their

boundaries. This initial segmentation can be further refined

by post-processing techniques in the spatial domain. Fig. 1

shows the block diagram of the CCP method, which mainly

consists of three modules: (1) image pre-processing, (2)

contour-guided color palette generation for an initial seg-

mentation, and (3) segment post-processing.

The image pre-processing module includes denoising

and contour extraction. There are many standard algorithms

to select for this module. In our implementation, we adopt

the bilateral filtering scheme [19] for denoising. And, we

apply the structured edge detection [6] method to the origi-

nal input image to obtain a contour map with pixel value in-
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Figure 2. Illustration of banded region of interest (B-ROI) for color

palette generation. (a) shows a B-ROI with a bandwidth of 2δ.

Pixels are sampled from both sides of the contour with a uniform

stepsize ∆. (b) is an example image overlaid with detected long

contours. Long contours are indicated by different colors. (c) and

(d) are the zoom-in of two local B-ROI’s of (b). In (c), the colors of

the pixels labeled in red along one side of the B-ROI look similar

without an obvious jump. In (d), the colors of the pixels labeled in

red change with one large jump.

dicating the probability of being a contour point. Then, long

contours are selected from the contour map. The contour in-

formation will be used to generate the desired color palette,

based on which the initial segmentation result is directly ob-

tained (module 2), followed by an effective post-processing

step (module 3). Both modules 2 and 3 are guided by the

contour information.

3.2. Color Palette Generation

The well-known color clustering algorithms, such as k-

means and MS [4] clustering, consider the color distribu-

tion of all pixels or superpixels in an image. However, not

all pixels and their associated colors are equally important

for the segmentation purpose as illustrated by the following

two examples. First, the strong color-varying pixels inside

a texture region (e.g., a large number of flowers in a garden

in Fig. 3(a)), where the complexity of the color represen-

tation increases, are actually of less importance. Second,

the pixels of similar colors inside a homogeneous region

(e.g., a large near-white building in Fig. 3(e)), that gives

many redundant color samples in the color space, are also

not that important. A relatively minor variation in these

images (e.g., the flower density and the wall size, respec-

tively) will affect the color-based segmentation. Generally

speaking, these algorithms are sensitive to their parameter

settings, and it is challenging to automatically find a good

parameter set for an arbitrary image.

To develop a robust segmentation algorithm, we attempt

to reduce the influence of color variations in an image by

selecting a set of representative colors. To achieve this,

(a) (b)

(c) (d)

(e) (f)

Figure 3. Comparison of CCP segmentation results before and af-

ter post-processing. Please focus on the squared regions in red: (a)

shows a long contour straddled by two regions with similar colors;

(c) shows the fake boundary in the sky due to gradual color transi-

tion; (e) shows small segments in the background building region.

(b), (d), and (f) are the post-processed results of (a), (c), and (e),

respectively.

we focus on key regions and obtain color samples accord-

ingly. For image segmentation, one would like to have large

segments and ignore small ones. Since large segments are

enclosed by long contours, we can define a banded region

of interest (B-ROI) for each long contour and its neighbor-

hood. The B-ROI is centered at the contour location with

a bandwidth of 2δ as shown in Fig. 2(a). After obtaining

the B-ROI, we sample pixels from both sides of the con-

tour with a uniform stepsize ∆ and have their colors in the

Lab color space [21] to form a set of representative colors.

In the implementation, we used the structured edge detec-

tion algorithm [6] to extract the contour and set δ = 2 and

∆ = 1 pixels, respectively.

We observe two typical cases for pixels along one side

of the B-ROI for different images. First, the color remains

about the same or changes gradually without an obvious

jump. Second, the color changes with one or several large

jumps, yet each interval between two jumps does have a

similar color. These two cases are shown in Figs. 2(b)-(d),

where Fig. 2(b) is an illustrative image overlaid with long

contours while Figs. 2(c) and (d) provide the zoom-in im-

ages of two local regions of Fig. 2(b) and correspond to the

two cases, respectively. For Case 1, as shown in Fig. 2(c),

color samples can be further reduced to their average color.

For Case 2, we need to select multiple color samples, each
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of which represents the color in one interval. As shown in

Fig. 2(d), the B-ROI goes through the deer body at one side

and two background regions at the other side. In this case,

we need to split the color samples into two groups and each

group is represented by its average color.

Further color simplification required by Case 1 and 2 can

be achieved by MS clustering with bandwidth parameter hr
in the spectral domain. Another is to adopt MS clustering

with different bandwidth parameters for sampled colors lo-

cated in different regions of the image. Since the object

of interest is usually in the central region while the back-

ground is in the boundary region of an image, we adopt two

bandwidth parameters, i.e., a smaller one and a larger one

(hrc, hrb), for sampled colors in the central and boundary

regions, respectively. The final representative color set is

called the color palette of the input image. Then, a color-

quantized image can be obtained by replacing the color of

each pixel with its most similar color in the color palette. In

this way, an initial segmentation result is obtained.

3.3. Segment PostProcessing

Three post-processing techniques are proposed to better

the segmentation result: 1) leakage avoidance by contours,

2) fake boundary removal, and 3) small region mergence, as

illustrated in Fig. 3.

The first problem arises when there is a long contour

straddled by two regions with similar colors. One such ex-

ample is given in Fig. 3(a), where the white fence and the

white collar are close in color but separated by a long con-

tour. After color quantization, the fence is mingled with the

collar to yield complicated patterns and, as a result, these

two regions are blurred. This is known as the leakage prob-

lem. To avoid this, we check the regions along each side of

the contour in the B-ROI. After color quantization, even if

both sides of the contour are quantized into the same color,

they are still separated by the long contour.

The second problem occurs when there is a smooth color

transition over a large region. For example, the sky color in

Fig. 3(c) changes smoothly and it is split into multiple re-

gions due to color quantization. This fake boundary can

be removed by checking the common boundary of adjacent

regions. We consider the ratio of the length of the com-

mon boundary and the minimum perimeter of the two re-

gions, which indicates the relative significance of the com-

mon boundary. If the common boundary is significant and

not overlaid much with detected long contours, these two

regions will be merged. By this criterion, isolated regions

have a high priority to be merged when there is not a long

contour around them.

The third problem occurs in the textured area such as the

background building with small windows in Fig. 3(e). They

are merged to the closest “effective neighbors” for simplic-

ity. This can be implemented by merging a small region to

its neighbor region of a similar color but without a contour

in between.

Since region aggregation is irreversible, we need to pay

special attention to the order of fake boundary removal and

small region mergence. In the beginning, region sizes are

relatively small. The small region mergence process might

merge two similar regions in the dark or blurred area, lead-

ing to the leakage problem. However, the fake boundary re-

moval process does not have this side effect. For this reason,

we conduct fake boundary removal before small region re-

moval. Fake boundary removal and small region mergence

can be conducted iteratively to achieve better performance.

We conduct the iteration twice in the implementation. The

post-processed results of Figs. 3(a), (c) and (e) are shown

in Figs. 3(b), (d) and (f), respectively.

4. Comparison of MS and CCP

In Fig. 4, we compare in detail the segmentation results

of mean-shift (MS) method and our CCP method for three

typical images, denoted as #1, #2 and #3 from the left to the

right. For MS, we select three best spectral bandwidth (BW)

parameters from all the odd numbers between 5 and 25, re-

sulting in 7 (small), 13 (medium) and 19 (large); for CCP,

we select the spectral BW parameters as hr = 5 (small),

(hrc, hrb) = (5, 7) (medium) and hr = 7 (large) in the

color palette generation process. The spatial BW param-

eter is set to 7 in all MS results while no spatial BW pa-

rameter is required by CCP. We can see that CCP provides

simplified segmentation results, which are more consistent

with human perception and can serve as standalone solu-

tions. In contrast, MS gives highly over-segmented images

that are not acceptable to human eyes even if the spectral

BW parameter is large enough. Similar conclusions were

drawn from all the 300 images in the Berkeley Segmenta-

tion Dataset (BSDS) [13]. It is no doubt that CCP visually

outperforms MS by a significant margin.

Selection of proper spectral and spatial BW parameters

for MS is actually a challenging task. The quality of the

MS segmentation result is sensitive to these two parameters.

They are not only image dependent but also region depen-

dent. To the best of our knowledge, there is no automatic

mechanism to select good BW parameters. For compari-

son, CCP only demands one BW parameter, and its results

are stable over a range of BW values as illustrated in Fig. 4.

This avoids the huge burden of performance fine-tuning.

To explain the superior performance of CCP over MS,

we list the representative color numbers and the boundary

F-measures (harmonic mean of precision and recall, defined

in [14]) under three spectral BW parameters for the three

images in Table 1. We also provide the average results of the

entire BSDS300 dataset. A smaller spectral BW parameter

usually generates more representative colors as illustrated

by the numbers in the same column in the upper half of the
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Figure 4. Comparisons of segmentation results by MS and CCP for three typical images, with different spectral BW parameters.

table. The corresponding number of representative colors

of CCP is significantly less than those of MS, although the

three BW parameters of CCP are smaller than their coun-

terparts of MS. In addition, CCP can achieve much better

boundary F-measures than MS, as shown in the lower half

of the table. This indicates a better boundary adherence

with respect to human ground-truth boundaries. These two

comparisons show the power of color sampling along the

contours adopted by CCP. Through color sampling, we can

eliminate color samples in regions of little significance and

merge these regions with other important ones, as shown in

the mountain, branch and tree regions of image #1, #2 and

#3, respectively. Furthermore, because CCP yields fewer

color samples in the color space, we can adopt a smaller

BW parameter without increasing the number of represen-

tative colors too much. In this way, CCP can reduce the risk

to make two colors along a significant contour get mixed,

and thus avoid a severe leakage problem which usually oc-

curs in the MS method. For comparisons, please look at the

boundaries between the bridge and the sky, those between

the bird and the sky, and those between the face and the

building in Fig. 4.

For a segmented image, we count the number of pix-

els for a specific representative color and sort the color in-

dex according to the number of associated pixels in a de-

scending order. Then, we plot the cumulative normalized

histogram as a function of the representative color index,

as shown in Fig. 5. The curve reaches 100% when all

representative colors are used. Let us use Image #1 as an

example. The blue, green and red curves are obtained us-

ing large, medium, and small spectral BW parameters. The

three curves of CCP reach 100% at color index #54, #68 and

Table 1. Comparisons of the numbers of representative colors (up-

per) and the boundary F-measures (lower) by MS and CCP under

three BW parameters for the three typical images. We also provide

the average results of the entire BSDS300 dataset.

BW
MS CCP

#1 #2 #3 All #1 #2 #3 All

s. 116 116 217 192 66 83 118 81

m. 100 117 218 178 68 85 122 77

l. 98 113 215 173 54 75 107 63

s. 0.70 0.67 0.72 0.59 0.75 0.75 0.78 0.68

m. 0.69 0.64 0.75 0.60 0.75 0.75 0.80 0.68

l. 0.68 0.60 0.76 0.60 0.74 0.74 0.78 0.68

#66 while those of MS reach 100% at color index #98, #100

and #116, respectively, as indicated by the data in Table 1.

Meanwhile, CCP can achieve around 10% higher bound-

ary F-measures than MS. There are a few dominant colors

in simple images such as Images #1 and #2, which can be

caught by both CCP and MS. CCP reaches a higher percent-

age than MS with these dominant colors. Image #3 is more

complicated in its content and more representative colors

are needed. In all three cases, along with better boundary

adherence, the CCP curves are closer to the upper-left cor-

ner of the figure than MS. This indicates that CCP can use

fewer colors to represent a larger region of an image and

provide a more simplified result. Similar conclusions were

drawn from all 300 images in the BSDS dataset.

5. Layered Affinity Models using CCP

Spectral segmentation has received a lot of attention in

recent years due to its impressive performance [5, 18]. It

begins with a graph representation of a given image, where
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(a) MS, Image #1 (b) CCP, Image #1

(c) MS, Image #2 (d) CCP, Image #2

(e) MS, Image #3 (f) CCP, Image #3
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Figure 5. Plots of the cumulative histogram versus representative

color indices for MS and CCP on three typical images, where the

blue, green and red curves are obtained using large, medium and

small spectral BW parameters.

each pixel is a node. Then, a sparse affinity matrix is cre-

ated to measure the similarity between nearby nodes, while

ignoring the connection among distant nodes even if they

are in the same homogeneous region; say, two distant nodes

in the same sky region. The simplification of sparse affin-

ity matrices often leads to over-segmentation. To overcome

this problem, a layered affinity model was introduced to al-

low more connections, such as the full pairwise affinity in

MLSS [11] and the bipartite graph partitioning in SAS [12].

These methods share one common idea, namely, building a

graph model consisting of multiple layers. The finest one is

the pixel layer as constructed by the standard spectral seg-

mentation method. Then, one can add a couple of coarse

layers on top of the pixel layer, where each coarse layer

uses superpixels as its nodes and defines an affinity ma-

trix accordingly. Typically, these superpixel layers are con-

structed using the MS [4] and the FH graph-based [8] meth-

ods. Finally, nodes between different layers are connected

by an across-affinity matrix. Although these methods share

the same basic idea, they differ in the details of the layered

affinity matrix implementation.

To further improve the segmentation result of CCP, we

can leverage the two layered affinity models proposed in

MLSS and SAS. The integrated methods are called CCP-

LAM (where LAM denotes “layer-affinity by MLSS”) and

CCP-LAS (where LAS denotes “layer-affinity by SAS”),

respectively. CCP-LAM and CCP-LAS can be easily ob-

tained by replacing the superpixel layers in MLSS and SAS,

respectively, by the CCP segmentations as described in Sec.

3, with the pixel layer kept as the finest layer.

It was observed in [11] and [12] that the final image seg-

mentation result can benefit from the diversity of multiple

coarse layers. Following this line of thought, we create mul-

tiple CCP segmentations by varying bandwidth parameter

hr or (hrc, hrb) of the MS algorithm in the color palette

generation process, which has been discussed in Sec. 3.2.

6. Experimental Results

In this section, we evaluate the performance of three

CCP segmentation results by consider three parameter set-

tings: 1) CCP-1, hr = 5; 2) CCP-2, (hrc, hrb) = (5, 7);
and 3) CCP-3, hr = 7. Furthermore, we take CCP-1,

CCP-2 and CCP-3 as three coarse layers in the context of

spectral segmentation with two layered affinity models (i.e.,

LAM and LAS) to result in CCP-LAM and CCP-LAS meth-

ods. To achieve the optimal performance of CCP-LAM and

CCP-LAS, we follow the procedure stated in [11, 12] to

manually select the best segment number using the LAM or

LAS graph.

We compare the performance of CCP-1, CCP-2, CCP-

3, CCP-LAM and CCP-LAS with several benchmarking

methods on the Berkeley Segmentation Dataset (BSDS)

[13] in Table 2. The BSDS benchmark consists of 300 color

images of size 481×321 pixels displayed either horizontally

or vertically, and several hand-labeled segmentations were

collected from different human subjects for each image.

The benchmarking methods include NCut [18], MNCut [5],

MS [4], FH [8], SDTV [7], RIS-HL [22], MLSS [11], and

SAS [12]. Their numbers are taken from [7, 11, 12, 22].

As shown in Table 2, five performance metrics (e.g.,

[7, 11, 12, 22]) are used for quantitative evaluation. They

are: 1) Segmentation Covering (Cov) [2], which measures

the region-wise covering of the ground truth by a segmenta-

tion; 2) Probabilistic Rand Index (PRI) [20], which counts

the likelihood of pixel pairs whose labels are consistent be-

tween a segmentation and the ground truth; 3) Variation

of Information (VoI) [15], which measures the amount of

randomness in one segmentation that cannot be contained

by the other; 4) Global Consistency Error (GCE) [13],

which measures the extent to which one segmentation can

be viewed as a refinement of the other; 5) Boundary Dis-

placement Error (BDE) [9], which measures the average

displacement error of boundary pixels between two seg-
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mented images. The segmentation result is better if Cov

and PRI are larger while the other three criteria (VoI, GCE

and BDE) are smaller. The best and the second best results

in Table 2 are highlighted in red and blue, respectively.

We draw the following conclusions from Table 2. First,

CCP-LAM and CCP-LAS achieved the best performance

in terms of all five metrics by a large margin. Second, all

the three CCP methods had outstanding performance in the

GCE and BDE metrics. This means that CCP yields an

excellent segmentation with better boundary adherence and

less displacement error with respect to the ground truth. It is

worthwhile to emphasize that no image-dependent param-

eter was used in CCP-1, CCP-2 and CCP-3. The same pa-

rameter setting is applied to all the images. In contrast, a set

of experiments were run in all other benchmarking methods,

and the best result for each image was selected and used in

performance computation.

Table 2. Performance comparison of several segmentation meth-

ods on the BSDS300 Dataset, where the best two results are high-

lighted in red (best) and blue (second best).

Algorithm Cov PRI VoI GCE BDE

NCut [18] 0.44 0.7242 2.9061 0.2232 17.15

MNCut [5] 0.44 0.7559 2.4701 0.1925 15.10

MS [4] 0.54 0.7958 1.9725 0.1888 14.41

FH [8] 0.51 0.7139 3.3949 0.1746 16.67

SDTV [7] 0.57 0.7758 1.8165 0.1768 16.24

RIS-HL [22] 0.59 0.8137 1.8232 0.1805 13.07

MLSS [11] 0.53 0.8146 1.8545 0.1809 12.21

SAS [12] 0.62 0.8319 1.6849 0.1779 11.29

CCP-1 0.47 0.7900 2.8502 0.1046 11.26

CCP-2 0.48 0.7932 2.7835 0.1077 11.17

CCP-3 0.53 0.8014 2.4723 0.1270 11.29

CCP-LAM 0.68 0.8404 1.5715 0.1635 10.20

CCP-LAS 0.68 0.8442 1.5871 0.1582 10.46

Furthermore, Fig. 6 shows the segmentation results of

ten images by MLSS, SAS, CCP-LAM and CCP-LAS for

visual comparison. Again, CCP-LAM and CCP-LAS pro-

duced significantly better and meaningful segmentation re-

sults over MLSS and SAS in terms of visual appearance.

7. Conclusions

The contour-guided color palette (CCP) was proposed

for robust image segmentation. This method effectively in-

tegrated the contour and color cues of an image, reduced its

color complexity, and kept a sufficient number of distinc-

tive colors to achieve the desired segmentation task. Based

on the image-specific color palette, a preliminary segmen-

tation was obtained and it was further fine-tuned by post-

processing techniques. The CCP method produced an ac-

ceptable standalone segmentation result, which could be

further integrated with layered affinity models for spectral

segmentation. The superior performance of the proposed

CCP-LAM and CCP-LAS methods over existing state-of-

the-art methods was demonstrated by extensive experimen-

tal results.
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