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Abstract

Occlusion is a main challenge for human pose estima-

tion, which is largely ignored in popular tree structure mod-

els. The tree structure model is simple and convenient for

exact inference, but short in modeling the occlusion coher-

ence especially in the case of self-occlusion. We propose

an occlusion aware graphical model which is able to model

both self-occlusion and occlusion by the other objects si-

multaneously. The proposed model structure can encodes

the interactions between human body parts and objects, and

hence enables it to learn occlusion coherence from data dis-

criminatively.

We evaluate our model on several public benchmark-

s for human pose estimation including challenging subset-

s featuring significant occlusion. The experimental results

show that our method obtains comparable accuracy with

the state-of-the-arts, and is robust to occlusion for 2D hu-

man pose estimation.

1. Introduction

Human pose estimation from still image is a challeng-

ing problem in computer vision. It is key to many visual

tasks, e.g., action recognition, clothes parsing and human-

computer interaction. This problem is still challenging due

to large deformation, illumination, camera viewpoint, clut-

tered background and occlusion.

Recent progress on human pose estimation is ascribed to

the pictorial structured model especially simple tree struc-

ture [53, 40, 44, 48]. Although these methods perform well

on images with rare occlusion, they may fail when the body

parts are occluded by some other body parts(self-occlusion)

or the other objects(other-occlusion). Fig. 1(c) depicts that

the famous flexible mixtures-of-parts model(FMP) [53] fail-

s under occlusion. The tree structured model is simple, yet

fails to model the interaction between unconnected body

parts, and the interactions between human body and object-
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Figure 1. Occlusions in Leeds Sports dataset. (a) Visualization

of the occlusion relation matrix. The color of diagonal squares

reflects the probability of other-occlusion for each joint. Hotter

color means heavier occlusion. The hotness of each nondiagonal

square in row i and column j indicates the probability of joint i

being occluded by joint j. The image groups on the top are the

instances with the same self-occlusion relationship. (b) The se-

quence number of body joints in Leeds Sports dataset. (c) Human

pose estimation results with occlusions from FMP [53](the first

row) and ours(second row).

s. However, these interactions are important cues for occlu-

sion reasoning. The question is, how can we model such

interactions for occlusion reasoning?

There are mainly two types of occlusion for human pose

estimation: other-occlusion (occluded by objects) and self-

occlusion (occluded by some other body parts). Other-

occlusion appears when some objects block the view and

this will damage the local appearance of body parts and

cause failure detection. Take the images of the second col-

umn of Fig 1(c) for example, the FMP fails because the left

knee and hip of the rider are occluded by the horse. How-

ever, only a few body parts are frequently occluded such

as lower arms and legs while head is mostly visible(see the
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diagonal elements in the occlusion relation matrix).

In contrast to other-occlusion, self-occlusion appears

when the body parts occlude each other due to viewpoint

or pose deformation. In this case, the same region in 2D

image has to be explained as different body parts. This is

less likely to damage local appearance of the occludee, yet

will cause the ambiguity of pose configuration as there is no

interaction between the occluder and the occludee. For ex-

ample, as seen from the third and fourth column of Fig 1(c),

FMP fails to capture the correct pose configuration under

self-occlusion.

Statistics on the Leeds Sport dataset (LSP) [24] show

that 47.2% of the images have one more body joints invis-

ible and 16.7% have more than three body joints occluded.

Among all these invisible joints, 67.4% are self-occluded

while the rest are other-occluded. Existing works mainly fo-

cus on handling other-occlusion, self-occlusion is often ig-

nored or treated in the same manner as other-occlusion. We

argue that the occluder in self-occlusion can not be treated

as noise as that in other-occlusion. How can we model both

kinds of occlusion in an unified framework simultaneously?

Motivated by these above, we propose a novel occlusion

aware graphical model which explicitly model both self-

occlusion and other-occlusion to improve the robustness to

occlusion. We evaluate our model on several public bench-

marks for human pose estimation and test on the challeng-

ing subsets with significant occlusion. The results verify the

proposed method’s effectiveness to address occlusion prob-

lem and it has obtained comparable accuracy to previous

state-of-the-art methods on public datasets. In particular,

our method performs much better than previous methods

on those datasets with heavy occlusion.

2. Related Work

Recent approaches on human pose estimation mainly fo-

cus on richer model structure, stronger feature representa-

tion and specific challenges such as occlusion.

The most popular modern approaches for human pose

estimation is based on the pictorial structured mod-

el(PSM) [16]. In the PSM model, human body configura-

tion is represented as a collection of independent parts with

pairwise connections. The pairwise part relationships are

embodied in tree models [2, 53, 40, 44, 48, 30], multi-tree

model [50] or loopy models [43, 47, 38, 51, 41]. Tree mod-

els prevail for their simplicity and exact inference. Howev-

er, they are insufficient in capturing high-order spacial rela-

tionships among body parts and the message passing tends

to break down when occlusion occurs. Loopy models allow

more complex relationships among parts, but require ap-

proximate inference iteratively. Our occlusion aware graph-

ical model is able to model such interactions among parts

with efficient approximate inference.

In addition to model structure, some adopt strong fea-

ture and middle level representation. For instance, Con-

volutional Neural Networks (CNNs) [27] are used to ex-

tract more powerful features [46, 21] and Poselets [4], De-

formable Part based Model (DPM) [13] are adopted to gen-

erate richer middle level representations with strong pose

priors [30, 29]. Some incorporates CNN part detectors and

graphical models with either piecewise training [7] or joint

training [45]. In contrast to modeling pairwise constraints,

some [9, 32] adopt layered random forest to incorporate rich

spatial interactions among multiple parts. However, there is

no explicit modeling of occlusion in these approaches.

In terms of handling occlusion of pose estimation, body

part visibility is usually modeled as binary variable in ei-

ther part level or image level. Some previous object detec-

tion approaches [49, 17] model occlusion with segmenta-

tion of image feature map. Part level occlusion reasoning

is frequently used to model more complicated occlusion-

s. For instance, the supervised part models [3] includes

visibility variable for each part but imposes no constraints

on the visibility of different parts in the model. Similar-

ly, Hejrati et al. [22] extend the flexible mixtures-of-part

model [53] with part level occlusion reasoning for 3D car

alignment. Desai et al. [10] model the interactions between

human and objects which can capture the occlusion rela-

tionships. Wang et al. [50] propose to combine multiple

tree framework for occlusion reasoning. The And-Or graph

model [36] also incorporates visibility into the part node.

The grammar-based model [20] in people detection includes

explicit occlusion part templates but enforces more struc-

ture in the pattern of occlusion. The strongly supervised de-

formable model [19], by contrast, tries to sidestep the struc-

ture learning problem and automatically learn valid occlu-

sion patterns from data in a non-parametric way. The very

recent flexible compositions [6] model visible parts with

subtrees and learn occlusion cues with CNNs.

Most of the work above mainly focus on other-occlusion

while self-occlusion is often ignored or treated the same

manner as other-occlusion(as noise). There are only a few

works trying to model self-occlusion. Sigal et al. [39]

propose to use pixel level hidden binary variables for

self-occlusion reasoning. Some others try to model self-

occlusion in a holistic manner. Yang et al. [55] model

self-occlusion of pedestrian in a joint shape and appearance

tracking framework. Radwan et al. [31] treat self-occlusion

reasoning as post process with Twin-GP regression for 2D

pose rectification. However, our model learns the part-level

occlusion relationships from data and infers the occlusion

states of parts explicitly. Our model is more flexible and

can encode more complex interactions between parts.

3. Occlusion Aware Graphical Model

In this section, we will first introduce the proposed oc-

clusion aware graphical model, and then describe the infer-

ence and learning procedure of our model.
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Figure 2. Comparison of the proposed model structures with respect to that of FMP [53]. (a) Model structure of FMP, which is a kinetic tree.

(b) The kinetic constrains represented in adjacent matrix of body parts. (c) The message passing of FMP breaks down under other-occlusion.

(d) Failure detection of FMP under other-occlusion. (e) The message passing of FMP breaks down under self-occlusion. (f) Failure

detection of FMP under self-occlusion. (g) Model structure of the proposed method. (h) The constraints and occlusion representation in

adjacent matrix of body parts. (i) The message passing of the proposed method under other-occlusion. (j) Result of the proposed method

under other-occlusion. (k) The message passing of the proposed model under self-occlusion. (l) Result of the proposed method under

self-occlusion. The skeletons in (a) and (g) both are in a front view. The charts and pictures are best viewed in color.

3.1. Model Structure

Let pi = (xi, yi) be the pixel location for part i,
ti ∈ 1, . . . , T be the local mixture component of part i,
oi ∈ {0, 1, 2} be the occlusion state(“0” for visible, “1”

for self-occlusion and “2” for occlusion by the other ob-

jects) and J = {ji} be the pose configuration where ji =
(pi, oi, ti). Given an input image I , the posterior of a pose

configuration of parts is

P (J |I) ∝ exp

[

∑

i∈V

sao(I|ji) +
∑

k,l∈E

sdo(jk, jl)

]

(1)

The unary term sao(I|ji) models the appearance of each

part i, V is the set of part nodes and E is the set of edges in

the model. The appearance varies with view point change,

articulation as well as occlusion. To model these variations,

ji = (pi, oi, ti) specifies the part appearance with respect to

part localization pi, part occlusion state oi, and part mixture

type ti which encodes the rotation and size of part i.
The pairwise term sdo(jk, jl) models the geometric de-

formation constraints as well as occlusion relations between

body parts k and l on an occlusion-aware graph G, e.g., the

left knee is probably occluded by the right knee while the

left and right arms are less likely to occlude each other in

Fig. 1(a). However, it is hard to model such subtle relations

in a tree structured model such as in [53, 40, 48].

Fig 2 compares the structure of our occlusion aware

graphical model ((g) and (h)) and that of FMP [53] ((a)

and (b)). The proposed model differs from FMP in two as-

pects: first, each part of the model contains occlusion states

which indicate whether the part is visible, other-occluded

(squares in the diagonal elements in the adjacent matrix of

body parts, colored in orange) or self-occluded; second, in

contrast to merely considering the kinetic constrains (purple

edges/squares in (a), (b), (g) and (h)) between nearby parts,

our model encodes richer interactions between parts (green

edges/squares in (g) and (h)) that are closely related to self-

occlusion. We call these green edges enhanced edges with

respect to the purple edges representing kinetic constraints.

The goal of our occlusion aware graphical model is to

maximize the posterior as follows:

P (J |I) ∝ exp (S(I, p, o, t)) (2)

This is equivalent to maximize the score of pose configura-

tion score S(I, p, o, t), which is composed of part appear-

ance score and deformation score.

S(I, p, o, t) = Sao(I, p, o, t) + Sdo(I, p, o, t) (3)

Part appearance score: The part appearance score is a

summation of part filter response and compatibility biases.

Sao(I, p, o, t) =
∑

i∈V

[

α
ti
i · φ(I, pi, oi) + β

ti
i (oi)

]

(4)

where αti
i is the part filter parameters and βti

i (oi) is the bias

term for each mixture type and occlusion state. The part

appearance φ(I, pi, oi) is defined as

φ(I, pi, oi) =

{

φ(I, pi), if oi = 0, 1
0, if oi = 2

This indicates that we set the part score to be zero only when

it is occluded by some other objects. This differs from those

approaches that treat both self-occlusion and other occlu-

sion as noise and prune the local part score. In our method,

the pattern of self-occlusion can be captured for further in-

ference even when the body part is invisible (occluded by

some other body part).
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Deformation score: The deformation score is as fol-

lows:

Sdo(I, p, o, t) =
∑

(i,j)∈E

[

γ
titj
ij · ψ(pi − pj) + δ

titj
ij (oi, oj)

]

(5)

where γ
titj
ij is the deformation parameters for each pair

of connected parts. The part deformation ψ(pi − pj) =
[

dx dx2 dy dy2
]T

, where dx = xi − xj and dy =

yi−yj , the relative location of part i with respect to j. δ
titj
ij

encodes the occlusion coherence between body parts.

Note that the edges in our model not only contain ki-

netic constraints between nearby parts but also incorporate

interactions between parts which can help reasoning occlu-

sion relationships. As shown in Fig. 2(i), when the left hip

of the rider is occluded by the head of the horse, the score

of visible parts(on the right leg of the rider) can be passed

through green edges (see Fig. 2(g) and (j)). Similarly, when

the body parts are occluded by the other parts of the person

in Fig. 2(k), the occluder and the occludee can pass the oc-

clusion relationship to each other, so the occluder-occludee

part pair can explain the same region without mutual exclu-

sion. However, the FMP model can not handle these issues

and often fails under other-occlusion and self-occlusion (see

Fig. 2(d) and (f)).

In the following subsection, we will introduce how the

subtle information is passed to the corresponding parts and

benefits the inference of occluded parts.

3.2. Model Inference

As described above, the structure of our model is a graph

which contains loops. Inference on general loopy graphs

is a NP-hard problem. Many approximate methods, such

as Loopy Belief Prorogation [52], Branch and Bound [43]

and Dual Decomposition [26], need to iteratively infer on

tractable structures many times until converge. However,

our model contains large number of parameters and needs to

mine huge amount of negative examples. Alternatively Ra-

manan [34] propose to use tree-model for generating candi-

date pose configurations and scoring the configurations us-

ing more complex non-tree constraints. Inspired by this, we

first unroll the graphical model into a tree model to generate

candidate pose hypothesis, and then rescore the candidate

pose configurations with graphical model.

Model unrolling For any part ji with out-degree (num-

ber of connections pointing to the other parts) νi > 1, we

generate νi − 1 virtual parts and unroll the enhanced edges

to form a computation tree similar to [42](See Fig 3(b)).

As the parent of each virtual part is real part in our model,

unrolling for our model is equivalent to the effect of single

iteration of loopy belief propagation at the root node. The

unrolled tree model is then used for generating and selecting

candidate pose hypotheses.

Pose selection The goal of our graphical model is to
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Figure 3. Inference of the graphical model. (a)The graphical mod-

el, (b)The unrolled computation tree for approximate message

passing, (c)The nodes backtracked via the tree structure

maximize the posterior P (J |I) in Eq. (2), i.e.,

Jm = argmax
J

∑

i∈V

sao(I|ji) +
∑

k,l∈E

sdo(jk, jl) (6)

Instead of passing message on a loopy graph, we pass mes-

sage on the unrolled tree structure to generate root hypothe-

sis. This allows us to employ dynamic programming to pass

message from leaf nodes to the root node efficiently. The

optimization over the unrolled model can be formulated as:

J
′

m = argmax
J

∑

i∈V

sao(I|ji) +
∑

i∈V ′

sao(I|ji) +
∑

k,l∈E

sdo(jk, jl) (7)

This equals to adding part appearance weights to the nodes

with more connections.

Suppose the number of possible root hypotheses to be L
in the test image. We sort them by the score and choose top

Lσ hypotheses with the highest score. σ = Lσ/L is the

ratio of hypotheses selection. We assume that the optimal

hypothesis is included in the selected top-σ hypotheses of

the unrolled configurations.

Backtracking and rescoring As soon as the top-σ hy-

potheses of root node are determined, the optimal config-

uration can be obtained by backtracking directly from the

root node to the leaf nodes. We only backtrack the child

node from actual parent node (e.g., node 1 is backtracked

from node 2 rather than node 6 in Fig 3) as the parent near

the root node is more reliable. We will recompute the score

of the pose configurations with graphical model and rerank

the hypothesis.

Experimental results in the later sections will show that

the performance almost does not change when the ratio σ >
0.01. We set σ = 0.01 for all the evaluations.

Computation Let L be the number of possible part lo-

cations, T be the number of mixture types, K be the num-

ber of real parts and Kv be the number of virtual parts.

The complexity of message passing is O((K − 1)LT 2)
with dynamic programming and distance transform [14]

for the tree structured model of FMP [53]. For our mod-

el, the complexity becomes O((K + Kv − 1)L(3T )2) =
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O(9(K + Kv − 1)LT 2), which is slower than the FMP.

However, the backtracking and rescoring procedure can be

very fast as we only process the selected Lσ hypotheses.

The average detection speed of our method is 4.5 seconds

per image for the LSP dataset on single 3.4GHz CPU com-

pared with 1.2 seconds per image of the FMP.

3.3. Model Learning

Learning local mixtures

In the learning of mixture types of local parts, there are

several approaches. In the latent tree model [48], local part

mixtures are learned by clustering part appearance yet with-

out considering the structure of human body. In contrast, the

FMP model [53] learns part mixtures by clustering the rela-

tive position from the parent for each part in the kinetic tree.

This is because each part is only constraint to its parent in

the articulated tree structure. It is reasonable for higher lev-

el parts such as head and torso. However, this makes it hard

to capture the varying occlusion relationships between non-

adjacent parts (especially for lower limbs). In our model,

many parts have multiple interactions with some other part-

s. We learn the part mixture types from the relative position

from all the parents and children in the graphical model.

In this way, we can not only capture the local part defor-

mation but also encode the global pose deformation. This

will benefit the localization of occluded parts and the lower

level parts which contain much uncertainty of freedom in a

tree structured model. We use the simple k-means cluster-

ing with multiple runs and choose the one with minimum

objective function.

Learning occlusion coherence To model spatial coher-

ence among part occlusions, we utilize two sources of oc-

clusion samples. One is from the label of part occlusion

states and the other from synthetic occlusion patterns. For

the labeled invisible part, we distinguish it as self-occluded

if there is some other visible body part with more than 50%

overlapped with it. The self-occlusion relationships will

be captured by the enhanced edges in our model. We find

that more than half the invisible body parts in Leeds Sports

Dataset are occluded by the other body parts due to artic-

ulation and viewpoint. And the number of instances with

other-occlusion is relatively small. To balance the two dif-

ferent types in the training sample, we synthesize samples

with occlusion by the other objects. We utilize occlusion

masks to generate synthetic samples similarly as [18]. And

we only use samples with seldom occlusions for synthesiza-

tion. During training, the occlusion relationship between

parts as well as the occlusion pattern are learned and encod-

ed in the model.

Learning parameters Given the pose configura-

tion J = {ji} and the image I , the configuration score

can be computed using Eq.(3), Eq.(4) and Eq.(5). For the

linear property, the total score of configuration J in image

I can be simplified as:

S(I,J ) = w · Φ(I,J ) (8)

w = [αti
i , · · · , β

ti
i (oi) · · · , γ

titj
ij · · · , δ

titj
ij (oi, oj)].

where w is the concatenation of all the parameters in-

cluding αti
i , βti

i (oi), γ
titj
ij and δ

titj
ij (oi, oj). Φ(I,J ) is the

concatenation of all the features with the same order. For

the bias terms βti
i (oi) and δ

titj
ij (oi, oj), the corresponding

dimensions of Φ(I,J ) are set to be 1. For mixture type-

s and occlusion states which are not activated, the corre-

sponding dimensions in Φ(I,J ) are filled with 0.

In this way, the proposed occlusion aware graphical

model can be linearly parameterized, allowing efficien-

t training using a large margin objective. The optimization

function can be written as:

argmin
w

1

2
w

T
w + C

∑

n

max(0, 1− yn 〈w,Φ(I,J )〉) (9)

where yn ∈ {1,−1}, yn = 1 if n ∈ pos, and yn = −1 if

n ∈ neg. This is a standard structural SVM learning prob-

lem, which can be solved by the cutting pane solver like

SVMstruct [23] or the stochastic gradient descent(SGD)

solver. In this paper, we turn to use dual coordinate de-

scent QP solver of [35] as we should meet the requirement

of parameters constraints, e.g., the coefficents of part de-

formation in γ
titj
ij should be negative for generic distance

distance transform [14]. The body part position, visibili-

ty and local spacial configurations are completely specified

during training.

4. Experimental Evaluation

This section describes our experimental setup, presents

a comparative performance evaluation on human pose esti-

mation benchmarks and analyze the influence of parameter

settings.

Datasets For comprehensive evaluation on public

benchmarks, we firstly evaluate the proposed approach on

the popular LSP [24] dataset, and then we test it on the

PARSE [33] dataset with the model trained on LSP dataset

for generalization ability, finally we evaluate our method

on the FLIC dataset [37] with 11 points Upper body anno-

tations from popular Hollywood movies. As this paper in-

tends to address the problem of human pose estimation with

occlusion, we specifically design an experiment on occlud-

ed images for better explaining our approach. We choose

subset images with occlusions from LSP and the new chal-

lenging MPII [1] for detailed analysis of the robustness to

occlusion. Tab. 1 lists the dataset used for evaluation in our

work.

Dataset #train #test #points POJ1 scene Pose variation

LSP [24] 1000 1000 14 16.7% sports large

PARSE [33] 100 205 14 – diverse most upright

FLIC [37] 3987 1016 11 – feature film frontal

LSP [24]-sub 1000 468 14 20.7% sports large

MPII [1]-sub 1500 698 16 44.1% diverse large

1 POJ = Percentage of Occluded Joints.

Table 1. Datasets used in our experiments.
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Method Head Torso
Leg Arm

Avg Limbs Avg All
Upper Lower Upper Lower

P
er

so
n
-C

en
tr

ic
Our approach 87.5 91.5 74.2 66.8 62.5 41.3 61.2 66.9

Toshev et al. [46] – – 77 71 56 38 61 –

Wang et al. [48] 86.0 91.9 74.0 69.8 48.9 32.2 56.2 62.8

Johnson et al. [25] 74.6 88.1 74.5 66.5 53.7 37.5 58.0 62.7

Tian et al. [44] 87.8 95.8 69.9 60.0 51.9 32.9 53.7 61.3

Yang et al. [53] 87.4 92.6 66.4 57.7 50.0 30.4 51.1 58.9

Dantone et al. [9] 79.2 81.6 66.5 61.0 45.1 24.7 49.3 55.5

Johnson et al. [24] 62.9 78.1 65.8 58.8 47.4 32.9 51.2 55.1

O
b
se

rv
er

-C
en

tr
ic

Our approach 77.7 85.4 75.0 71.9 62.1 48.8 64.2 67.7

Ramakrishna et al. [32] 84.3 88.1 79.0 73.6 62.8 39.5 63.7 67.8

Pishchulin et al. [29] 85.6 88.7 78.8 73.4 61.5 44.9 64.6 69.2

Ouyang et al. [28] 83.1 85.8 76.5 72.2 63.3 46.6 64.6 68.6

Eichner et al. [12] 80.1 86.2 74.3 69.3 56.5 37.4 59.4 64.3

Pishchulin et al. [30] 78.1 87.5 75.7 68.0 54.2 33.9 57.9 62.9

Yang et al. [53] 77.1 84.1 69.5 65.6 52.5 35.9 55.9 60.8

Yang et al. [54] 79.3 82.9 70.3 67.0 56.0 39.8 58.3 62.8

Andriluka et al. [2] 74.9 80.9 67.1 60.7 46.5 26.4 50.2 55.7

Table 2. Percentage of Correct Parts (PCP) at 0.5 on LSP for our method as well as state-of-the-art approaches. All the results are from the

authors’s papers respectively except that the Person-Centric(PC) results and Observer-Centric(OC) results of [53] are from [48] and [12]

respectively. All the PC results are evaluated with the “PCP-average” measure while all the OC results are evaluated with the “PCP-strict”

measure as in most of the literature. The detailed description of “PCP-average” and “PCP-strict” measure can be found in [54].

Criteria The most widely used criterion for human

pose estimation is the Percentage of Correct Parts (PCP)

measure, which evaluates the localization accuracy of body

parts(sticks of skeleton). Another frequently used criteri-

on is the Percentage of Correct Keypoints(PCK) measure,

which evaluates the localization accuracy of each body join-

t. It is recommended to refer to [15] and [54] for more de-

tails.

4.1. Implementation detail

In the experiments, we take the FMP [53] as baseline. To

enable a fair comparison of our models, our implementation

uses the same settings of [53]: we use the same number of

parts and identical amount of mixtures for each part. The

non-person images from INRIA person dataset [8] are used

as negative samples. For FLIC dataset [37], there are on-

ly annotations of upper body joints yet without occlusion

state. We create 2 other-occluded samples synthetically as

in [18] for each image. The joints and edges in the legs are

pruned and the occlusions states are limited to model other-

occlusion only.

4.2. Comparison with the Other Methods

The Leeds Sports dataset Tab. 2 shows the results of

our model with the state-of-the-art approaches on the LSP

dataset with Person-Centric and Observer-Centric annota-

tions respectively. Please note that Toshev et al. [46] use

additional 10000 images from LSP extend dataset [25] for

training. This is due to the huge number of parameters to be

learned in the CNN model. In the experiments, Andriluka’s

approach [2], Yang and Ramanan’s approach [53] and our

method are trained on the 1000 training images of the LSP

dataset [24]. As shown in Tab. 2, our method performs com-

parable to the state-of-the-art method. Especially, our ap-

proach is better in detecting legs and arms which are prone

to be occluded.

In terms of Observer-Centric annotation, the approach

of Pishchulin et al. [29] performs better in localizing torso

and head, this is mainly because they used strong poselet

detectors as prior. The method of Ouyang et al. [28] us-

es deep model and takes the result of [54] as input. The

performance of our method are lower but close to the state-

of-the-art approach of Pishchulin et al. [29] and Ouyang et

al. [28]. However, there is an ambiguity between frontal

person and back person for the Observer-Centric annota-

tion. This may confuse self-occlusion relationships for our

model and hence may hurt the performance of our model.

Fig. 4 shows the detection results of the proposed method

compared with the baseline method of Yang and Ra-

manan [53] as well as the DeepPose of Toshev et al. [46].

The detection results reflects that the DeepPose model is

good at capturing global configurations of human body, yet

sometimes locate the body parts inaccurately. There are two

possible reasons for this: one is the normalization of image

size to fit into ConvNet [27] and the other is the smoothing

effect of the convolution.Our method can locate the body

part more accurate in fine scales and is robust to occlusion.

Cross test on Image Parse dataset In order to mea-

sure the generalization ability of the proposed model, we

test our method on the PARSE dataset as shown in Tab 3.

Pishchulin’s approach [30] used the LSP+PARSE training

set when evaluated on the PARSE dataset. Both Johnson’s

approach [25] and Toshev’s DeepPose [46] included 10,000
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Figure 4. Comparison of detection results in LSP dataset.

extra training samples when evaluated on the PARSE

dataset. In the experiment, Yang et al.’s approach [53],

Ouyang et al.’s approach [28] and our method are trained

on the 1000 training images of the LSP dataset [24]. Com-

pared with the approach [53], our approach improves the

accuracy by 10.9% over Yang et al.’s method in PCP on av-

erage on the PARSE dataset for LPS-PARSE cross test. The

result shows good generalization ability of our method.

Method Head Torso U.Leg L.Leg U.Arm L.Arm Avg

Our approach 88.3 90.7 75.4 66.8 71.9 51.2 70.9

Toshev et al. [46] – – 88 75 71 50 –

Ouyang et al. [28] 89.3 78.0 89.3 72.0 67.8 47.8 71.0

Johnson et al. [24] 76.1 78.1 73.4 65.4 64.7 46.9 66.2

Wang et al. [48] 78.7 88.3 75.2 71.8 60.0 35.9 65.3

Yang et al. [53] 70.0 78.8 66.0 61.1 61.0 37.4 60.0

Table 3. Cross test results on PARSE dataset with models trained

on LSP dataset.

The FLIC dataset Compared with LSP and PARSE

datasets, the FLIC dataset features real life scenes and is

challenging in the localization of elbows and wrists. We al-

so test our method for upper body pose estimation on the

large FLIC dataset [37]. We compare with several state-

of-the-art models whose codes are available. The result of

MODEC [37] is derived from the model trained by the au-

thors. We retrain the FMP model of Yang et al. [53] on

the FLIC training set and obtained comparable results as

in [37]. The training code of Eichner et al. [11] is not avail-

able, thus we use the provided model for test.

As most of the people are not centred in the image in the

FLIC dataset, Eichner et al. [11] propose to use OpenCV

face detector and DPM [13] upper body detector for rough

detection first. The method of MODEC [37] utilized the

poselet [5] torso detector for initial detection. However, the

approach of ours and Yang [53] do not use the other detec-

tors for initial detection. We follow the evaluation measure

of [37] which is similar to the Percentage of Corrected Key-

points(PCK) [54] criterion except that the height of torso is

chosen for normalization. As shown in Fig 5, our method

outperforms MODEC [37] by 6.3% and 3.2% in AUC1 re-

1Here AUC means the mean detection rate for normalized distance

threshold to be within 0 ∼ 0.2.

spectively on elbows and wrists. The result shows that the

modeling of interactions between physically unconnected

parts(e.g., left and right wrists) will benefit the localization

of lower arms.
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Figure 5. Test results on FLIC dataset. We compared results for the

most challenging parts: elbows and wrists. Best viewed in color.

4.3. Experiments on Occlusion

As our model focuses on the problem of occlusion han-

dling in human pose estimation, we specifically design ex-

periments to test the robustness on occlusion. We select im-

ages with occlusion from LSP [24] dataset and the MPII [1]

dataset for detailed analysis.

Occluded Leeds Sports We evaluate our method on a

subset of the LSP [24] test set consisting of 468 images with

one more joints occluded. Tab. 4 shows the performance

# occluded joints 1 2 3 4 5

Ours 67.5 62.9 61.4 53.3 43.6

FMP [53] 59.6 52.7 50.3 47.5 39.1

# test images 174 133 105 37 19

Table 4. Analysis of performance on the LPS occluded subset.

Both models are evaluated on the Observer-Centric view.

of our method as well as the baseline under different levels

of occlusions. It reflects that the performance of FMP [53]

drops quickly with more occluded joints. However, the per-

formance of our method only drops slightly when there are

less than 4 joints occluded.

Occluded MPII We evaluated on a subset of the newly

published challenging MPII [1] pose dataset. The selected

subset consists of 2198 images with severe occlusion(44.1%

of the joints) and is suitable for the evaluation of robust-

ness to occlusion. Though PCP was the most frequently

used metric for evaluation, it has the drawback of penalizing

shorter limbs. For better evaluation of per joint detection,

we adopt the Percentage of Correct Keypoints(PCK) for

analysis. Fig. 6 illustrates the performance of our method

v.s. the baseline on the Occluded MPII dataset. The chart

shows that our method performs better than the FMP ap-

proach when there is heavy occlusion.

4.4. Analysis of our model

We design two experiments to better understand the in-

fluence of parameter settings on the performance of our

model. We evaluate the parameters on the LSP dataset and

take the FMP [53] as baseline.
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Figure 6. Analysis of occlusion robustness on the MPII subset for

the proposed method and the baseline method of FMP.

The learning method of mixture types Tab. 5 shows

the performance gain when the local mixtures are learned

with our method instead of that of the FMP [53]. It reflect-

s our approach benefits more for lower level parts (limbs)

which contain much uncertainty of freedom in a tree struc-

tured model.

Parts Head Torso U.Leg L.Leg U.Arm L.Arm Limbs Avg

% 0.6 0.4 1.6 1.7 5.8 4.2 3.3 2.8

Table 5. The PCP gain of our approach of learning mixture types

w.r.t that of FMP’s on the LSP dataset.

The effect of occlusion modeling In terms of occlusion

modeling, we considered both self-occlusion and other-

occlusion in the proposed model. It is worth analyzing how

each feature of the model contribute to the boost of perfor-

mance.

Model Head Torso U.Leg L.Leg U.Arm L.Arm Limbs Avg

FMP 87.4 92.6 66.4 47.7 50.0 30.4 51.1 58.9

FMP+O 87.5 92.3 69.2 55.2 52.8 34.7 53.0 60.4

G+S 87.3 91.6 70.1 59.3 59.7 38.2 56.8 63.4

G+S+O 87.5 91.5 74.2 66.8 62.5 41.3 61.2 66.9

Table 6. The comparison of PCP(%) with different model struc-

tures on LSP dataset.

Tab. 6 shows the result of different model structures:

(1)FMP [53], the tree structured model. (2)FMP+O, the

tree structured model with other-occlusion reasoning on-

ly. (3)G+S, our graphical model with self-occlusion han-

dling only. (4)G+S+O, our graphical model with both self-

occlusion and other-occlusion reasoning. We noticed that

the localization accuracy of torso and head does not im-

prove since they are rarely occluded. It is observed that

the introduce of occlusion states is helpful for improving

the accuracy of limbs(especially lower limbs) which are fre-

quently occluded by objects. For instance, there is 3.4% im-

provement on average PCP of limbs for the FMP+O model

v.s. the FMP model, and 2.6% for the G+S+O model v.s.

the G+S model. On the other hand, the edges between non-

connected body parts can significantly improve the overall

PCP(e.g., 5.9% for G+S compared with FMP and 5.4% for

G+S+O compared with FMP+O). This is mainly because

the constraints among non-connected parts can eliminate

double-counting and improve the PCP of limbs.

The influence of parameter σ In section 3.2, we as-

sume that the optimal hypothesis is included in the selected

top-σ hypotheses of the unrolled configurations. We anal-

yse how different ratio of σ affects the performance of our

method. Tab. 7 reflects the effect of such setting. It shows

that the performance almost does not change when the ratio

σ > 0.01.

σ 0.001 0.002 0.005 0.01 0.02 0.05 0.1

PCP 65.8 66.2 67.4 67.7 67.7 67.8 67.9

Table 7. The influence of σ on the performance on LSP dataset for

the proposed method.

Fig. 7 qualitatively analyzes the oracle accuracy and the

actual accuracy of our method with different number of hy-

potheses per image. The oracle accuracy reflects the upper

bound of our method with the given number of hypotheses

selected.
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Figure 7. Analysis of oracle accuracy on the LSP dataset with dif-

ferent number of hypotheses selected per image.

5. Conclusion and Future Work

In this paper, we have proposed an occlusion aware

graphical model to model both self-occlusion and other-

occlusion in human pose estimation. Beyond tree structure

model, we explicitly capture the high-order interactions a-

mong parts, enabling occlusion handling, especially self-

occlusion. We demonstrate that part level occlusion reason-

ing is important for human pose estimation as occlusion co-

herence and stronger structural constraints can be embedded

in such model. The experimental results show comparable

performance of our method compared with the state-of-the-

arts. Our method especially obtains promising performance

in human pose estimation with occlusion. In the later fu-

ture, we will try to combine stronger feature representation

such as CNN feature to boost the performance of our model

further.
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