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Abstract

Hyperspectral imaging is beneficial in a diverse range

of applications from diagnostic medicine, to agriculture, to

surveillance to name a few. However, hyperspectral images

often times suffer from degradation due to the limited light,

which introduces noise into the imaging process. In this pa-

per, we propose an effective model for hyperspectral image

(HSI) denoising that considers underlying characteristics of

HSIs: sparsity across the spatial-spectral domain, high cor-

relation across spectra, and non-local self-similarity over

space. We first exploit high correlation across spectra and

non-local self-similarity over space in the noisy HSI to

learn an adaptive spatial-spectral dictionary. Then, we em-

ploy the local and non-local sparsity of the HSI under the

learned spatial-spectral dictionary to design an HSI denois-

ing model, which can be effectively solved by an iterative

numerical algorithm with parameters that are adaptively

adjusted for different clusters and different noise levels. Ex-

perimental results on HSI denoising show that the proposed

method can provide substantial improvements over the cur-

rent state-of-the-art HSI denoising methods in terms of both

objective metric and subjective visual quality.

1. Introduction

Hyperspectral imaging is the process of capturing im-

ages of a scene over multiple bands of the electromagnetic

spectrum. When captured, a hyperspectral image (HSI)

can be thought of as a set of 2D spatially organized “pix-

els” where each pixel contains an entire spectral distribu-

tion over wavelengths. This allows us to see the spectral

distribution of any given surface point in a scene and has

led to numerous applications in remote sensing [1], classifi-

cation and detection [2, 3], diagnostic medicine [4], surveil-

lance [5], biometrics [6], and more. However, conventional

hyperspectral imaging suffers from issues such as limited

light in individual bands, which introduces noise into the

imaging process. The degradation of HSIs not only influ-

ences the visual appearance of these images but also lim-

its the performance of classification and detection methods.

Therefore, HSI denoising is a critical step in HSI based sys-

tem pipelines.

Recently, sparse representation based models have

shown their popularity and effectiveness in image restora-

tion. The success of sparse representation models owes to

the development of l1-norm optimization techniques [7, 8,

9, 10] and the finding that natural images are intrinsically

sparse in many domains [11]. These domains can be repre-

sented by a dictionary, which can be constructed from basis

functions (e.g. DCT, wavelet) and adaptive learning (e.g.

K-SVD [12], stochastic approximations [13]). In addition,

due to natural images containing self-repeating patterns, the

concept of non-local self-similarity in images is introduced

in many papers on topics such as denoising [14, 15], demo-

saicing [16], super-resolution[17, 18], and frame rate up-

conversion [19].

Dong et al. [20, 21] was able to combine both sparse rep-

resentation and non-local self-similarity to restore grayscale

natural images to great effect. However, their grayscale im-

age approach is not ideally suited to HSIs since the relation-

ship between bands is not considered. On the other hand,

Lam et al. [22] showed that spectral domain statistics can

help HSI denoising. This suggests there is rich informa-

tion in the spectral domain that can be utilized. Therefore,

the potential use of sparse representation, non-local self-

similarity, and spectral domain statistics jointly should be

studied.

In this paper, we propose a novel HSI denoising method

based on adaptive spatial-spectral dictionary learning. We

first adaptively learn a spatial-spectral dictionary for each

overlapping cubic patch of the noisy HSI, which can

sparsely represent its own cubic patches across both spa-

tial and spectral domains as well as consider the non-local

self-similarity in of the HSI. In the dictionary learning pro-

cess, the cubic patches are clustered into groups in terms

of the their similarity across the full HSI. The dictionary is

then learned for each group. In addition, we exploit the the

local and non-local sparsity of the HSI to design a denois-

ing model for it. We show that this model can be effectively

solved by a numerical algorithm with its regularization pa-

rameters, adaptively adjusted for different clusters and dif-
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ferent noise levels.

In summary, our main contributions are that we

1. Exploit the high correlation across spectra and non-

local self-similarity over space to learn an adaptive

spatial-spectral dictionary for efficient HSI denoising,

2. Take into account the local and non-local sparsity of

the HSI under the learned dictionary to design the HSI

denoising model,

3. Develop a numerical algorithm to effectively solve

the proposed model and adaptively adjust the regular-

ization parameters for different clusters and different

noise levels.

We show our method is accurate and demonstrate its

effectiveness through experimental results on HSI denois-

ing, which outperforms many state-of-the-art methods un-

der several comprehensive quantitative assessments.

2. Related Work

A number of algorithms such as K-SVD [12], Non-local

means [14] and BM3D [15] have been developed for 2D

image denoising. These methods can be directly applied

to HSI denoising by denoising each band image indepen-

dently. However, considering the bands to be independent

limits performance. Qian et al. [23] and Maggioni et al. [24]

denoise HSIs by considering 3D cubes of the HSI instead

of the 2D patches of traditional image restoration but these

methods ignore the high correlation across spectra and lim-

its their performance.

There are several methods based on Wavelet and/or PCA

for HSI denoising. Atkinson et al. [25] and Othman and

Qian [26] both proposed wavelet-based HSI denoising al-

gorithms. Chen et al. [27, 28] proposed performing di-

mensionality reduction and HSI denoising using wavelet

shrinkage and principal component analysis (PCA). Lam et

al. [22] used PCA for dimensionality reduction in the spec-

tral domain and then performed denoising in local spatial

neighborhoods to further improve denoising results.

Several methods used tensor decompositions. Letexier

and Bourennane [29] proposed an HSI denoising method

based on a generalized multidimensional Wiener filter by

using a third-order tensor. Renard et al. [30] used a low rank

tensor approximation to jointly achieve denoising and spec-

tral dimensionality reduction. Karami et al. [31] reduced

the noise of HSIs by using their Genetic Kernel Tucker De-

composition. Guo et al. [32] denoised the HSIs based on a

high-order rank-1 tensor decomposition.

In addition, Wang et al. [1, 33] utilized an alternative hy-

perspectral anisotropic diffusion scheme to denoise HSIs.

Yuan et al. [34] employed a spatial-spectral adaptive total

variation model for their denoising scheme. Zhong and

Wang [35] simultaneously model and utilize spatial and

spectral dependence in a unified probabilistic framework

by multiple-spectral-band conditional random fields. Also,

Zhang et al. [36] explored the low-rank property of HSIs for

image restoration. Many of these methods exploited both

spatial and spectral information. However, none have uti-

lized the non-local self-similarity present in HSIs of natural

scenes.

In [37], Qian and Ye introduced the non-local self-

similarity and spatial-spectral structure of HSIs into a sparse

representation framework, but their method used a global

3D dictionary built from 3D DCT and 3D OWT, which

cannot be adapted to the specific characteristics of a given

scene. Peng et al. [38] proposed an HSI denoising approach

based on decomposable non-local tensor dictionary learn-

ing, but their model did not explicitly take the neighboring

non-local self-similarity into account.

3. Hyperspectral Image Denoising Model

An HSI degraded by additive noise can be modeled as

Y = X + n, (1)

where X is the original clean HSI, with a size of M ×N ×
B, in which M stands for the rows of the image, N repre-

sents the number of columns, and B is the number of bands.

Y is the degraded HSI and n is additive noise with the same

size as X . The overall framework of the proposed method

is shown in Fig. 1.

3.1. Adaptive SpatialSpectral Dictionary Learning

We first show how we build the adaptive spatial-spectral

dictionary, which considers both non-local self-similarities

and the high correlation across spectra. The HSI is first di-

vided into overlapping cubic patches of size P × P × B,

where P < M and P < N . In our method, we consider

the two spatial dimensions as a whole. Each cubic patch

centered at the spatial location (i, j) can be described as

Zi,j ∈ R
P 2

×B . Each element in Zi,j can be denoted as

Zi,j [n, b], where n ∈ 1, 2, · · · , P 2 and b ∈ 1, 2, · · · , B
index the spatial pixel location and spectral band, respec-

tively.

In studies of the human visual system [11, 39], the re-

ceptive fields of the eye’s cells code natural images using a

small number of structural primitives sparsely chosen from

an over-complete code set. This suggests that natural im-

ages are intrinsically sparse in some domains, which can

be described as a dictionary and constructed by basis func-

tions. Therefore, we can seek a representation that allows us

to analyze the high-dimensional Zi,j using a smaller num-

ber of components. Then, Zi,j can be represented in terms

of a linear superposition of basis functions,

Zi,j [n, b] =
∑

m

αmφm[n, b], (2)

where {φm} is a basis set, and αm are the corresponding

scalar coefficients.
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Figure 1. Overview of the proposed method. The noised HSI is first used to learn the adaptive spatial-spectral dictionary. Then, the trained

dictionary is employed to sparsely represent the HSI using both local details and non-local self-similarities of the image. These two terms
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Figure 2. Illustration of adaptive spatial-spectral dictionary learn-

ing. The cubic patches are extracted from the HSI in the over-

lapping pattern first. Then, all the the band images of the cubic

patches are clustered in the spatial domain. The spatial PCA bases

for each cluster are then learned independently. In the spectral do-

main, all spectral distributions from the entire HSI are extracted as

vectors and used to train the spectral PCA basis. Finally, the adap-

tive spatial-spectral dictionary is derived from the spatial and spec-

tral PCA bases in which each cluster has its own spatial-spectral

dictionary.

According to previous research [40], an HSI’s dictionary

can be decomposed into a product of separate spatial and

spectral components, that is to say,

φm[n, b] = Sd[n]Ur[b], (3)

where {Sd}P
2

1 and {Ur}B1 are orthonormal bases spanning

the space of monochrome P × P spatial patches and the

space of B-channel spectral distributions, respectively. In

practice, φm ∈ R
P 2

×B is reshaped to a vector Φm ∈ R
P 2B .

This means that spatial bases {Sd}P
2

1 and spectral bases

{Ur}B1 can be separately trained, and then combined to ob-

tain the joint spatial-spectral dictionary.

As to how we specifically represent the bases for the spa-

tial and spectral domains, we first provide details for the

spectral domain. It is well known that large sets of spectra

consisting of natural scenes or extensive color samples can

be represented compactly in just 6 ∼ 8 principal compo-

nents [41]. So in the spectral domain, we reshape the origi-

nal HSI into B ×MN and learn the spectral bases {Ur}B1
by PCA [40, 41]. On the other hand, the spatial patches

can also be represented by PCA bases [20, 40]. A sim-

ple test on the Columbia Multispectral Image Dataset [42]

reveals that 10,000 random 7 × 7 spatial patches require

only 6 principal components to capture 99% of the vari-

ance. We also train the spatial bases {Sd}P
2

1 using PCA

from monochrome patches pooled across all bands in the

spatial domain. The spatial-spectral dictionary {φm} can

then be constructed by different combinations of Sp and Ur

as shown in Eq. (3).

At this point, we could learn a single universal dictionary

for all spatial patches like in the cases of the analytically

designed wavelet dictionary [37] and the learned K-SVD

[12]. Indeed, one dictionary can be used to represent any

image patch. However, it would lack sufficient flexibility to

sparsely represent a given local patch. In [21] [38], they col-

lected patches that were similar to each other to learn a local

dictionary for each cluster instead of a universal dictionary,

thus allowing for more sparse representations. Inspired by

their methods, instead of learning a single universal dictio-
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nary, we first cluster 2D monochrome patches pooled across

all bands in the spatial domain by k-means. This cluster-

ing process considers the non-local self-similarity of the

patches across the full HSI, and we called it the global non-

local self-similarity. In practice, we cluster spatial image

patches by their high frequency patterns (rich textures and

edges) as opposed to clustering directly based on the pixel

values in the patches to avoid the influence from overly sim-

ilar intensities. The image of high frequency spatial patterns

can be obtained by

Xg = X −X ∗ g, (4)

where g is a Gaussian kernel convolved with the original

image. Note that the patches from high frequency image

Xg are only used to cluster similar patches into clusters.

The corresponding original patches xi,j from X are used

to learn the PCA basis for each cluster.

Let Sk = [S
(k)
1 , S

(k)
2 , · · · , S(k)

P 2 ] represent the basis in

the spatial domain for cluster k (k = 1, 2, · · · ,K) and U =
[U1, U2, · · · , UB ] be the basis in the spectral domain. The

combined spatial-spectral basis vectors are then formed by

S
(k)
d ⊗ Ur, for all pairs of d and r in cluster k. We obtain

Φk = Sk ⊗U, (5)

where ⊗ is the Kronecker product and Φk =

[Φ
(k)
1 ,Φ

(k)
2 , · · · ,Φ(k)

P 2B
] is the spatial-spectral dictionary,

which is adaptively learned for each cluster and considers

the spatial and spectral dimensions together in an explicit

manner. Fig. 2 illustrates the adaptive spatial-spectral dic-

tionary learning process.

3.2. Local and Nonlocal Sparse Representation
Model

Adopting the notational convention in [12], the HSIs Y

and X are reshaped as vectors Y ∈ R
MNB and X ∈

R
MNB in the following derivations. Let vector xi,j ∈

R
P 2B denote a cubic patch extracted from HSI X and cen-

tered at the spatial location (i, j),
xi,j = Ri,jX, (6)

where Ri,j ∈ R
P 2B×MNB is the matrix extracting patch

xi,j from X. The cubic patches are extracted by shift-

ing over 2D spatial locations such that we obtain J cubic

patches, where J = (M − P + 1)(N − P + 1). Please

note that vector xi,j is obtained by reshaping matrix Zi,j as

a vector.

As mentioned previously, the learned adaptive spatial-

spectral dictionary Φk ∈ R
BP 2

×m 1 can be used to sparsely

code cubic patches xi,j and denoted as Φkαi,j , when

the cubic patch at location (i, j) belongs to k-th cluster

Ck. Given the adaptive spatial-spectral dictionary Φk, the

1When the dictionary Φk is obtained from PCA, m = BP
2.

sparse codes α of image X can be recovered by

α̂ = argmin
α

‖Y −X‖22 +
∑

i,j

K
∑

k=1
(

γ‖xi,j −Φkαi,j‖22 + λ‖αi,j‖1
)

,

(7)

where α denotes the concatenation of all αi,j , and α̂ is the

estimation of α.

The cubic patches in the HSI also have rich self-

similarity with its neighboring patches [23], which implies

the cubic patch can be effectively described by its neigh-

boring patches. We call this the neighboring non-local self-

similarity of the HSI to distinguish it with the global non-

local self-similarity in Section 3.1. In practice, we employ

non-local means to describe the neighboring non-local self-

similarity of the HSI. The non-local means x̂i,j can be com-

puted by

x̂i,j =
∑

(p,q)∈Ωi,j

wi,j,p,qxi,j,p,q, (8)

where xi,j,p,q denotes a found similar cubic patch xp,q

within set Ωi,j , which represents a large neighborhood

around cubic patch xi,j , and wi,j,p,q is the corresponding

weight. Like in [14], wi,j,p,q can be set as

wi,j,p,q =
1

W
exp (−‖xi,j − xi,j,p,q‖22/h) (9)

where W is a normalization factor and h is a pre-determined

scalar. Then, we can obtain

xi,j − x̂i,j = xi,j −
∑

(p,q)∈Ωi,j

wi,j,p,qxi,j,p,q

= Φk

(

αi,j −
∑

(p,q)∈Ωi,j

wi,j,p,qαi,j,p,q

)

= Φk

(

αi,j − θi,j

)

,
(10)

where θi,j =
∑

(p,q)∈Ωi,j
wi,j,p,qαi,j,p,q is the sparse rep-

resentation of the non-local means x̂i,j . Since x̂i,j approx-

imates xi,j , the sparse codes θi,j of x̂i,j should be similar

to the sparse codes αi,j of xi,j . According to [37, 43], the

locations of the non-zero elements in the sparse codes are

similar for the similar patches. Therefore, it is reasonable to

assume that sparse code αi,j minus sparse code θi,j should

be sparse. Then we employ ‖αi,j − θi,j‖1 as the non-local

sparse constraint like [44]. In our method, we add this non-

locally sparse constraint into Eq (7) as a regularization,

α̂ = argmin
α

‖Y −X‖22 +
∑

i,j

K
∑

k=1
(

γ‖xi,j −Φkαi,j‖22 + λ‖αi,j‖1 + η‖αi,j − θi,j‖1
)

.

(11)

We can see that our model (Eq. (11)) unifies the local spar-

sity (i.e.‖αi,j‖1) and neighboring self-similarity induced

non-local sparsity (i.e. ‖αi,j − θi,j‖1) into a variational
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formulation. The model also clusters the HSI cubic patches

across the spatial domain to learn the adaptive spatial-

spectral dictionary by considering the global non-local self-

similarity over the entire HSI and the high correlation across

spectra (i.e. we perform a summation
∑K

k=1 and Φk over

the K clusters for the cost function). Therefore, our model

exploits both local and non-local redundancies across the

spatial-spectral domain to restore the HSI.

3.3. Numerical Algorithm

Here, we mainly show how to solve our model (Eq. (11))

in practice. In Eq. (11), we can see that there are 3 vari-

ables, i.e. X, α, and θ. α and θ are the concatenation of

all αi,j and θi,j , respectively. To solve Eq. (11), we de-

rive update rules for X, α, θ and adopt an alternating mini-

mization scheme to reduce the original problem into simpler

sub-problems.

Update θ. We initialize θi,j to 0, i.e. θ
(0)
i,j = 0, where

a(t) represents the t-th iteration of variable a. Then, set-

ting X
(0) = Y and η = 0, the sparse coding α

(0)
i,j can be

obained by α
(0)
i,j = Φ

T
k x

(0)
i,j . The similar patches for each

local sparse representation α
(0)
i,j are selected from its neigh-

borhood in terms of the squared difference between them,

i.e. ‖αi,j − αi,j,p,q‖2. Hence the non-local mean θ
(t)
i,j can

be updated by

θ
(t)
i,j =

∑

(p,q)∈Ωi,j

wi,j,p,qα
(t−1)
i,j,p,q. (12)

In the t-th iteration, the model can be described as

{α̂(t), X̂(t)} = argmin
α

‖Y −X‖22 +
∑

i,j

K
∑

k=1
(

γ‖xi,j −Φkαi,j‖22 + λ‖αi,j‖1 + η‖αi,j − θ
(t)
i,j ‖1

)

.

(13)

Update α. In this sub-problem, we fix all other variables

and optimize sparse code α by

α̂
(t) = argmin

α

∑

i,j

K
∑

k=1

(

γ‖x(t−1)
i,j −Φkαi,j‖22

+ λ‖αi,j‖1 + η‖αi,j − θ
(t)
i,j ‖1

)

.

(14)

We employ a bi-variate shrinkage algorithm [20] to solve

the function in Eq. (14).

Update X. For the fixed sparse code α, the optimization of

the X can be described as
X̂

(t) = argmin
X

‖Y −X‖22

+ γ
∑

i,j

K
∑

k=1

‖Ri,jX−Φkα
(t)
i,j‖22.

(15)

Eq. (15) is a quadratic minimization problem and thus can

be solved in closed-form, i.e.,

X̂
(t) =(I+ γ

∑

i,j

K
∑

k=1

R
T
i,jRi,j)

−1

(Y + γ
∑

i,j

K
∑

k=1

∑

(i,j)∈Ck

R
T
i,jΦkα

(t)
i,j ),

(16)

where I is an identity matrix. In our implementation, we

use the conjugate gradients algorithm to compute Eq. (15).

From the above discussion, we can see that neighboring

non-local self-similarity θ, the sparse coding α, and latent

HSI X are alternatively updated in Eq. (11). During the

iterations, the accuracy of sparse code α
(t) is improved,

which in turn, improves the accuracy of neighboring non-

local self-similarity θ
(t). The clustered similarity patches

in the HSI across the spatial domain and the dictionary Φk

are also updated in terms of the updated α
(t). After several

iterations, the algorithm converges and the desired sparse

code α and latent HSI X can then be obtained.

3.4. Determination of Parameters λ and η

Previous research [44, 47], presented a well-developed

sparse representation in the context of a Bayesian frame-

work. Here, we borrow from their formulation and apply it

to provide an explicit way to adaptively set the parameters

λ and η for different clusters and noise levels. We consider

the case where the observation Y is contaminated with ad-

ditive Gaussian noise with standard deviation σn. Under

the Bayesian framework, the estimation of sparsity vector

α can be cast as a maximum a posteriori problem,

α̂ = argmax
α

P (α|Y) = argmax
α

P (Y|α)P (α)

= argmin
α

{− logP (Y|α)− logP (α)},
(17)

where the two terms correspond to the likelihood and prior

terms, respectively. The likelihood term can be character-

ized as

P (Y|α) =
1√
2πσn

exp

(

− 1

2σ2
n

‖Y −X‖22
)

×

∏

i,j

K
∏

k=1

1
√

2π/γσn

exp

(

− γ

2σ2
n

‖xi,j −Φkαi,j‖22
)

.

(18)

The prior term in Eq. (17) can be expressed as

P (α) =
∏

i,j,l

K
∏

k=1

c1√
2δkl

exp

(

−
√
2c1|αijl|
δkl

)

c2√
2̺kl

exp

(

−
√
2c2|αijl − θijl|

̺kl

)

,

(19)

where αijl and θijl are the l-th elements of αi,j and θi,j ,

and δkl and ̺kl are the standard deviations of αijl and

(αijl − θijl) when (i, j) ∈ Ck, l = 1, 2, · · · , P 2B. c1
and c2 are predefined constants. Substituting Eqs. (18) and
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(19) into Eq. (17), we obtain

α̂ =argmin
α

‖Y −X‖22 +
∑

i,j

K
∑

k=1
(

γ‖xi,j −Φkαi,j‖22 + c1
∑

l

2
√
2σ2

n

δkl
‖αijl‖1+

c2
∑

l

2
√
2σ2

n

̺kl
‖αijl − θijl‖1

)

.

(20)

Comparing Eq. (20) and Eq. (11), we have

λkl = c1
2
√
2σ2

n

δkl
, ηkl = c2

2
√
2σ2

n

̺kl
. (21)

In practice, standard deviations δkl and ̺kl for each clus-

ter can be estimated from the sets of αijl and (αijl − θijl)
belonging to cluster Ck, respectively. We set γ = 0.3,

c1 = 0.3, and c2 = 0.7 for the HSI denoising.

4. Experimental Results

We selected 6 HSIs2 from the Columbia Multispectral

Image Database [42] to test our method. To demonstrate

the effectiveness of the proposed algorithm, we compare our

denoising results with 8 recently developed state-of-art de-

noising methods, including band-wise BM3D [15] , band-

wise centralized sparse representation (CSR) [20], adaptive

non-local means denoising for volumetric data (ANLM)

[45], non-local transform domain filter for volumetric data

(BM4D) [24], low rank tensor approximation (LRTA) [30],

spectral domain statistics based method (SDS) [22], 3D-

cube K-SVD [46] and decomposable non-local tensor dic-

tionary learning (DNTDL) [38]. All parameters involved in

the competing algorithms were optimally assigned or auto-

matically chosen as described in the reference papers. The

denoising metrics (PSNR, SSIM, or FSIM) for each HSI

are calculated as the average of the band-wise results. To

show the influence of the number of the clusters on the de-

noising performance, we also implement our method with a

single universal dictionary by setting the number of clus-

ters to one, denoted as Ours-BL. In Tables 1 and 2, we

provide the PSNR, SSIM, and FSIM results obtained from

various methods for each HSI under different noise levels.

We can see that the best result for each set is highlighted

in bold. The proposed method outperforms other compet-

itive approaches in most cases and achieves state-of-the-

art denoising performance in terms of PSNR, SSIM, and

FSIM. Comparing our method with Ours-BL, we see that

our method can produce better results, which demonstrate

that the proposed adaptive dictionary learning in Section

3.1, which captures the characteristics of the scene, can ef-

ficiently improve the denoising results.

2Due to space limitations, we choose 6 typical and complex scenes to

test our method.
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Figure 5. Verification of the convergence of the proposed method.

Progression of the PSNR and SSIM for the chart and stuffed toy

scene under σn = 20 levels of noise.

To further demonstrate the denoising performance of our

method, we show two denoised hyperspectral bands from

different methods under different levels of noise in Figs. 3

and 4. When the noise level is not very high (σn=20),

as shown in Fig. 3, all the 8 competing methods achieve

good denoising outputs, but when we enlarge the images

and compare the details demarcated in Fig. 3 (a). We can

see that our method recovers nice texture/edge features with

rich details. When the noise level is high (σn = 40), as

shown in Fig. 4, LRTA [30], SDS [22] and 3D-cube K-SVD

[46] tend to generate many visual artifacts. BM3D [15],

CSR [20], ANLM [45] and BM4D [24] are overly smooth

and show many block artifacts. DNTDL [38] and our

method work better in this case. In particular, the denoised

image (Fig. 4(l)) by the proposed method has much less ar-

tifacts than other methods, and is visually more appealing,

especially for the demarcated parts of the scene.

In addition, we also take the case of HSI denoising when

σn = 20 for the chart and stuffed toy scene as an example

to show the convergence of our method. Fig. 5 plots the

evaluations of PSNR and SSIM versus iteration numbers for

the tested HSI. We can see that both PSNR and SSIM curves

increase monotonically and demonstrate the convergence of

our method .

5. Conclusion

In this paper, we presented an effective HSI restora-

tion method based on adaptive spatial-spectral dictionary

learning, which considered the underlying characteristics

of HSIs: the sparsity across the spatial-spectral domain, the

high correlation across spectra, and non-local self-similarity

over space. We exploited the high correlation across spectra

and non-local self-similarity over space to learn the adaptive

spatial-spectral dictionary for each overlapping cubic patch

of the HSI. By design, each adaptive spatial-spectral dic-

tionary could sparsely represent its own cubic patch across

spatial and spectral domains while sharing features with

other similar non-local patches across full HSI. Then, the

local and non-local sparsity of the HSI was used to design

a denoising model under the trained dictionary. This model

was effectively solved by our numerical algorithm with its
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Table 1. Denoising results (PSNR(dB)/SSIM/FSIM) of the 6 hyperspectral images from different methods, σn = 20.

Images Metrics BM3D CSR ANLM BM4D LRTA SDS K-SVD DNTDL Ours Ours

[15] [20] [45] [24] [30] [22] [46] [38] -BL

PSNR 36.15 36.12 35.57 39.93 35.73 36.21 32.51 39.38 39.77 40.79

SSIM 0.9397 0.9437 0.9497 0.9644 0.8932 0.8711 0.8002 0.9666 0.9625 0.9718

FSIM 0.9723 0.9722 0.9747 0.9861 0.9599 0.9597 0.9603 0.9883 0.9875 0.9905

PSNR 30.48 30.35 29.54 34.74 31.87 34.01 34.70 30.32 35.39 35.91

SSIM 0.8404 0.8359 0.8033 0.9282 0.8376 0.9046 0.9323 0.8067 0.9370 0.9407

FSIM 0.9518 0.9476 0.9342 0.9830 0.9639 0.9801 0.9844 0.9634 0.9836 0.9870

PSNR 36.83 36.82 35.88 39.71 35.57 34.68 32.58 39.59 39.46 40.23

SSIM 0.9384 0.9407 0.9435 0.9606 0.8759 0.8516 0.7947 0.9646 0.9520 0.9602

FSIM 0.9685 0.9682 0.9720 0.9811 0.9521 0.9555 0.9589 0.9844 0.9839 0.9868

PSNR 33.86 33.82 32.00 36.46 34.27 34.79 31.77 36.59 37.53 37.93

SSIM 0.8679 0.8665 0.8031 0.9205 0.8774 0.8626 0.7652 0.9319 0.9373 0.9421

FSIM 0.9554 0.9540 0.9389 0.9782 0.9593 0.9676 0.9522 0.9810 0.9822 0.9852

PSNR 36.39 36.30 35.68 38.32 36.08 33.82 32.66 37.73 38.11 39.07

SSIM 0.9106 0.9090 0.9195 0.9367 0.8898 0.8749 0.7949 0.9323 0.9317 0.9334

FSIM 0.9643 0.9641 0.9712 0.9789 0.9643 0.9734 0.9616 0.9819 0.9792 0.9848

PSNR 33.52 33.41 32.59 36.85 34.34 34.92 31.47 36.58 37.23 38.07

SSIM 0.9118 0.9100 0.9127 0.9496 0.8940 0.9021 0.8164 0.9488 0.9530 0.9605

FSIM 0.9651 0.9643 0.9648 0.9846 0.9730 0.9780 0.9675 0.9863 0.9852 0.9890

Table 2. Denoising results (PSNR(dB)/SSIM/FSIM) of the 6 hyperspectral images from different methods, σn = 40.

Images Metrics BM3D CSR ANLM BM4D LRTA SDS K-SVD DNTDL Ours Ours

[15] [20] [45] [24] [30] [22] [46] [38] -BL

PSNR 32.21 32.14 31.51 35.82 32.28 29.57 29.02 35.30 35.52 36.57

SSIM 0.8778 0.8900 0.8983 0.9105 0.8112 0.5617 0.7157 0.9334 0.9172 0.9372

FSIM 0.9382 0.9404 0.9513 0.9670 0.9223 0.8737 0.9200 0.9717 0.9695 0.9760

PSNR 27.06 26.97 26.99 30.94 28.32 27.37 25.90 31.05 31.22 32.03

SSIM 0.6968 0.6926 0.6990 0.8483 0.7077 0.6649 0.6041 0.8593 0.8638 0.8839

FSIM 0.8833 0.8718 0.8775 0.9553 0.9146 0.9406 0.8564 0.9634 0.9537 0.9635

PSNR 33.03 33.17 32.62 35.82 32.16 29.28 29.25 35.96 35.55 36.38

SSIM 0.8801 0.8951 0.9032 0.9106 0.7883 0.5616 0.7185 0.9370 0.9032 0.9233

FSIM 0.9358 0.9384 0.9509 0.9580 0.9128 0.8718 0.9203 0.9674 0.9643 0.9696

PSNR 30.93 31.11 30.48 33.07 31.40 28.59 30.49 33.30 34.23 34.81

SSIM 0.7760 0.7881 0.7501 0.8417 0.8081 0.5780 0.7501 0.8761 0.8837 0.8965

FSIM 0.9158 0.9134 0.9207 0.9527 0.9223 0.9023 0.9207 0.9563 0.9600 0.9664

PSNR 33.11 33.43 33.59 35.22 32.62 28.08 29.63 34.97 34.58 35.66

SSIM 0.8607 0.8745 0.8936 0.8961 0.8098 0.5547 0.7248 0.8984 0.8760 0.9012

FSIM 0.9351 0.9392 0.9583 0.9569 0.9322 0.9152 0.9367 0.9650 0.9553 0.9652

PSNR 29.93 29.83 29.57 32.32 30.87 28.48 28.06 32.89 33.30 34.18

SSIM 0.8416 0.8473 0.8605 0.9087 0.8177 0.6230 0.7249 0.9069 0.9040 0.9279

FSIM 0.9265 0.9232 0.9363 0.9658 0.9418 0.9253 0.9790 0.9663 0.9618 0.9706

regularization parameters adaptively adjusted for different

clusters and different noise levels. The experimental results

on HSI denoising showed that the proposed method could

effectively denoise HSIs and provides significant improve-

ment over many state-of-the-art methods.
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