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Abstract

We propose novel finite-dimensional spaces of Rn → Rn

transformations, n ∈ {1, 2, 3}, derived from (continuously-

defined) parametric stationary velocity fields. Particu-

larly, we obtain these transformations, which are diffeomor-

phisms, by fast and highly-accurate integration of continu-

ous piecewise-affine velocity fields; we also provide an ex-

act solution for n = 1. The simple-yet-highly-expressive

proposed representation handles optional constraints (e.g.,

volume preservation) easily and supports convenient mod-

eling choices and rapid likelihood evaluations (facilitating

tractable inference over latent transformations). Its ap-

plications include, but are not limited to: unconstrained

optimization over monotonic functions; modeling cumula-

tive distribution functions or histograms; time warping; im-

age registration; landmark-based warping; real-time dif-

feomorphic image editing. Our code is available at

https://github.com/freifeld/cpabDiffeo

1. Introduction

Spaces of well-behaved transformations, particularly dif-

feomorphisms, play a key role in computer vision. Unfor-

tunately, current state-of-the-art representations of highly-

expressive diffeomorphisms are overly complicated. Thus,

despite their potential power and mathematical beauty, their

applicability is somewhat limited, especially when large

datasets are involved or when computing resources and time

are limited. Moreover, owing to their complexity, using

powerful inference tools in such spaces remains challeng-

ing. Motivated by not only the practicalities of probabilistic

modeling and statistical inference but also a desire to make

diffeomorphisms broadly accessible, we propose a repre-

sentation that combines simplicity, expressiveness, and ef-

ficiency. Particularly, we propose novel spaces of transfor-
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Figure 1: An Ω → Ω map, φθ(·, t) : x 7→ φθ(x, t), derived

from a CPA velocity field, vθ : Ω → Rn. (a) A 1D exam-

ple. Note vθ vanishes at fixed points of φθ(·, t). (b) Top:

A 2D vθ shown in select locations. Middle: Rather than

a Middlebury-style visualization, we use one emphasizing

the CPA property. The horizontal component, vθ
h (left), and

the vertical component, vθ
v (right), are shown as heat maps

whose colors range from blue = −λ, via green = 0, to

red = λ where λ = maxx∈Ω max(|vθ
h(x)|, |v

θ
v (x)|). Bot-

tom: Isrc ◦ φ
θ(·, 1) (where Isrc appears in Fig. 2). (c) a 2D

example with boundary and volume-preserving constraints.

mations that are based on (fast, highly-accurate) integra-

tion of Continuous Piecewise-Affine (CPA) velocity fields.

Existing spaces offer only subsets of the benefits of the

proposed spaces: 1) high expressiveness; 2) finite dimen-

sionality; 3) ease of implementation; 4) modest mathemat-

ical preliminaries; 5) convenient modeling choices; 6) ease

of handling optional constraints; 7) fast and highly-accurate

computations that lead to fast likelihood evaluations. These

in turn facilitate the use of inference tools – typified by the

case of analysis-by-synthesis methods – that are usually too

expensive for rich transformation spaces. Possible applica-

tions are numerous, as we demonstrate with: image editing;

optimization over monotonic functions; modeling Cumu-

lative Distribution Functions (CDFs) and histograms with

order-preserving geometry; time warps; landmark-based

image warping and animation. Another related potential ap-

plication is image registration.
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Figure 2: Samples from the prior (§ 3). (a-h) The top 3 rows echo those in Fig. 1b and Fig. 1c. The 4th row shows a

deformed grid overlaid on the image. The 5th row shows select trajectories. Note that the trajectories and transformations

are differentiable (hence continuous) but not piecewise affine. The tessellation in (e-h) is a refinement of the one in (a-d). (a)

& (e): T θ ∈M . (b) & (f): T θ ∈Mvp. (c) & (g): T θ ∈M∂ . (d) & (h): T θ ∈M∂,vp. See § 3 for details.

Henceforth, n ∈ {1, 2, 3} and Ω is either the whole of

Rn or an interval/rectangle/box (in which case, Ω ( Rn).

CPA velocity fields. We base our method on spaces of

CPA velocity fields (Fig. 1). The term ‘piecewise’ is w.r.t.

P , a tessellation (§ 3) of Ω. Let VΩ,P be such a space.

While VΩ,P depends on Ω and P , we will usually notation-

ally suppress these dependencies, and will just write V . One

appeal of these spaces is that they are finite-dimensional and

linear (but note that their elements, i.e. the velocity fields,

are usually nonlinear). Let d = dim(V). The spaces Rd

and V are identified with each other, where every θ ∈ Rd

is identified with exactly one element of V , denoted by vθ ,

and vice versa. A finer P implies a higher d and richer ve-

locity fields (Figs. 2 and 3). Appealingly, easily-imposed

optional constraints yield useful linear subspaces of V .

From CPA velocity fields to trajectories. Modulo a

detail (addressed in § 3.2) related to the case Ω ( Rn, any

continuous velocity field, whether Piecewise-Affine (PA) or

not, defines differentiable R → Ω trajectories. Particularly,

if x ∈ Ω then vθ ∈ V defines a trajectory, t 7→ φθ(x, t),
such that φθ(x, 0) = x; see Fig. 2. This trajectory is the

solution to the integral equation

φθ(x, t) = x+

Z t

0

vθ(φθ(x, τ)) dτ , vθ ∈ V . (1)

Remark 1. Equation (1), whose solution, φθ(x, ·), appears

both inside and outside the integral, should not be con-

fused with the piecewise-quadratic Ω → Rn map, y 7→

Ry

0n � 1
vθ(x) dx. The latter, a popular tool in computer-

vision [40] and numerical analysis, is unrelated to our work.

CPA-Based (CPAB) transformations. Modulo that de-

tail, any continuous velocity field, whether PA or not, de-

fines a transformation; i.e., a map whose input and out-

put are viewed as points in Ω. Particularly, letting x vary

and fixing t, x 7→ φθ(x, t) is an Ω → Ω transforma-

tion. Without loss of generality we set t = 1 and define

T θ(·) , φθ(·, 1). Since we integrate CPA velocity fields,

we coin our transformations CPA-Based (CPAB). We write

T θ = exp(vθ) to indicate the relation between vθ and T θ;

the rational for this symbol is explained in our supplemental

material (henceforth referred to as Sup. Mat.). We let

M , exp(V) , {exp(vθ) : vθ ∈ V} (2)

denote the space of CPAB transformations, again notation-

ally suppressing the dependencies on Ω and P; i.e., formally

we should write MΩ,P . Importantly, M is nonlinear.

Remark 2. CPAB transformations are not CPA (except in

degenerate cases): while T θ is continuous, it is not PA.

CPAB transformations are “nice”. E.g., they are dif-

feomorphisms, (T θ)−1 ∈M , and the inversion is easy.

Remark 3. x 7→ φθ(x, t = 1) should not be confused with

(the non-diffeomorphism, parametric optical-flow-like rep-

resentation) x 7→ x+ vθ(x), the latter being only a Taylor

approximation of the former. Thus, the way we utilize flex-

ible parametrized vector fields is different from, e.g., [31].
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