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Abstract

There are many applications where multiple images are

fused to form a single summary greyscale or colour output,

including computational photography (e.g. RGB-NIR), dif-

fusion tensor imaging (medical), and remote sensing. Often,

and intuitively, image fusion is carried out in the derivative

domain. Here, a new composite fused derivative is found

that best accounts for the detail across all images and then

the resulting gradient field is reintegrated. However, the

reintegration step generally hallucinates new detail (not ap-

pearing in any of the input image bands) including halo and

bending artifacts. In this paper we avoid these hallucinated

details by avoiding the reintegration step.

Our work builds directly on the work of Socolinsky and

Wolff who derive their equivalent gradient field from the

per-pixel Di Zenzo structure tensor which is defined as the

inner product of the image Jacobian. We show that the

x- and y- derivatives of the projection of the original im-

age onto the Principal characteristic vector of the Outer

Product (POP) of the Jacobian generates the same equiva-

lent gradient field. In so doing, we have derived a fused im-

age that has the derivative structure we seek. Of course, this

projection will be meaningful only where the Jacobian has

non-zero derivatives, so we diffuse the projection directions

using a bilateral filter before we calculate the fused image.

The resulting POP fused image has maximal fused detail but

avoids hallucinated artifacts. Experiments demonstrate our

method delivers state of the art image fusion performance.

1. Introduction

Image fusion has applications in many problem do-

mains, including multispectral photography[7], medi-

cal imaging[34], remote sensing[23] and computational

photography[18]. In image fusion we seek to combine im-

age details present in N input images into one output image.

Image gradients are a natural and versatile way of repre-

senting image detail information[8], and have been used as

a basis for several image fusion techniques including [32]

and [37]. Other image fusion methods include those based

on wavelet decomposition[25], the Laplacian pyramid[31]

and neural networks[17].

A powerful way of summarizing gradient information

across N input image channels is the Di Zenzo structure

tensor[9][13] (defined as the 2 × 2 inner product of the

N × 2 image Jacobian). Structure tensor based methods

have many applications in computer vision[4], including in

image segmentation[14] and, relevant to this paper, for im-

age fusion[19].

The seminal image fusion method of Socolinsky and

Wolff (SW) uses the structure tensor to find a 1-D set of

equivalent gradients, which in terms of their orientation

and magnitude, approximate the tensor derived from a mul-

tichannel image as closely as possible in a least-squares

sense[30]. They show that the equivalent gradient is defined

by the most significant eigenvalue and associated eigenvec-

tor of the structure tensor. Unfortunately, the derived gra-

dient field of Socolinsky and Wolff is often non-integrable.

Because the gradient field reintegration problem (of non-

integrable fields) is inherently ill-posed, derivative domain

techniques will always hallucinate detail in the fused image

that wasn’t present in the original image.

Modern techniques which apply additional constraints to

the reintegration problem can sometimes mitigate but not

remove these artifacts[2], [22], [10], [28] and [27]. In other

work[29], the fused image is post processed so that con-

nected components - defined as regions of the input multi-

spectral image that have the same input vector values - must

have the same pixel intensity. Unfortunately, this additional

step can produces unnatural contouring and edge effects.

In this paper, we develop a derivative domain image fu-

sion method which avoids the need for reintegration and,

in so doing, we avoid reintegration artifacts. Our method

begins by calculating the outer product of the Jacobian ma-

trix of image derivatives (rather than the inner product that

defines the structure tensor). We prove that the projection

of the original multichannel image in the direction of the

Principal characteristic vector of the Outer Product (POP)

tensor results in the same equivalent gradient field defined
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(a) Input 1 (b) Input 2 (c) DWT - db4

(d) DWT - b1.3 (e) SW (f) POP
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(g) SW - plot
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Figure 1: Image fusion example: (a) and (b) are fused

by wavelet-based methods (c) and (d), resulting in severe

image artifacts. The Socolinsky and Wolff gradient-based

method (e) works better, but intensity gradients are halluci-

nated (g) where none appear in the input images. The POP

method (f) captures all input detail with no artifacts or hal-

lucinated detail.

in the Socolinsky and Wolff method. Of course this initial

projected image is not well defined everywhere e.g. it can

be non-zero only where the Jacobian has non-zero deriva-

tives, and so we diffuse the POP projection directions that

are available using a bilateral filter. The POP fused image

is the per-pixel dot product of the projector image with the

multichannel original. The resulting POP fused image has

maximal fused detail but avoids entirely the hallucinated ar-

tifacts.

A comparison of POP image fusion with antecedent

methods is shown in fig. 1, where there are two uniform

white images with respectively the top left and bottom left

quarters removed. The discrete wavelet transform (DWT)

images were produced using a wavelet-based method which

merges the coefficients of the two images at different scales.

We ran a standard DWT image fusion implementation us-

ing the CM (choose maximum) selection method, which is

simple and one of the best performing in a comparison[25].

The input images are small so there is only a 7 level wavelet

decomposition. In 1c and 1d we show the outputs us-

ing Daubechies 4 and Biorthogonal 1.3 wavelets, the best

wavelet types as found in [25]. Clearly neither the basic

wavelet method nor the Socolinsky and Wolff method (1e)

work on this image fusion example. However the POP im-

age fusion method (1f) - discussed in detail in section 3 -

succeeds in fusing the images without artifact. The inten-

sity profile of the green line in 1f, shown in 1h has the

desired equiluminant white values, whereas the Socolin-

sky and Wolff intensity profile 1g shows substantial hallu-

cinated intensity variation.

Section 2 discusses the background to our method. Our

POP image fusion method is presented in section 3. In

section 4, experiments - including comparisons with other

methods - are presented. The paper concludes in section 5.

2. Background

Let us denote as I(x) the multichannel image: I(x) :
D ⊂ R

2 → C ⊂ R
N (x is a 2-dimensional image coordi-

nate and I(x)an N -vector of values). The Jacobian of the

image I is defined as:

J =
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(1)

The Di Zenzo structure tensor[9], which in differential

geometry is known as the First Fundamental Form, is de-

fined as the inner product of the Jacobian:

Z = JTJ (2)

If c = [α β]T denotes a unit length vector then the

squared magnitude of the multichannel gradient can be writ-

ten as: ||Jc||2
2
= c

TZc. That is, the structure tensor neatly

summarizes the combined derivative structure of the multi-

channel image.

The singular value decomposition (SVD) of J uncovers

structure that is useful both for the understanding of Socol-

insky and Wolff’s image fusion method and also our own

POP image fusion algorithm presented in the next section:

J = USV T (3)

In Eq. 3, U , V and S are respectively N ×N and 2× 2
orthonormal matrices and a N × 2 diagonal matrix. In the

SVD decomposition - which is unique - the singular values

are the components of the diagonal matrix S and are in order

from largest to smallest. The ith singular value is denoted

Sii and the ith columns of U and V are respectively denoted

Ui and Vi.
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We can use the SVD to calculate the eigen-

decomposition of the structure tensor Z:

Z = V S2V T (4)

The most significant eigenvalue of Z is S2

11
and the cor-

responding eigenvector is V1. This eigenvector defines the

direction of maximal gradient contrast in the image plane

and S11 is the magnitude of this gradient.

In the Socolinsky and Wolff method[30], the 2-vector

S11V1 is the basis of their equivalent gradient i.e. the de-

rived gradient field that generates, per pixel, structure ten-

sors that are closest to those defined from the multichannel

image (Eq. 2). The per-pixel gradient field is written:

G(x) = Sx

11
V x

1
(5)

In eq. 5 the superscript x also denotes the x,y im-

age location. We adopt this notation (rather than writing

S11(x)V1(x)) to make the equations more compact., Re-

spectively, Jx, Zx, Ux, Sx and V x denote the per-pixel

Jacobian, Di Zenzo tensor and the per-pixel SVD decompo-

sition.

At this stage G(x) in eq. 5 is ambiguous in its sign.

Socolinsky and Wolff set the sign to match the brightness

gradient (i.e. (R+G+B)/3) in the gradient orientation orien-

tation V1). The sign can also be optimized to maximize the

integrability of the derived gradient field[10]. Once we fix

the sign, we write

G(x) = sign(x)Sx

11
V x

1
(6)

In general the derived gradient field G(x) is not inte-

grable (the curl of the field is not everywhere 0). So, So-

colinsky and Wolff solve for the output image O(x) in a

least-squares sense by solving the Poisson equation:

Gxx +Gyy = ∇2O(x) (7)

where [Gxx Gyy] denotes the divergence of the gradient

field. Unfortunately, because the gradient field is non inte-

grable, O must have details (gradients) that are not present

in the multichannel input I . For example, in Figure 1 we

see, in ‘SW’, ‘bending artifacts’ which are not in either of

the image planes that were fused. This kind of hallucinated

artifact is common as are ‘halos’ at high contrast edges.

In [7] it was argued that so long as one expects the equiv-

alent gradient to be almost integrable across different scales

then the reintegrated image should be a global mapping of

inputs. In effect, the reintegration step reduces to finding a

global mapping - a look-up-table - of the original image that

has derivatives close to the Socolinsky and Wolff’s equiv-

alent gradients[12]. Often the look-up-table reintegration

theorem delivers surprisingly good image fusion (it looks

like the Socolinsky and Wolff image but without the arti-

facts). Yet, sometimes the constraint that the output image

is a simple global function of the output can result in a fused

image that does not well represent the details in the individ-

ual bands of the multichannel image.

2.1. SVD, PCA and Characteristic Vector Analysis

Finally we remark that V x

1
(the eigenvector associated

with the largest eigenvalue) of Zx is exactly the principal

characteristic vector of the rowspace of Jx. It is the vec-

tor direction along which the projection of the rows of Jx

have maximum variance (Characteristic vector analysis is

the same as principal component analysis where the mean

is not subtracted from the data before the maximum vari-

ance direction is calculated[20]). All data matrices can be

analyzed in terms of their row or column space. The vec-

tor Ux

1
is the vector direction along which the projection of

the columns of Jx, the principal characteristic vector of the

column space, have maximum variance. The vector Úx is

simply the 1st column vector of Ux:

Úx = Ux

1
(8)

3. POP image fusion

The derived gradient in the Socolinsky and Wolff method

is a mathematically well founded fusion of all the available

gradient information from a multichannel image. That said,

Socolinsky and Wolff can produce poor looking results as a

result of the ill-posedness of gradient field reintegration (of

non-integrable fields).

The basic premise of our method is that we can carry

out image fusion without the need to reintegrate. Rather,

we seek only to find a per-pixel projection (linear combina-

tion) of the input channels such that if we differentiated the

output projected image we would generate the equivalent

gradients we seek. It turns out that not only can we take this

projection approach, but that the projection direction is the

Principal characteristic vector of the Outer Product of the

Jacobian. The key intuition behind the method is to think

of projection in image space (calculated using gradients),

leading to an output scalar image, rather than the conven-

tional projection in the gradient domain, which gives output

gradients that are often impossible to reintegrate without ar-

tifacts.

POP Image Fusion Theorem: The scalar formed by

the projection by the first characteristic vector of the outer

product of the Jacobian at a single discrete location x (de-

noted P (x) = Úx.I(x) =
∑N

k=1
Úx

k Ik(x)) has, assum-

ing the functions Ik(x) are continuous, the property that

re[ ∂
∂x
(P (x)), ∂

∂y
(P (x))]T = sxG(x) (where sx = −1 or

1)

Proof: Because differentiation and summation are lin-

ear operators, and because we are assuming the underlying

functions are continuous,
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∂
∂x
(P (x)) =

∑N
k=1

Úx

k
∂
∂x
(Ik(x))

∂
∂y
(P (x)) =

∑N
k=1

Úx

k
∂
∂y
(Ik(x))

(9)

Remembering that Ux is part of the singular value decom-

position of the Jacobian - see Eq. 3 - and that, accordingly,

Ux and V x in this decomposition are orthonormal matrices

and that Sx is a diagonal matrix, it follows directly that

[
δ

δx
(P (x))

δ

δy
(P (x))] = [Sx

11
V x

1
] (10)

Of course just as we have an unknown sign when we

derive G(x) from inner product tensor analysis the sign

ambiguity remains here. We set sx to 1 or -1 so that

[ δ
δx
(P (x)) δ

δy
(P (x))]t = sxG(x).

�

While the sign in the proof is chosen to map the derived

gradient of the Socolinsky and Wolff method we need not

set it in this way. Indeed, because we are ultimately want-

ing to fuse an image that has positive image values we do

not adopt the Socolinsky and Wolff[30] heuristic method.

Rather we choose the sign so that the projected image is

positive (a necessary property of any fused image):

sx = sign(Úx.I(x)) (11)

Equation 11 always resolves the sign ambiguity in a well

defined way (and as such is an important advance compared

to Socolinsky and Wolff).

The POP image fusion theorem is for a single image

point and assumes the underlying multichannel image is

continuous. We wish to understand whether we can sensibly

apply the POP image fusion theorem at all image locations

and even when the underlying image is not continuous.

First, we remark that we can write Ux as

Ux = JxV x[Sx]−1 (12)

that is, Ux is the product of the Jacobian and the the inverse

of the square root of the structure tensor (the structure ten-

sor decomposition in terms of the SVD is given in Equation

4 from which it follows that the inverse of the square root

of the structure tensor is V S−1). Because the structure ten-

sor is positive-semidefinite the eigenvalues are always real

and positive and, assuming the underlying multichannel im-

age is continuous and that the eigenvalues are distinct then

Úx - the principal characteristic vector of the outer product

matrix - will also vary continuously. However, in image re-

gions with zero derivatives or where the structure tensor has

coincident eigenvalues (e.g. corners) there may be a large

change in the projection direction found at one image lo-

cation compared to another (discontinuity). It follows then

that we must interpolate, or diffuse, the projection vectors

that are well defined across the image. We achieve this by

applying a simple cross bilateral filter, which provides su-

perior results to a standard Gaussian or median filter, as it

uses the image structure contained in the input image chan-

nels to guide the diffusion of the projection vectors. While

there are other ways of providing an ‘in-filled’ projection

map including anisotropic diffusion[26], connected compo-

nent labeling (enforcing the same projection for the same

connected component in the input (in analogy to [29]) or

enforcing spatial constraints more strongly than in bilateral

filtering[21], we found the bilateral approach worked well

for our purposes. After bilateral filtering - and a couple of

additional post processing steps described in 3.1 - we have

N values per pixel defining a projection direction along

which we project the N-vector I(x) to make a scalar out-

put image. It could be said that this diffusion process is an

analogue of gradient field reintegration, in that it combines

gradient information across the image plane and produces a

semi-global optimization - however, unlike previous meth-

ods it avoids halo and bending artifacts.

Let us denote P(x) : D ⊂ R
2 → C ⊂ R

N as the pro-

jector image. In POP image fusion the scalar output image

O(x) is calculated as a simple per pixel dot product.

O(x) = P(x).I(x) (13)

3.1. Algorithm for finding the Projector Image

initialize P(x) = 0 (initialize to the 0 projection at every

pixel location).

1. For all image locations x calculate the Jacobian Jx

2. If min(Sx

11
, Sx

22
) > θ1 and |Sx

11
− Sx

22
| > θ2 then

P(x) = Úx (at this stage P(x) is sparse).

3. P(x) = BilatF ilt(I(x),P(x), σr, σd).

4. P(x) = P(x)/||P(x)||.

5. P(x) = spread(P (x)).

Implementation Details

In step 2, θ1 and θ2 are set arbitrarily to .01 (assuming

image values are in [0,1]). The function BilatF ilt() is a

cross bilateral filter with the range term defined by the orig-

inal image I . The filtering is carried out independently per

channel with a Gaussian spatial blur with standard deviation

σd and the standard deviation on the range parameterised

by σr. With σd = σr = 0, no diffusion takes place. As

σd → ∞ and σr → ∞, the diffusion becomes a global

mean, and the projection tends to a global weighted sum

of the input channels. If σd → ∞ and σr = 0 each dis-

tinct vector of values in the image will be associated with

the same projection vector and so the bilateral filtering step

defines surjective mapping which could be implemented as

a look-up table[12]. Excepting these boundary cases the
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(a) RGB - input image

to the POP method

(b) Sparse P projec-

tors (step 2)

(c) P after normaliza-

tion (step 4)

(d) P after spread

operation (step 5)

(e) POP image fusion

result

(f) SW image fusion

result

Figure 2: In (a) we show an Ishihara plate. The initial projector image derived in POP image fusion is shown in (b) - note

how edgy and sparse it is - and after bilateral filtering and normalization (steps 3 and 4) in (c). The spread function is applied

giving the final projector in (d). The per-pixel dot product of (a) with (d) is shown in (e). For comparison in (f) we show the

output of the Socolinsky and Wolff Algorithm.

standard deviations in the bilateral filter should be chosen

to provide the diffusion we seek, but we also need to make

sure the spatial term is sufficiently large to avoid spatial arti-

facts. In our experiment σd and σr are set to min(X,Y )∗4
and ((max(I)−min(I))/4)), these values were found em-

pirically.

After the bilateral filtering, P is dense, but each projec-

tion direction is not a unit vector. This is remedied in step

4. Finally, we apply a spreading function spread() to move

each of the projection directions a fixed multiple of angular

degrees away from the mean (the diffusion step pulls in the

opposite direction and results in projection directions closer

to the mean compared with those found at step 2 in the algo-

rithm). By default, we simply compute the average angular

deviation from the mean before and after the diffusion. We

scale the post-diffusion vectors by a single factor k (k ≥ 1)

so that the average angular deviation is the same as prior

to the diffusion step. If the spread function creates nega-

tive values we clip to 0. This scaling factor k can be varied

according to the requirements of each application.

3.2. Fast Implementation

To speed up the technique, the input images may be

downsampled and P calculated only for the thumbnail im-

age. We then use joint bilateral upsampling[16] to find the

full resolution projector image. We remark that this thumb-

nail computation also has the advantage that the projector

image can be computed in tiles i.e. we never need to calcu-

late the full resolution projector image.

An example RGB-NIR image pair at 682 × 1024 reso-

lution (the image pair shown in fig. 5), fused as separate R,

G and B channels for a total of 3 fusion steps, takes 54.93

seconds at full resolution, and 2.82 seconds when calcu-

lated on 68 × 102 downsampled thumbnail images, using

a MATLAB implementation of our method. This increase

in speed does not significantly affect the resulting image -

the mean SSIM[33] between the full resolution and down-

sampled results over the corresponding image channels is

0.9991. In general we found that we could downsample ag-

gressively to 10K pixel thumbnails (or, even slightly less as

in this example) with good results. Though, almost always

if we downsized to approximately VGA[3] resolution then

the results we computed on the thumbnails would be close

to identical as those computed on the full resolution image.

4. Experiments

We compare our method against two state-of-the-art al-

gorithms, the image fusion method of Eynard et al., based

on using the graph Laplacian to find an M to N channel

color mapping, and the Spectral Edge (SE) method of Con-

nah et al. [7], which is based on the structure tensor together

with look-up-table based gradient reintegration[12].

In our supplementary material, we include the full-size

images from this paper, several more RGB-NIR image fu-

sion comparisons, and color to greyscale conversion exam-

ples of the entire Ĉadı́k data set[6].

In Fig. 2 we show the colour to greyscale image fusion

example of an Ishihara plate used to test colour blindness

(if the reader cannot see a number look at 2e for a greyscale

representation of what most people see!). In 2f we show the

output of the Socolinsky and Wolff image fusion algorithm.

Socolinsky and Wolff fails here because the image is com-

posed of circles of colour on a white background. Because

all edges are isolated in this way, the equivalent gradient

field exactly characterizes the colour gradients and is inte-

grable and the output in 2f does not have integration arti-

facts. Yet, the fused images does not capture the actual look

and feel of the input. In contrast POP image fusion which

produces an output 2e (see Fig 2 caption for description of

the intermediate steps) the initial projection directions are

diffused with the bilateral filtering step enforcing the pro-

jection directions calculated at a pixel to be considered in

concert with other image regions.

We can use this greyscale output for image optimization

for color-deficient viewers, as shown in fig. 3. The POP re-
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(a) RGB (b) Protanope Simulation

(c) Eynard et al. (d) POP

Figure 3: Image optimization for color-deficient viewers:

Protanope Comparison (Ishihara plate 3). The orange digit

6 disappears in the Protanope simulation image, but is

clearly visible in both the results of Eynard et al. and the

POP method.

sult 2e is used as a luminance channel replacement in LUV

color space for the Protanope simulation image 3b, map-

ping color variation in the original RGB image 3a that is

invisible to color-deficient observers, to luminance channel

detail which they can perceive. For this application we use

a downsampling ratio of 0.5 and a k stretching parameter of

2. The result of Eynard et al. is also presented as a com-

parison - both methods achieve the desired result, although

the result of Eynard et al. produces a higher level of dis-

crimination, as their fusion changes the output color values,

whereas our method only affects luminance.

4.1. Remote Sensing

Images captured for remote sensing applications nor-

mally span the visible and infrared wavelength spectrum.

We use data from Landsat 5’s Thematic Mapper (TM)[1].

The Landsat 5 TM captures 7 image channels - 3 in the vis-

ible spectrum and 4 infrared images. The three visible im-

ages are captured from 0.45-0.51µm (blue), 0.52-0.60µm

(green), and 0.63-0.69 µm (red), and we use these as the

B, G and R channels respectively of the input RGB image.

In fig. 4a, we show an input RGB image from the Land-

sat image set, and in 4b and 4c the infrared bands 5 and 7

which include extra detail not present in the RGB bands.

(a) RGB (b) Band 5 (c) Band 7

(d) SW (e) SE (f) POP

Figure 4: Remote sensing image fusion - Landsat 5[1]:

original RGB image, bands 1-3 (a), infrared bands 5 (b) and

7 (c) capture extra detail, which is fused with the RGB by

the SW (d), SE (e) and POP (f) methods.

All 4 infrared channels are used in the fusion, but only 2

are shown here for reasons of space. The 4 infared channels

are fused with the R, G and B channels in turn using the

Socolinsky and Wolff method in 4d and the POP method in

4f, and then the output RGB channels have high and low

quantiles matched to the input RGB channels. In fig. 4e

we show the result of the Spectral Edge method[7], which

directly fuses the RGB image and all 7 multiband images.

For this application we use a downsampling ratio of 0.5 and

a k stretching parameter of 2.

Both the SE and POP method produce significantly more

detailed results than the SW method. In our opinion, the

POP method’s result is slightly preferred to that of SE, as

its details are sharper and more crisp.

4.2. RGBNIR Image Fusion

In fig. 5 we wish to fuse the conventional RGB image

(5a) with an near-infrared (NIR) image (5b). We apply POP

image fusion 3 times - we fuse the R-channel with the NIR,

the G-channel with the NIR and the B-channel with the

NIR. We perform post-processing in which we stretch the

images so that their 0.05 and 0.95 quantiles are the same

as the original RGB image. The POP Image fusion result

is shown in fig. 5e. For comparison we show the Spectral

Edge output, Fig. 5c and the Eynard et al. output 5d. In the

same image order we show a magnified detail inset in 5f.

The output image of the POP method captures more NIR

detail than the SE result, while producing more natural col-

ors than the result of Eynard et al., which has a green color

cast and a lack of color contrast. The POP result shows

good color contrast, naturalness and detail. For this appli-

cation we use a downsampling ratio of 0.1 and a k stretching
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(a) RGB (b) NIR (c) SE

(d) Eynard et al. (e) POP (f) Detail Comparison

Figure 5: RGB-NIR Image Fusion: ‘Water47’[5] Comparison - original RGB and near-infrared input images, Spectral Edge,

Eynard et al. and POP results (detail, top-left: RGB, top-right: SE, bottom-left: Eynard et al., bottom-right: POP). The POP

result has superior contrast and detail compared to the other methods. The SE result is natural and adds extra detail, while

the result of Eynard et al. transfers NIR detail effectively, but suffers from a green color cast.

parameter of 1.

4.3. Multifocus image fusion

Multifocus image fusion is another potential application,

which has typically been studied using greyscale images

with different focal settings[17][18]. Standard multifocus

image fusion involves fusing two greyscale input images

with different focal settings. In each input image approx-

imately half the image is in focus, so by combining them an

image in focus at every point can be produced.

Table 1 shows a comparison of the performance of the

POP image fusion method on this task, on several stan-

dard multifocus image pairs, using standard image fusion

quality metrics. The QXY/F metric is based on gradi-

ent similarity[35], the Q(X,Y, F ) metric is based on the

structural similarity image measure (SSIM)[33][36], and

the MXY
F metric is based on mutual information[15]. The

results are compared to the method of Zhou and Wang,

based on multi-scale weighted gradient-based (MWGF)

fusion[38], as well as a standard DWT fusion, using a

Daubechies wavelet and CM (choose max) coefficient se-

lection - the POP result comes out ahead in the majority of

cases.

Plenoptic photography provides various refocusing op-

tions of color images, allowing images with different depths

of focus to be created from a single exposure[24]. The POP

method can be used to fuse these differently focused im-

Image Pair Metric DWT MWGF POP

Book QXY/F 0.8208 0.8327 0.8332
Q(X,Y, F ) 0.8053 0.8027 0.8008

MXY
F 0.9738 1.227 1.057

Clock QXY/F 0.7860 0.7920 0.7956
Q(X,Y, F ) 0.8008 0.7955 0.7910

MXY
F 0.7475 1.142 1.248

Desk QXY/F 0.7907 0.8287 0.8242

Q(X,Y, F ) 0.7933 0.7978 0.7979
MXY

F 0.7261 1.072 1.248
Pepsi QXY/F 0.8648 0.8800 0.8820

Q(X,Y, F ) 0.7950 0.7725 0.7792

MXY
F 0.8751 1.196 1.210

Table 1: Multifocus Fusion: table of metric results.

ages into a single image wholly in focus. Our method can

be fine tuned for this application, due to the knowledge that

only one of the images is in focus at each pixel. Here we

apply a large k scaling term in the spread function, and we

use a downsampling ratio of 0.5. This allows a crystal clear

output image, in focus at every pixel, to be created.

Fig. 6 shows an image (from Ng et al. [24]), in which

four different refocused images are created from a single

exposure. The POP method is used to fuse these differently

focused images into a single image in focus at every point

- in comparison the result of the method of Eynard et al.
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(a) Focus 1 (b) Focus 2 (c) Focus 3

(d) Focus 4 (e) Eynard et al. (f) POP

Figure 6: Multifocus Fusion: four color input images with

different points of focus captured with one exposure using

a plenoptic camera, and the fusion results of Eynard et al.

and the POP method. The POP result brings details across

the image into sharper focus with natural color.

does not show perfect detail in all parts of the image, and

has unnatural color information.

4.4. Merging timelapse photography

Time-lapse photography involves capturing images of

the same scene at different times[11]. These can be fused

using the standard POP method in the case of greyscale im-

ages, and for RGB images the stacks of R, G and B chan-

nels are fused separately. This fusion result creates an out-

put image which combines the most salient details of all the

time-lapse images. For this application we use a downsam-

pling ratio of 0.5 and a k stretching parameter of 2.

Fig. 7 shows a series of time-lapse images (from Eynard

et al. [11]) from different parts of the day and night, and

results of POP fusion and the method of Eynard et al. The

details only visible with artificial lighting at night are com-

bined with details only visible in the daytime in both results,

but the POP result produces far more natural colors. It must

be noted that the result presented here for Eynard et al. is

different in color to that presented in their paper - we ran

the code they provided on the input images ourselves and it

produced this result. We believe the POP result is a more

natural fusion in either case.

5. Conclusion

In this paper, we have proposed a new image fusion

method based on image derivatives. It avoids integrability

problems with gradient reintegration methods, by calculat-

ing a projection of the input image channels per-pixel based

on the principal characteristic vector of the outer product of

(a) Morning (b) Day (c) Evening

(d) Night (e) Eynard et al. (f) POP

Figure 7: Time-lapse Photography - Fusion of Multiple Il-

luminations: four color input images captured at different

times of day and night, and the fusion results of Eynard et

al. and the POP method. The POP result has far more natu-

ral colors and detail.

the Jacobian matrix of image derivatives. We have proved

that, in the case of continuous multichannel images with

derivatives at every point, this produces an output projected

image with derivatives equal to the equivalent gradients

found by Socolinsky and Wolff from the Di Zenzo structure

tensor. In real images, derivative information is sparse, so

we diffuse the projection coefficients among similar image

regions using a joint bilateral filter, before projecting the in-

put image channels to produce an output image. We call

this the Principal characteristic vector of the Outer Product

image fusion method.

We have explained how the POP method can be opti-

mized to improve its performance, and how it can be ap-

plied to RGB-NIR image fusion, color to greyscale con-

version and multifocus image fusion. We have compared

our method to state of the art methods for RGB-NIR image

fusion, image optimization for color-deficient viewers, and

remote sensing, and provided illustrative results for multifo-

cus image fusion based on plenoptic imaging and the fusion

of time-lapse images.

The POP method produces results visually superior to

the other methods we have tested - its output images have

high levels of detail with minimal artifacts.
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