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Graz University of Technology

Institute for Computer Graphics and Vision

Inffeldgasse 16, 8010 Graz, AUSTRIA

{ferstl, ruether, bischof}@icg.tugraz.at

Abstract

In this paper we propose a novel method for depth im-

age superresolution which combines recent advances in ex-

ample based upsampling with variational superresolution

based on a known blur kernel. Most traditional depth su-

perresolution approaches try to use additional high resolu-

tion intensity images as guidance for superresolution. In

our method we learn a dictionary of edge priors from an

external database of high and low resolution examples. In

a novel variational sparse coding approach this dictionary

is used to infer strong edge priors. Additionally to the tradi-

tional sparse coding constraints the difference in the over-

lap of neighboring edge patches is minimized in our opti-

mization. These edge priors are used in a novel variational

superresolution as anisotropic guidance of a higher order

regularization. Both the sparse coding and the variational

superresolution of the depth are solved based on the primal-

dual formulation. In an exhaustive numerical and visual

evaluation we show that our method clearly outperforms

existing approaches on multiple real and synthetic datasets.

1. Introduction

In recent years, once prohibitively expensive range sen-

sors reached their way to the mass market with the introduc-

tion of Microsoft Kinect, ASUS Xtion Pro or the Creative

Senz3D camera. These cameras can now capture scene

depth in real time and enable a variety of different applica-

tions in computer vision including 3D reconstruction, pose

estimation or driver assistance. Acquisitions made by such

consumer depth cameras, however, remain afflicted by less

than ideal attributes. Most of these inexpensive technolo-

gies reached a natural upper limit on the spatial resolution

and the precision of each depth sample. It may seem that

increasing the spatial resolution and apparent measurement

accuracy requires additional data from the scene itself, such

as a high resolution intensity image [8], or multiple aligned

depth images from nearby locations [23]. However, in pre-

vious works it has been shown that it is possible to super-

resolve intensity images either by interpolation and deblur-

ring with a known Point Spread Function (PSF) [26] or by

previously learned relationships between low and high res-

olution image examples, that are stored in dictionaries [30].

On the one side, superresolution (SR) approaches based on

a known PSF have the advantage to deal with input noise

and create a dense result but the quality is highly depen-

dent on knowing the exact filter kernel. On the other side,

approaches based on a learned dictionary do not need the

accurate PSF but are more likely to fail at higher levels of

noise.

Figure 1. Variational Depth Superresolution using Example-Based

Edge Representations. Our method estimates strong edge priors

from a given LR depth image and a learned dictionary using a

novel sparse coding approach (blue part). The learned HR edge

prior is used as anisotropic guidance in a novel variational SR us-

ing higher order regularization (red part).

Recent approaches based on learned dictionaries reach a

high level of quality for noise free intensity images. How-

ever, depth images usually contain higher noise due to sen-

1513



sor characteristics and have fewer high frequency parts.

Hence, we propose a method which combines both learning

based and SR based on a known PSF. This combination is

used in a variational SR together with anisotropic higher or-

der regularization. The whole workflow of our model is de-

picted in Figure 1. Similar to depth SR approaches that use a

high resolution intensity image for guidance we use a sparse

coding approach to pre-calculate edge priors out of the low

resolution example. The sparse code is reconstructed in a

variational energy minimization using a learned dictionary

from an external database of low and high resolution ex-

amples. In addition to the traditional sparsity constraint we

minimize the overlap of neighboring patches in our opti-

mization. This spacial coherence in image space leads to

more accurate edges than traditional averaging across the

overlap. The edge priors are used as regularization force in

a novel variational SR. Hence, our method has the advan-

tage that we do not have to know the exact PSF since the

high frequency parts are reconstructed via the edge priors.

Furthermore, since we use a variational energy model with

Total Generalized Variation (TGV) as regularization we are

able to handle depth inputs with higher amounts of noise.

In an exhaustive qualitative and quantitative evaluation

we show that our methods that combines the advantages of

sparse coding and variational SR outperforms current state

of the art (SOTA) approaches on multiple real and synthetic

datasets.

2. Related Work

The field of image superresolution (SR) is a widely re-

searched area in computer vision. While the research on im-

age SR includes also the temporal fusion of multiple acqui-

sitions as well as the combination of different sensor modal-

ities, this work is focused on the SR of single depth images.

Therefore, we will limit the related work to recent advances

in single image SR based on learned dictionaries and varia-

tional SR based on known blur-kernels. We refer interested

readers to comprehensive survey papers [17, 27].

Typically, SR approaches based on dictionary learning

build upon sparse coding [19]. Yang et al. [28] used the

background of sparse coding to reconstruct high resolution

test patches as sparse linear combination of atoms from a

learned dictionary of paired high and low resolution train-

ing patches. Zeyde et al. [30] build upon this framework

and improve the quality by adding several modifications.

For training they use a combination of K-SVD [1] and Or-

thogonal Matching Pursuit (OMP) [25] for the low resolu-

tion dictionary and a direct regression of the high resolution

dictionary using the pseudo-inverse. In the sparse coding

approach of Mandal et al. [13] they additional penalized the

input and output gradient in each low resolution patch dur-

ing sparse optimization. Very recently, Timofte et al. [24]

accelerated the inference of sparse coding by relaxing the

L0 regularization with L2 regularization and replacing the

single dictionary with many smaller sub-dictionaries which

are pre-calculated. Hence, finding the sparse representation

becomes a quadratic problem for each sub-dictionary which

can be solved in closed form.

Other works use a dictionary of sample patches in a

multi-class labeling problem in a Markov Random Field

(MRF). In the work of Freeman and Liu [9] the goal is to

minimize the difference of the set of high resolution dic-

tionary atoms to the low resolution input, where the label

being optimized represents the high resolution patch. Addi-

tionally, the overlap between neighboring patches is penal-

ized in a binary term. Similar, Aodha et al. [12] proposed

a MRF framework especially focused on depth image SR

with higher noise. In their work an additional depth nor-

malization is proposed to penalize the patch overlap. In a

post-processing step they use a novel noise-removal algo-

rithm to increase the quality. Instead of using a dictionary

from an external database, Hornáček et al. [10] proposed

a similar method where the low and high resolution patch-

pairs of arbitrary size are searched in the image itself.

Most methods where the low resolution patches are re-

constructed by a combination of dictionary entries highly

suffer from input noise as reported in previous works. But

there is also a great number of SR approaches that rely on

a more general prior, as shown in [17]. Most related to our

approach is the variational SR which is based on a known

Point Spread Function (PSF) or blur-kernel. Mitzel et al.

[15] used this model together with a Total Variation (TV)

regularization and optical flow estimation for the image SR

of multiple image. This work was extended by Unger et al.

[26] proposing a more robust model using the Huber-Norm.

In [29] the TV regularization is weighted with an adaptive

spatial algorithm based the scene curvature.

Our work on depth image SR can be related to both

fields since we combine the advances from sparse coding

approaches and variational methods based on a known PSF.

Compared to previous works, this gives us the possibility

to super-resolve depth images with higher amount of noise

and where only an approximate blur-kernel is set. Since

most man-made environments can be well represented with

planar surfaces, we use a Total Generalized Variation (TGV)

for regularization which aids the optimization to reconstruct

piecewise planar surfaces. This helps to improve on both

approaches based on learned dictionaries and on variational

SR methods using a known blur-kernel.

3. Superresolution using Sparse Regulariza-

tion

Our approach is focusing on the standard superresolu-

tion (SR) problem of recovering a high resolution and high-

quality depth map Ih 2 R
Ωh out of a low resolution and

noisy depth map Il 2 R
Ωl , where Ωh and Ωl denote the
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high and low resolution image space.

In our optimization we will rely on the traditional SR

reconstruction constraint [29]: An observed low resolution

image Il is a blurred and down-sampled version of the noisy

high resolution image Ih:

Il = DBIh + v, (1)

where D represents the downsampling operator and B the

blur filter. It is assumed that D performs a decimation by

a fixed factor and B, representing the blur-kernel, applies a

low-pass filter to the image. The additional variable v de-

notes an unknown amount of noise on the low resolution im-

age. The SR remains extremely ill-posed, since for a given

low resolution input Il, infinitely many high resolution im-

ages Ih satisfy this reconstruction constraint even if the blur

kernel is exactly known. Hence, we utilize the information

from an external database of known low and high resolution

image pairs to create a useful guidance when solving (1) for

Ih.

The relationship between low and high resolution images

is estimated through the sparsity constraint: For a given

low resolution patch the goal is to find the best entry in

a dictionary of sample patches collected from an external

database of low and high resolution image pairs. Sparse

coding approaches aim to overcome this search by using an

overcomplete dictionary based on sparse signal representa-

tions. Given a learned low resolution dictionary Al the goal

is to find the sparse representation ↵ such that the patch is

optimally reconstructed by the dictionary entries:

pl = Al↵, (2)

where pl 2 R
n is the low resolution input patch of sizep

n ⇥ p
n. The resulting high resolution patch is found

through ph = Ah↵ using the corresponding high resolution

dictionary Ah.

In section 3.1 we will show a novel approach how to

solve (2) densely over the whole image through primal-dual

optimization introducing a regularization on the patch over-

laps. As a result we get dense edge priors over the whole

image. These priors are subsequently used to reconstruct

the reconstruction constraint (1), which is shown in 3.2. In

section 3.3 we give an overview of the numerical solution

of both the sparsity constraint as well as the depth map re-

construction.

3.1. Edge Prior Estimation

The goal of the this estimation is to find high resolution

edge priors to guide the regularization in a variational su-

perresolution. The estimation of the optimal patch priors for

the depth regularization in our model is formulated as find-

ing the best entry in a learned dictionary of sampled patches

from low and high resolution image pairs using sparse cod-

ing. Similar to most state of the art (SOTA) approaches we

start from the K-SVD dictionary learning of Aharon et al.

[1]. Because depth images contain a high variety of discon-

tinuities caused by different scales and sensor modalities

we use image features from normalized image patches as

low resolution input. Similar to Zeyde et al. [30] we apply

PCA dimensionality reduction projecting the features onto

an even lower dimensional subspace. Further, we use Or-

thogonal Matching Pursuit (OMP) [25] to find the sparse

code while training.

In the training phase we start with a set of low and

high resolution image pairs. From these training images

we create a set of local patch pairs Y = {Yl,Yh} =
{

F (pi
l), T (p

si
h )
 

i
extracted at sub-sampled image loca-

tions i = {1 . . . p} form Il and si from Ih, where s is the

upsampling factor. The operator F (.) : Rn ! R
f denotes

the feature extraction and dimensionality reduction of the

patch pl, where f is the feature length. T (.) : Rn ! R
n

denotes the calculation of the edge prior out of the high res-

olution image patch ph. In principle, different kinds of edge

priors can be learned in our framework from different kinds

of features. In our SR approach we use first and second or-

der gradients as features to learn an anisotropic diffusion

edge tensor as described later.

After determining the sampled patch pairs, the low reso-

lution dictionary Dl 2 R
f⇥d and the corresponding sparse

code Λ 2 R
d⇥p = {↵i} is found by minimizing

min
Λ,Dl

kYl −DlΛk22, s.t. kΛk0  L, (3)

using the K-SVD algorithm, where the size of the dictio-

nary d is fixed. L denotes the number of non-zero entries

in the sparse code map Λ. Given Λ the corresponding high

resolution dictionary is calculated by the pseudo-inverse ex-

pression Dh 2 R
n⇥d = YhΛ

T
(

ΛΛT
)−1

. This is given

by the closed form solution of (3) for the dictionary in high

resolution space, as shown in [30].

In the reconstruction phase traditional approaches solve

(3) through OMP fixing the trained dictionary Dl. The

sparse code is estimated for each dictionary atom separately.

After reconstruction, the code Λ is multiplied with the high

resolution dictionary Dh to get the high resolution patches

Yh. These patches are merged and averaged across the im-

age space Ωh to get the resulting image. The downside of

this traditional approach of independent calculation and av-

eraging without a neighboring coherence is that the result

gets blurry in the overlapping region. This harms the SR

quality which is based on the sharpness in the solution, as

shown in [12].

In our work we introduce a binary term in the sparse

optimization model to introduce spatial coherence of the

patches. This enables to reconstruct the sparse code not

only with respect to the input patch but also to the dif-

ference between neighboring patches. The low resolution
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Figure 2. Patch-Gradient. The patch-gradient is formulated as the

height difference between one patch Dhαi to its direct neighbor-

ing patch Dhαi+1 in the image domain. It calculates the pixel-

wise difference in the overlapping region between two neighbor-

ing patches (red area).

patch-features are sparsely reconstructed using the follow-

ing formulation:

min
Λ

kDlΛ−Ylk22 + λkΛk1 + γkrpV (DhΛ)k1, (4)

where the first term minimizes the distance of the low res-

olution dictionary atoms to the input and the second term

minimizes the quantity of atoms used for reconstruction.

The scalars λ, γ 2 R weight the individual terms. The

L0 constraint of the sparsity constraint is relaxed to a L1

norm constraint, as used in other methods [28]. The addi-

tional third term reflects a regularization between overlap-

ping regions of patches. The operator V (.) : Rn⇥p ! R
np

denotes a vectorization of the matrix DhΛ. The term

rp =
⇥

rx
p ,ry

p

⇤T
: Rnp ! R

2rp denotes the novel patch-

gradient operator, where r denotes the size of the over-

lapping region. Similar to the traditional Total Variation

(TV) regularization, the patch-gradient performs absolute

forward differences between neighboring patches in x and

y direction. For one high resolution patch it is defined as

the sum of pixel-wise differences in the overlapping region

to its direct neighbor patch in image space.A visualization

of this gradient is shown in Figure 2. The patch-gradient

penalizer is applied by a simple matrix multiplication of

the linear gradient operator rp with the concatenated patch

vector V (DhΛ).
After optimization we get the concatenated high-

resolution patches DhΛ. Since our models finds dictionary

entries where the neighbors are better aligned, the resulting

image contains sharper edges after merging all the patches

back together.

In principle, different kinds of the edge priors can be

learned in our framework (e.g. scalar weights, image gra-

dients, guided image filters or shock filters). We learn an

anisotropic diffusion tensor based on the Nagel-Enkelmann

operator [16], since it worked best for all experiments.

Given a high resolution depth patch ph the anisotropic edge

patch is calculated by

T (ph) = exp (−β |rph|γ)nnT + n?n?T, (5)

where n is the normalized direction of the image gradient

n = rph

|rph|
, n? is the normal vector to the gradient and the

scalars β, γ 2 R adjust the magnitude and the sharpness of

the tensor. The gradients are calculated using the Sobel op-

erator to reduce the influence of noise in the training data.

The advantage of an anisotropic diffusion tensor is that it

not only weights the regularization but also orients the gra-

dient direction during the optimization process, as shown in

[21]. This allows for sharper edges across high gradients

and prevents high steps along those gradients.

In our model the high resolution dictionary is composed

of (ideally) incoherent edge tensor entries. After the sparse

reconstruction the concatenated tensor entries DhΛ are

merged to the image space resulting in the weighting ten-

sor TΛ 2 R
4⇥Ωh . This tensor is used in the next step to

guide the regularization term in the variational SR.

3.2. Variational Superresolution

In the previous section we have shown how to estimate

a high resolution edge prior according to a low resolution

input image. In this section we propose to solve the SR

reconstruction constraint (1) using this prior in a variational

energy minimization.

The variational SR problem is formulated as

min
u

kDBu− Ilk✏ +R(TΛ,u), (6)

where the first term denotes the data fidelity and the sec-

ond term the regularization R(.) of the optimizer u. In our

model, the data term is penalzed by the Huber-Norm [11],

defined by

|x|✏ =
(

|x|2

2✏
if |x|  ✏

|x| − ✏
2

if |x| > ✏.
(7)

The Huber parameter ✏ 2 R denotes the tradeoff between

the L2 and the L1 norm in the penalization. Hence, the

data term gets more robust against Gaussian noise as well

as gross outliers in the input depth.

Given a fixed upsampling factor s the linear downsam-

pling operator D : RΩh ! R
Ωl is defined by calculating the

mean of a pixel region s⇥s. The formation of one pixel fi,j
at position (i, j) is calculated as fi,j = 1

s2

R

∆s
i,j

g(x)dx,

with the pixel region ∆s
i,j = (is, js) + [− s

2
, s
2
]2 and g the

high resolution image.

The quality of traditional SR methods rely on the quality

of the blur-kernel, as shown in [14]. In our work we aim to

present a more general algorithm where the blur-kernel is

not exactly known. The linear blurring operator B : RΩh !
R

Ωh is modeled by a simple Gaussian kernel with a standard

516



deviation σ = 1

4

p
s2 − 1 and 3σ for the kernel size. Both

linear operators are fixed and can be set in a previous step.

In natural environments depth images have less fine-

grained texture components compared to intensity im-

ages. Hence, the regularization term R(.) has to meet

the challenges of producing a high resolution depth map

that smooths small gradients caused by kernel inaccuracies

while preserving strong edges and planar surfaces. Most

current regularization terms are based on the TV-norm [18].

This norm favors constant values which causes staircase ar-

tifacts in the solution. In our model we use a more gen-

eral regularization namely the Total Generalized Variation

(TGV) [4] of second order. For depth SR this regularization

allows to reconstruct piecewise affine surfaces. Together

with the learned patch-based edge prior the second order

regularizer is formulated as

R(TΛ,u) = λ1kTΛ(ru− v)k1 + λ0krvk1, (8)

where additionally to the first order smoothness of the depth

map, the auxiliary variable v 2 R
2⇥Ωh is introduced to

enforce second order smoothness. The scalars λ0, λ1 2 R

are used to weight each order.

3.3. Numerical Optimization

In this section we explain the details of the numerical

implementation of our method. Both proposed problems

are convex but non-smooth due to the L1 and Huber norms

in the different terms. Therefore, the optimization of such

problems is not a trivial task. Since (4) and (6) are convex

in Λ and (u,v) we make use of the dual principle. Af-

ter introducing Lagrange multipliers for the constraints and

biconjugation using the Legendre Fenchel transform (LF)

we are able to reformulate the problems as convex-concave

saddle point problems, as shown in [3]. Thus, the workflow

in our model is defined as first solving the variational sparse

coding defined as

min
Λ

max
p,q

kDlΛ−Ylk22 + λ hp,Λi

+ γ hq,rpV (DhΛ)i .
(9)

From the resulting sparse code the edge tensor TΛ is esti-

mated by merging the resulting patches DhΛ into the image

space Ωh. The estimated tensor is used in our variational SR

approach which is defined as

min
u,v

max
r,s,t

hr,DBu− fi − ✏

2
krk22

+ λ1 hs,TΛ(ru− v)i+ λ0 ht,rvi .
(10)

The matrices p, q, r, s and t denote the introduced dual

variables. The feasible sets of all dual variables are defined

by a projection onto unit length.

Both the sparse coding (9) and the variational SR (10)

are solved using the primal-dual optimization scheme, as

proposed by Esser et al. [7]. This scheme provides a fast

convergence rate and is parallelized in the implementation

resulting in fast optimizations. For a more detailed expla-

nation of the step-by-step algorithm for both optimizations

we refer to the supplemental material.

4. Evaluation

In this section we show a quantitative and qualitative

evaluation of our superresolution (SR) method. We will first

discuss some of the algorithm details such as used features

and dictionary sizes. Further, we show the performance

under acquisition noise where different levels of Gaussian

noise are applied on the input data. For an extensive anal-

ysis we investigate the performance compared to state of

the art (SOTA) approaches on a variety of different datasets

including Middlebury [22] and the Laser Scan Dataset of

Aodha et al. [12].

For evaluation of the SOTA approaches we use the pub-

licly available framework of Timofte et al. [24]. In the

following we compare our method with the standard inter-

polation methods nearest neighbor (NN) and bicubic up-

sampling as well as the sparse coding approach of Zeyde

et al. [30]. We further show the results of both methods

reported in [24], namely Global Regression (GR) and An-

chored Neighborhood Regression (ANR), and the neighbor-

hood embedding [2, 5] approaches (NE+LS, NE+NNLS,

NE+LLE). Additionally, we compare to the Markov Ran-

dom Field (MRF) based methods of Aodha et al. [12] and

Hornáček et al. [10], and the variational SR of Unger et al.

[26]1.

For all dictionary based methods we use the same syn-

thetic range image data of [12] for training, which contains

30 scenes of size 800 ⇥ 800 in the high resolution space.

The reported error is described as the Root Mean Squared

Error (RMSE) to a known groundtruth.

To allow for a fair comparison all weighting parameters

in our model are set once and are kept constant over all ex-

periments. To encourage comparison and future work the

MATLAB code of the edge prior estimation and the varia-

tional SR as well as the results of all reported methods will

be made available at our website upon acceptance.

4.1. Discussion of Algorithm Details

For SR based on sparse representations one of the most

basic features is to use the sample patches itself. Other

methods such as [28, 30, 24] use the first and second or-

der derivative for intensity image features. However, for

depth images this is not directly applicable, because the

range from minimum to maximum value greatly varies be-

tween different scenes. To tackle this problem Aodha et

al. [12] proposed a patch normalization which accounts for

1Reimplemenation of the method proposed in [26] for single image SR
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(a) (b) (c)

Figure 3. Influence of dictionary size and noise on the average RMSE (in pixel disparity) for the Middlebury images Teddy, Cones, Venus

and Tsukuba with a magnification of ×3. All neighborhood embedding approaches where used with their best neighborhood size (as

reported in [24]). In (a) the results are shown where each sparse coding method uses the same dictionary. In (b) the results for increasing

Gaussian noise are shown, where every sparse coding method shares the same dictionary with 1024 entires. In (c) a magnified sector of

the noise evaluation in (b) is shown, where the noise level ranges from 0-2% . Figure best viewed magnified in the electronic version.

the ranges of both high and low resolution patch. In our

work we first normalize each patch to [0, 1] and then use the

first and second order gradients as patch-features. An ad-

ditional PCA dimensionality reduction is applied to project

the feature vector onto a lower dimensional subspace while

preserving 99.9% of the average energy. For an upscaling

factor of 3 this reduces each feature of length 144 to a size of

about 36. Throughout all experiments we use a patch-size

of 3 ⇥ 3 in the low resolution image space, which delivers

the best results for all sparse coding approaches.

The choice and the size of the dictionary are very criti-

cal parts in any sparse coding approach. Usually, the more

incoherent atoms a dictionary contains the better the per-

formance, however, this comes with a higher computational

cost. In Figure 3a we show the influence of the dictionary

size on the performance. As expected, the performance in-

creases with the size of the dictionary. But while the perfor-

mance of other sparse coding methods drastically increases

with the size our method already starts at a much lower

RMSE and is less influenced by the choice of the dictionary

size.

For most depth SR approaches the correct noise handling

plays a major role. Therefore, we test the accuracy un-

der different levels of noise on the Middlebury dataset. We

chose a depth dependent Gaussian noise with zero mean, as

reported in [20]. The standard deviation of the noise ranges

from 0 − 50% of the depth range (minimum to maximum)

in the input images for an upsampling factor of ⇥3. In Fig-

ure 3b and 3c the error results are shown for the different

methods. In Figure 4 we show visual SR results of differ-

ent methods for a standard deviation of 2%. Obviously,

the error increases with the input noise for all methods.

But, while the error drastically increases for methods which

solely depend on the sparse reconstruction, the variational

method [26] produces a higher error at lower noise factors

and performs comparably better with increasing noise. This

is caused by the regularization of the depth during optimiza-

tion which reduces the noise but smooths the edges. Since

we use a regularization which is only guided by a sparse

edge reconstruction we get more accurate results over the

whole noise range.

4.2. Benchmark Evaluation

In this section we evaluate the performance of the differ-

ent SOTA methods on publicly available benchmarks. Fol-

lowing [12, 10] we first show the RMSE results on the Mid-

dlebury datasets Teddy, Cones, Venus and Tsukuba for up-

sampling factors of ⇥2 and ⇥4, where the disparity is in-

terpreted as depth. Additionally, we show the results for

the real-world laserscan dataset (Scan21, Scan30, Scan42)

proposed by [12] for an upsampling factor of ⇥4. We run

our tests on filled ground truth data downscaled by near-

est neighbor interpolation (same as used in [12, 10]). The

quantitative results are shown in Table 4.1, where we ad-

ditionally compare our method against SOTA SR methods

that use a HR image as guidance [6, 8]. To show the in-

fluence of our sparse coding scheme to the overall solution

we compare to a combination of the sparse coding method

[30] for edge prior estimation in our variational SR ([30] +

Our SR). In Figure 5 and 6 the enlarged visual results are

shown for an upsampling factor of ⇥4. The Figures com-

pare the sparse coding approach [30] and the MRF based

approaches [12, 10] to our method. Additionally we show

the magnitude of the estimated edge prior TΛ which is used

as guidance in the SR.

What can be clearly seen is that the methods based on

a sparse representation have a slightly better performance

than the methods based on a MRF or a variational frame-
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×2 ×4 ×4

Cones Teddy Tsukuba Venus Cones Teddy Tsukuba Venus Scan21 Scan30 Scan42

NN 1.0943 0.8149 0.6123 0.2676 1.5309 1.1292 0.8328 0.3679 0.0177 0.0163 0.0396

Bicubic 0.9598 0.6917 0.5228 0.2274 1.2386 0.8936 0.6685 0.2938 0.0132 0.0125 0.0326

Diebel and Thrun [6] 0.7397 0.5265 0.4013 0.1703 1.1406 0.8010 0.5490 0.2426 - - -

Ferstl et al. [8] 0.7060 0.5352 0.4412 0.1605 0.9093 0.6267 0.6258 0.1828 - - -

Yang et al. [28] 1.4794 1.0909 0.8583 0.3666 1.3239 0.9401 0.6849 0.3010 0.0138 0.0130 0.0337

Zeyde et al. [30] 0.6920 0.4904 0.3871 0.1650 0.9617 0.6953 0.5477 0.2199 0.0100 0.0093 0.0246

GR [24] 0.7780 0.5521 0.4289 0.1896 1.0790 0.8193 0.6480 0.2776 0.0117 0.0114 0.0271

ANR [24] 0.6968 0.4954 0.3830 0.1666 1.0050 0.7564 0.6019 0.2452 0.0106 0.0101 0.0264

NE+LS 0.7066 0.4957 0.3939 0.1712 8.6221 10.3913 0.5641 14.7920 0.0818 0.1090 0.0725

NE+NNLS 0.6886 0.6073 0.3939 0.1646 0.9906 0.7346 0.5704 0.2431 0.0106 0.0101 0.0238

NE+LLE 0.6942 0.4995 0.3813 0.1654 0.9766 0.7396 0.5706 0.2406 0.0102 0.0097 0.0262

Unger et al. [26] 1.1342 0.8446 0.6445 0.2789 1.5797 1.1131 0.8438 0.3660 0.0170 0.0157 0.0415

Aodha et al. [12] 1.1269 0.8247 0.6012 0.2761 1.5042 1.0259 0.8333 0.3365 0.0175 0.0170 0.0452

Hornáček et al. [10] 0.9936 0.7910 0.5802 0.2574 1.3986 1.1957 0.7272 0.4501 0.0205 0.0179 0.0299

Our Method 0.6247 0.4397 0.3504 0.1433 0.9334 0.6670 0.4901 0.2262 0.0085 0.0083 0.0190

[30] + Our SR 0.6450 0.4543 0.3700 0.1573 0.9430 0.6769 0.4983 0.2363 0.0205 0.0179 0.0299

Table 1. Quantitative evaluation. The RMSE is calculated for different SOTA methods for the Middlebury and the Laserscan dataset for

factors of ×2 and ×4. The first four rows show the comparison against two standard interpolation techniques and two depth SR which use

an HR intensity image for guidance. The best result of all single image methods for each dataset and upscaling factor is highlighted and the

second best is underlined. Additionally we show the sparse coding method [30] used for the edge prior estimation in our SR optimization.

The error numbers are given in pixel disparity for the Middlebury and in [mm] for the Laserscan dataset.

work. Further, our method that combines both sparse cod-

ing and variational SR can still improve on all other methods

both on the synthetic Middlebury dataset and on the real-

world laserscan dataset. It can also be seen that for a smaller

SR factor of ⇥2 we get even slightly better results than

SOTA intensity image guided approaches since our method

does not rely on intensity texture that does not necessar-

ily coincide with depth edges. The visual results point out

the differences of the compared methods. The MRF based

approaches [12, 10] create sharp edges but miss some im-

portant details and suffer from blocking artifacts due to dis-

cretization. The sparse coding approach of Zeyde et al. [30]

achieves a better accuracy but the result is slightly blurry

along sharp edges due to the patch-wise averaging. Our

method contains most of the details and reconstructs sharper

edges than the sparse coding method but still slightly suf-

fers from the nearest neighbor artifacts. This is visible at

very fine details, where the sparse code could not be recon-

structed perfectly. Further, it can be seen that the results

tends to be over-smoothed at very strong depth discontinu-

ities, because the magnitude of the anisotropic tensor is pro-

portional to the depth gradient.

4.3. Conclusion

In this work we propose a method for single depth im-

age superresolution. The algorithm is designed in two steps.

First, edge priors are estimated using sparse coding with

a learned dictionary out of high and low resolution patch

pairs. Second, the learned edge priors are used in variational

energy minimization using a higher order Total Generalized

Variation regularization. With this combination we are able

to get more robust against noise than state of the art sparse

coding approaches and more accurate than variational ap-

proaches where the exact blur kernel has to be known. In

a quantitative and qualitative evaluation using widespread

datasets we show that our method qualitatively outperforms

existing methods. To cope with non-valid pixels in the input

(occlusions for stereo depth) our method can be easily ex-

tended by a weighting parameter of the SR data term, which

is zero for non-valid and one for valid pixels. As the pro-

posed method is not limited to single image superresolution

we plan to incorporate a temporal coherence using existing

scene flow methods. This will eventually lead to an even

higher accuracy.
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