
Learning The Structure of Deep Convolutional Networks

Jiashi Feng

Department of EECS & ICSI

UC Berkeley

jshfeng@berkeley.edu

Trevor Darrell

Department of EECS & ICSI

UC Berkeley

trevor@eecs.berkeley.edu

Abstract

In this work, we develop a novel method for automati-

cally learning aspects of the structure of a deep model in

order to improve its performance, especially when labeled

training data are scarce. We propose a new convolutional

neural network model with the Indian Buffet Process (IBP)

prior, termed ibpCNN. The ibpCNN automatically adapts

its structure to provided training data, achieves an optimal

balance among model complexity, data fidelity and training

loss, and thus offers better generalization performance.

The proposed ibpCNN captures complex data distribu-

tion in an unsupervised generative way. Therefore, ibpCNN

can exploit unlabeled data – which can be collected at low

cost – to learn its structure. After determining the structure,

ibpCNN further learns its parameters according to speci-

fied tasks, in an end-to-end fashion, and produces discrimi-

native yet compact representations.

We evaluate the performance of ibpCNN, on fully- and

semi-supervised image classification tasks; ibpCNN sur-

passes standard CNN models on benchmark datasets with

much smaller size and higher efficiency.

1. Introduction

Deep learning models, and in particular convolutional

neural networks (CNNs) [17], have achieved very good per-

formance in a number of benchmarks [15, 8, 10]. The per-

formance gain brought by deep models arguably lies in their

end-to-end learning strategy, multi-layer architecture and

the availability of sufficiently large training datasets.

Several recent works [22, 24] suggest when they grow

larger, the networks will achieve better performance. How-

ever, a very large neural network, which thus has great com-

plexity, generally demands significantly more training data

for learning its free parameters in order to obtain satisfac-

tory generalization performance. Therefore, in the absence

of sufficient training data, a complicated network model

may not perform comparably well as a simpler model for

some tasks [18]. Hence, choosing an appropriate and com-

polar bear

polar bear

CNN Feature

Extra data

Training data

Figure 1. The number of filters in each layer of the proposed

ibpCNN model is adaptive to the complexity of training data: an

ibpCNN trained on a relatively small dataset (top panel) has a

smaller size than the one trained on a lager dataset including some

extra data (bottom panel). Thus the output representations grow in

complexity with input data.

pact structure for a network, which involves making an opti-

mal trade-off between the amount of available training data

and model complexity, is desirable for obtaining good prac-

tical performance.

In this work, we propose a novel Convolutional Neu-

ral Network model equipped with an Indian Buffet Process

prior [9], called ibpCNN, to solve this important problem.

As shown in Figure 1, the ibpCNN systematically evolves

from a simplest network, driven by the provided training

data and any specified task, and finally converges to a com-

pact model of an appropriate structure. During the evolu-

tion the ibpCNN only requires training data along with loss

functional characterizing the targeted task as inputs, and

does not require explicitly trying multiple different struc-

tures via cross-validation.

Automatically learning the structure of a deep model is

a difficult task, due to the huge search space of possible

models. Fortunately, model structure learning has been el-

egantly explored by several generative model priors, such

as the Indian Buffet Process (IBP) [9, 1] or Beta Process

(BP) [21]. These priors provide a systematic and principled

approach to search the model space. In this work, we also

12749

follow this paradigm and perform structure learning using

a nonparametric deep model, which exploits the layer-wise

IBP prior.

More concretely, the proposed ibpCNN model intro-

duces nonparametric convolutional and fully connected lay-

ers, whose dimensions are fully adaptive to the provided

data and specified tasks. In its training phase, the layer size

and filter parameters of ibpCNN are jointly tuned to reli-

ably model the distribution of input data as well as min-

imize task-specific loss functionals. Such an end-to-end

learning strategy enables ibpCNN to achieve optimal bal-

ance between data amounts and model complexity, and thus

improve upon generalization performance of standard CNN

models, especially when the training data are scarce.

In this work, we propose a novel Grow-And-Prune

(GAP) algorithm to optimize the structure of each IBP layer

in ibpCNN, during the training process. The GAP algo-

rithm conducts complementary model growing and pruning

to find optimal layer configuration efficiently, and is guar-

anteed to converge to the optimal layer configuration.

We demonstrate the applicability and effectiveness of

ibpCNN for image classification tasks. Comprehensive ex-

periments on benchmark datasets show that the end-to-end

trained ibpCNN is indeed much more compact than stan-

dard CNN models, and more efficient for prediction.

In short, the proposed ibpCNN has the following bene-

fits: (1) its size automatically adapts to the complexity of

the training data and specific tasks; (2) it offers more com-

pact image representations and higher efficiency in predic-

tion; (3) it is able to exploit unlabeled data to assist model-

ing complicated data distribution; and (4) it achieves better

generalization performance when training data are limited.

2. Related Works

Although very successful when provided very large la-

beled datasets [15, 8], CNN models may generalize poorly

on smaller datasets because they require the estimation of

millions of parameters. While there has already been some

work on using deep learning methods for attribute predic-

tion [5], we explore alternative ways to automatically de-

termine the appropriate number of filters in the deep neural

networks.

The proposed ibpCNN models conduct input decompo-

sition in convolutional and fully connected manners, which

is similar to the deconvolutional networks [27, 28], Pre-

dictive Sparse Decomposition (PSD) [14, 12] and convo-

lutional auto-encoders [19]. However, there are two impor-

tant differences between ibpCNN and those models. First,

ibpCNN adapts its structure to the data complexity and sec-

ondly ibpCNN can be trained in an end-to-end manner.

Several works focused on removing redundant filters

from a well trained network of large size. For example,

Jaderberg et al. [11] proposed to reduce the redundancy of

filters by exploiting their low rank combination, and Le Cun

et al. [18] proposed to find the redudant the filters by exam-

ining their gradient magnitudes. Zhou et al. [29] also de-

veloped a greedy method to determine the suitable number

of filters for denoising auto-encoders. Different from those

methods, our proposed ibpCNN model adapts the network

structure in its growing process, instead of via ad-hoc post

processing, with performance guarantee based on submod-

ular optimization technique.

3. Preliminaries: Indian Buffet Process

In this section, we briefly review the Indian Buffet Pro-

cess (IBP) model [9] and its small variance asymptotics.

The asymptotic IBP allows the structure of a model to be

adaptive to data complexity and produces compact feature

representations. It serves as the foundation to construct our

proposed ibpCNN model. More details on the derivations of

asymptotic IBP models are provided in the supplementary

material due to space limit.

IBP is a nonparametric prior for describing an infinite la-

tent feature model, which assumes there are infinitely many

feature basis for representing input samples, and the ba-

sis distribution follows the IBP prior. More concretely, let

x ∈ R
d denote an input sample, W ∈ R

d×K incorporates

the basis for representing x, and denote the resulted repre-

sentations of x w.r.t. the basis W as z ∈ R
K , where the

value of K can be infinite [9]. The original IBP model is

rather computationally expensive for optimization. As an

alternative, Broderick et al. [3] derive the following small

variance approximation of the joint distribution P (x,W, z):

− log p(x,W, z) ∼

N
∑

i=1

‖xi −Wzi‖
2
2 + λ2K, (1)

up to constant terms. This is the probability function we are

going to work with in the proposed ibpCNN.

4. IBP Convolutional Neural Networks

We develop a convolutional neural network based on the

above asymptotic IBP model – the ibpCNN. We first present

unsupervised ibpCNN layers, similar in goal as convolu-

tional auto-encoders [19] but with analytic derivations. We

then in Section 4.2 and Section 4.2 present fully- and semi-

supervised training of ibpCNN. Details about parameter op-

timization of ibpCNN follow in the subsequent section.

In particular, we use X(�) and Z(�) to denote the tensor

of input and output feature maps of the �-th layer in ibpCNN

respectively. The filters in the �-th layer are parameterized

by a tensor W (�). The number of filters in the �-th layer is

denoted as K(�), which is going to be inferred in the train-

ing phase. We use z
(�)
k to denote an output feature map in

the k-th channel and w
(�)
k denotes the corresponding filter

2750

producing the feature map. When clear from context, we

omit the superscript (�) to avoid heavy notations.

4.1. Unsupervised IBP Layers

In a fully connected layer of ibpCNN, the i-th input fea-

ture vector xi of the i-th sample, which is vectorized from

its feature map Xi, is reconstructed by a linear combination

of the filters W = [w1, . . . , wK] and output feature map

zi of dimension K following the asymptotic model in Eqn.

(1). The unsupervised loss in fully connected IBP layers is

then defined as:

Lfc(W, z,K) :=
∑

i

‖xi −Wzi‖
2
+ λ2K. (2)

Here the number of filters K is optimized to achieve the

best balance between the representative ability (minimizing

the reconstruction loss in the first term) and complexity of

the layer (the second term). We will elaborate more on how

to set the trade-off parameter λ in Section 6.

The above fully connected IBP layer differs from its

counterpart in a CNN model: the IBP fully connected layer

decomposes the input x over a learned basis W in order to

minimize the reconstruction error (captured by the first term

in the loss) and the model complexity (the second term); it

thus pursues a compact representation of the input by learn-

ing a set of appropriate basis1.

We now proceed to define the convolutional layers in

ibpCNN. Similar to fully connected layers, the loss func-

tion of convolutional layer, Lconv, also comprises two terms:

a likelihood term that keeps the reconstruction close to the

original input, and a regularization term that penalizes the

model complexity to make sure the representation to be

compact. The filter parameters W and output response

maps Z, along with the number of filters K, are inferred

by minimizing following loss:

Lconv(W,Z,K) :=
∑

i

‖Xi−
K
∑

k=1

wk ∗Zi,k‖
2+λ2K. (3)

Here Zi,k – the feature map of the i-th sample at the k-th

channel – takes the role of a feature map which is convolved

with a filter wk and added over all k to approximate the

input signal X , and ∗ denotes a convolution operation.

The convolutional IBP layer is similar to the deconvo-

lutional network proposed in [27] where the cost to min-

imize at each layer is also the mean square error on the

inputs. However, unlike the deconvolutional network, our

proposed IBP convolutional layer does not use any form of

sparse coding and does not have fixed size. Applying this

1If we further impose the orthogonal constraint on W : W
⊤
W = I ,

the IBP layer will degenerate to Independent Component Analysis, which

can be optimized more efficiently at the cost of losing representative power.

“polar bear”

input

reconstruction

feature

Figure 2. Illustration on the architecture of ibpCNN with L layers.

The number of filters per layer (i.e., K(1), . . . ,K(L)) are adap-

tive to the provided training data. When a dataset becomes more

complicated, some new filters (in dashed line) will be automati-

cally introduced into ibpCNN. In a specific layer �, the inputs are

reconstructed (orange line) via the linear combination of K(ℓ) fea-

ture maps convolved with learned filters. The outputs of the final

layer pass through a fully connected layer to produce classification

results.

data-driven layer construction to natural images produces a

compact set of filters that capture data specific high-order

image structure beyond edge primitives.

4.2. Supervised Training for ibpCNN

We now describe the overall architecture of ibpCNN, and

explain how to train ibpCNN for supervised learning tasks.

The ibpCNN model is constructed by stacking multiple con-

volutional and fully connected IBP layers, and its structure

is determined by both the provided data and the specified

tasks. Thus ibpCNN is different from canonical deep gen-

erative models, such as convolutional auto-encoder [19]. A

graphical illustration for the structure of ibpCNN is pro-

vided in Figure 2.

Suppose the ibpCNN consists of Lconv convolutional lay-

ers and Lfc fully connected layers and denote L = Lconv +
Lfc, then the loss function of multi-layered ibpCNN to min-

imize is:

L
∑

�=1

Ltask(Z
(�);X, y) +

Lconv
∑

�=1

Lconv(W
(�), Z(�),K(�);X(�−1))

+
L
∑

�=Lconv+1

Lfc(W
(�), Z(�),K(�);X(�−1)), (4)

where X(0) = X denotes the raw input images and the in-

put of the (� − 1)-st layer X(�−1) is derived from applying

proper normalization and pooling operations on the output

Z(�−1) of the �-th layer. Here y is the ground truth anno-

tation for the provided supervised training examples and

Ltask is a loss function of a multi-layered network designed

for the targeted task. For example, if targeting at image

classification, Ltask can be the combination of softmax and

cross-entropy [15]: Ltask =
∑n

i=1

〈

yi, log
exp(Z(L))

‖ exp(Z(L))‖1

〉

,

with n supervised training examples and Z(L) depending on

W (�), Z(�)|L−1
�=1 and X . Thus, the number of filters K in all

the IBP layers is tuned to minimizing both the training data

and the task related loss, through the end-to-end optimiza-

tion. That is why ibpCNN is constructed in a joint of data

2751

and task driven manner. We can also generalize the loss

function L beyond classification loss, and adapt the struc-

ture of ibpCNN to other tasks (e.g., object segmentation).

4.3. Semi-supervised Training for ibpCNN

The lack of well annotated training data is a common

challenge in many machine learning problems, especially

for training deep neural networks with a huge number of

parameters. In contrast to the expensive cost for labeling

training data, unlabeled data from the same domain usu-

ally can be collected at almost zero cost. Therefore, semi-

supervised learning becomes a promising solution to the

problems caused by insufficient supervision information.

The proposed ibpCNN can be naturally applied

for semi-supervised learning. In semi-supervised

learning, we are provided with data that appear as la-

beled pairs {(X1, y1), . . . , (Xn, yn)} and unlabeled

data {Xn+1, . . . , Xn+n1}. The proposed ibpCNN

effectively employs semi-supervised learning to ex-

ploit generative descriptions of the combined data

{X1, . . . , Xn, Xn+1, . . . , Xn+n1
} in its structure learning

phase (step (a) in Algorithm 2). Thus ibpCNN is capable of

improving upon the classification performance that would

be obtained using the labeled data alone, and offering

better generalization performance, especially when the

number of labeled training data is rather limited (n ≪ n1).
We verify this advantage of ibpCNN in the experiments

presented in Section 6. This semi-supervised learning

strategy is similar to the layer-wise greedy pre-training in

generative model such as deep belief networks (DBNs) [2],

which also adapts the network parameters to provided data

without supervision information. In addition to adjusting

parameters, ibpCNN also adapts its structure to both the

labeled and unlabeled data.

5. Optimization

This section presents details regarding training proce-

dure of the ibpCNN. The three loss terms of ibpCNN in

Eqn. (4) are minimized alternatively: we first fix the filter

parameters W (�) and optimize the structure of the ibpCNN

(i.e., the parameters K(�)) through applying a novel grow-

and-prune algorithm to minimize the latter two data recon-

struction loss terms; then we fix the structure of the net-

work, and update the parameters W (�) through minimizing

the task loss term via back propagation; finally the layer-

wise outputs Z(�) are inferred to minimize the reconstruc-

tion loss again, according to the updated parameters and

network structure. Following subsections explain the de-

tails about the structure learning, data representation infer-

ence and filter parameter optimization respectively.

5.1. Learning The Structure of ibpCNN

The most straightforward method to determine the struc-

ture of a layer is forward greedy selection: one can start

with the simplest structure consisting of a single filter (i.e.,

K = 1) and greedily increase the number of filters until

the loss function in Eqn. (2) or (3) does not decrease any-

more [3]. However, we empirically found such a simple

greedy strategy is prone to being stuck at a local optimum

in practice, due to its sensitiveness to the initial filter and

the order of adding filters into the layer. The resulted layer

is usually either over-complete or over-succinct and has de-

teriorated performance.

To avoid this issue, we propose a Grow-And-Prune

(GAP) algorithm, which consists of two complementary op-

erations: grow for increasing the complexity of the layer

to produce more information-preserving representations of

the inputs and prune to remove redundant filters in the layer

and keep the layer compact. With a specified large num-

ber of filters (say N), minimizing the loss in Eqn. (2) or

(3) provides an over-complete filter set. Then GAP starts

with this over-complete and an empty filter set, performs

layer growing and pruning from dual directions and finally

converges to an optimal configuration of layer size. Intu-

itively, the proposed GAP is a “double” greedy algorithm.

Different from a simple forward (resp. backward) greedy

algorithm that starts from an empty (resp. full) set and it-

eratively adds (resp. removes) one filter to maximize the

gain in optimization, the double greedy [4] GAP algorithm

selects the appropriate and non-redundant filters from two

complementary directions and thus it can effectively avoid

being stuck at a local optimum, as explained in Section 5.4.

More details of GAP are provided in Algorithm 1. At the

beginning of ibpCNN training, the candidate filters W are

randomly initialized.

GAP examines all the N filters for only one round and

evaluates each filter by comparing its contribution in the

grow step with the prune step. Such evaluations and com-

parisons do not require to re-optimize the loss function for

every configuration of the layer size, and hence very effi-

cient. Therefore, GAP is able to find the appropriate struc-

ture of one layer rather efficiently with a low computational

complexity of O(N2m+Nmd). Here m and d are the num-

ber and dimension of inputs respectively. Applying GAP

repeatedly through L layers constructs the whole ibpCNN.

The prune step in GAP shares similar spirit with the

Optimal Brain Damage (OBD) strategy proposed in [18],

which reduces the network size from an over-complete one

by investigating the redundancy among filters. Different

from OBD, GAP considers both layer growing and pruning

in a complementary manner. The convergence guarantee of

GAP is provided in a following subsection.

2752

5.2. Inference

For a specific layer �, inference involves finding the fea-

ture maps Z(�) that minimize Lfc (in Eqn. (2)) or Lconv (in

Eqn. (3)), given an input feature map X(�) and filters W (�).

Z(�) is inferred only from the input signal X(�−1) and basis

W (�) of the same layer. However, since W (�) is tuned to

task-related top-down information, Z(�) also implicitly de-

pends on the top-down information. The feature maps Z(�)

of different samples can be inferred in parallel. We adopt

Accelerated Proximal Gradient (APG) descent [20] to infer

Z(�). APG, as a first order method, does not involve matrix

inverse and offers a fast convergence rate of O(1/t2) with t
being the number of iterations, and it is efficient in inferring

the output feature maps.

5.3. Parameter Learning

The goal of parameter learning is to fine tune the filters

W (�) in ibpCNN, which are shared across all the provided

training data. We use the standard back propagation (back-

prop) algorithm [17] to optimize weight parameters of all

the filters in ibpCNN. During the parameter learning, both

the task specific loss at the top layer in ibpCNN and the re-

construction loss in each specific layer are back-propagated

to update the filter parameters. Thus, although they are ini-

tialized in an unsupervised learning manner (see Section

5.1), the parameters of ibpCNN are eventually fine tuned

to the specific task to generate more discriminative repre-

sentations.

Algorithm 2 gives the details on training the over-

all ibpCNN, which alternatively learns the structure of

ibpCNN, infers the output feature maps and learns filter pa-

rameters. In the implementation, we allow up to T ′ = 10
and T = 3,000 epochs of the steps (b) and (c) before per-

forming the layer structure learning in step (a), to ensure the

ibpCNN to converge properly.

5.4. Notes on Convergence

The GAP algorithm is inspired by the recently developed

“double greedy” algorithm [4] in the submodular optimiza-

tion literatures. An appealing advantage of the GAP algo-

rithm over simple greedily growing algorithms is its ability

of converging to the optimal configurations, up to a constant

factor. This is stated in the following theorem.

Theorem 1. The output UN of Algorithm 1 achieves the

loss approximating the optimum with a constant factor of

1 < c ≤ 2:

L(U) ≤ cL(OPT),

where OPT represents the optimal configuration.

The preliminaries about double greedy algorithms and

proof on the above theorem are deferred to the supplemen-

tary material due to space limit.

Algorithm 1: Grow-And-Prune (GAP) for layer struc-

ture learning

Input : Maximal layer complexity N , loss function L
(Lfc or Lconv), a candidate set of filters

W = {w1, . . . , wN}.

Initialization: An empty layer U0 = ∅, and a virtual

over-complete layer V0 = W .

for i = 1 to N do
pi ← L(Ui−1)− L(Ui−1 ∪ {wi}).
qi ← L(Vi−1)− L(Vi−1\{wi}).
p′i ← max{pi, 0}, q

′
i ← max{qi, 0}.

with probability p′i/(p
′
i + q′i)

// Grow layer

Ui ← Ui−1 ∪ {wi},Vi ← Vi−1

else

// Prune layer

Ui ← Ui−1,Vi ← Vi−1\{wi}.

end

Output: An IBP layer consisting of filters in UN .

Algorithm 2: Training for ibpCNN

input : Labeled training data

{(X1, y1), . . . , (Xn, yn)} and unlabeled

training data (if any) {Xn+1, . . . , Xn+n1},

number of layers L, epochs T and T ′,

parameters λ(�).

for t′ from 1 to T ′ do
Step (a): Apply GAP (Algorithm 1) on

{X1, . . . , Xn} ∪ {Xn+1, . . . , Xn+n1
} to learn the

structures of ibpCNN.

for t from 1 to T do

Step (b): Fix K(�) and Z(�), apply backprop

on {(X1, y1), . . . , (Xn, yn)} to update filters

W (�), ∀� = 1, . . . , L.

Step (c): Fix W (�) and K(�), perform

inference to update output feature map Z(�),

∀� = 1, . . . , L.

end

end

output: The trained ibpCNN

6. Experiments

6.1. Datasets and Experiment Settings

Datasets We evaluate the performance of ibpCNN on fol-

lowing two benchmark datasets. The first is the Animal with

Attributes (AwA) dataset, which is a collection of 9,380
images from 50 various animal categories. Each image is

associated with annotations for 85 manually designed at-

tributes [16]. The AwA dataset is usually used to evaluate

compact representation learning methods [7, 26] for image

2753

classification tasks. The second dataset is the ILSVRC2010,

a popular dataset for benchmarking large scale image clas-

sification, which contains 1.2 million images from 1,000
diverse categories [6].

Experiment Settings We conducted experiments on the

above datasets under following two different settings, in or-

der to study various aspects of ibpCNN.

Fully supervised learning. Here we study the benefits

brought by the compactness of ibpCNN for image classifi-

cation tasks, and investigate how the structures of ibpCNN

adapts to varying data complexities. For both AwA and

ILSVRC2010 datasets, we split them into training, val-

idation and test sets following the conventions in previ-

ous works [16, 6]. To simulate varying data complexities,

we use different amounts of training and validation images

(10, 20, 30, 50, 100% of the available ones respectively) for

training, and evaluate the methods on the raw test sets.

Semi-supervised learning. Here we target at studying

the ability of ibpCNN in exploiting unlabeled data to learn

complicated data distributions, with rather limited super-

vision information. We split the training sets of the AwA

and ILSVRC2010 into labeled and unlabeled subsets. The

sizes of labeled subset are fixed as 30% (for AwA) and 10%
(for ILSVRC2010) of the original training set respectively.

We vary the size of unlabeled subsets, such that the ratio

of # unlabeled to # labeled images increases from 1, 5, 10
to 50. To collect enough unlabeled images, extra images

are randomly sampled from ImageNet [6] without having

overlapped categories with labeled images. We evaluate the

image classification performances on the original test sets.

Baselines We compare ibpCNN with both classical hand-

crafted feature based image classification methods and deep

learning methods. In particular, the hand-crafted feature

based methods include (1) the hand-crafted low-level fea-

tures as used in [16]; (2) the category-level discriminative

attributes of [26]; (3) classemes [25]; and (4) the attributes

from dictionary learning method [7]. All these baseline

methods (except for (1)) aim at learning compact image rep-

resentations from low-level hand-crafted features. A linear

SVM based classifier is applied on the output representa-

tions from these baseline methods, whose penalty parame-

ter C is tuned on the validation sets.

As for the deep learning baselines, we mainly compare

with CNN model of AlexNet architecture [15] in the fully

supervised learning setting, which has shown state-of-the-

art performance on several benchmark datasets in previ-

ous studies. In the semi-supervised learning setting, in ad-

dition to CNN-AlexNet, we also compare ibpCNN with

Conovlutional Auto-Encoder (CAE) [19], which is capa-

ble of modeling data generation in an unsupervised man-

ner without end-to-end training. We also report the per-

formance of CNN and CAE models with the architecture

identified by the GAP algorithm, i.e., the CNN-GAP and

CAE-GAP models. A common practice is to initialize pa-

rameters of CNN models with CAE models [19], denoted

as CAE+CNN. We also compare ibpCNN with this base-

line model in the semi-supervised learning setting. For fair

comparisons, the layer numbers of CNN and CAE models

are set the same as ibpCNN’s and the architecture of CAE

exactly follows the one specified in [19]. All the deep neural

network models are trained from scratch.

CNN-AlexNet and low-level features cannot directly

perform semi-supervised learning. We apply a graph based

semi-supervised learning algorithm proposed in [23] to

propagate the annotations from labeled data to unlabeled

data based on their output representations. We then re-train

the models (CNN-AlexNet and linear SVM) on the aug-

mented data. As CAE cannot be trained end-to-end for clas-

sification loss directly, we train a linear SVM model on the

CAE output representations, whose parameter is tuned via

cross-validation on the validation set.

Implementation Details On the AwA dataset, we use

4 convolutional layers and 1 fully connected layers for

ibpCNN. Each convolutional layer is followed by a pool-

ing layer. On ILSVRC2010 dataset, since the number of

training images is much larger compared with AwA, we

use more layers for ibpCNN, which consist of 5 convo-

lutional layers and 2 fully connected layers. At the top

layer of the networks, a softmax combined with cross-

entropy loss is applied. All the images are pre-processed

in the Caffe framework [13]. The trade-off parameter λ(�)

in ibpCNN is set as 0.1/N (�) across all the layers, where

N (�) = 1 × 105/2� is the allowed maximum number of

input feature maps for the �-th layer (see Algorithm 1).

The size upper bounds for the layers from bottom to top

in ibpCNN exponentially decrease as top layers extract vi-

sual patterns at higher abstract level than bottom layers and

thus need less filters. As long as we specify a sufficiently

large upper bound on the layer size (e.g., 1 × 105 in this

work), the GAP algorithm provably provides an optimal ar-

chitecture eventually and we empirically found its results

are rather robust to the value of trade-off parameters λ.

6.2. Results and Discussions

6.2.1 Fully Supervised Learning

We first present image classification results of ibpCNN and

baseline methods, under the fully supervised learning set-

ting. We also demonstrate how the structure of ibpCNN

adapts to the data complexity, and report the computation

costs of ibpCNN for training and testing.

AwA Dataset The classification the AwA dataset of

ibpCNN and baselines, with varying sizes of training data,

are plotted in the left panel of Figure 3. The results offer

following observations. First, the ibpCNN model provides

2754

10 20 30 50 100

0.2

0.25

0.3

0.35

0.4

training samples (%)

a
c
c
u
ra

c
y CNN

CNN−GAP

CNN−AlexNet

DictLearn

Yu

Classemes

Low−level

10 20 30 50 100
0

2

4

6

8

training samples (%)

#
 f

ilt
e
rs

 (
x
 1

0
4
)

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Figure 3. Results on AwA dataset. Left: comparisons between

ibpCNN and baselines with different numbers of training images.

CNN-GAP is the CNN model with the architecture determined by

GAP. Right: learned number of filters per layer in ibpCNN trained

with different numbers of training images (best viewed in color).

a significant performance enhancement over baselines. For

instance, when using 30% of the training data, ibpCNN

outperforms the best baseline (CNN-AlexNet) with a mar-

gin of nearly 10%. In fact, with only 10% of the training

samples, ibpCNN has already achieved comparable perfor-

mance than CNN-AlexNet with 30% of the training data.

These results clearly demonstrate the power of ibpCNN

in adapting model to data complexity and providing bet-

ter generalization performance. Secondly, increasing the

amounts of training data from 10% to 30% improves the

performance of ibpCNN more significantly than CNN-

AlexNet and other baselines. This also demonstrates that

when the training data are limited, the adaptive structure

enables ibpCNN to benefit more from added training data,

compared with models of fixed structures. Thirdly, CNN-

AlexNet – as a deep model – does not perform signifi-

cantly better than hand-crafted feature based methods (the

DictLearn), when the training samples are scarce (30% or

less). This is because the number of parameters in CNN-

AlexNet is too huge and the provided training data are not

sufficient for optimizing the parameters. This also vali-

dates the motivation of this work to pursue the balance be-

tween model complexity and data complexity. Employing

the architecture identified by GAP boosts the performance

of CNN (CNN-GAP vs. CNN-AlexNet). However, CNN-

GAP is still inferior to ibpCNN which jointly optimizes the

data modeling and task fitting.

Learned Structures of ibpCNN Figure 3 (right) shows

how the learned structures of ibpCNN varies with the size of

training data. The results confirm the adaptivity of ibpCNN:

the sizes of its learned layers – and thus its model com-

plexity – increase monotonically with the data complexity.

More specifically, we can observe that when the amount

of training data increases from 20% to 50%, the size of

ibpCNN grows very rapidly. Note that the fully connected

layer (layer 5) always stays at a relatively small size (around

1,500 filters), which indicates the output representations of

ibpCNN have low-dimensionality and are compact. Convo-

lutional layers are much larger than fully connected layers.

Table 1. Model size of ibpCNN in comparison with CNN-AlexNet,

and speed-up brought by ibpCNN over CNN-AlexNet for test im-

age prediction. Results are obtained on the AwA dataset.
training 10% 20% 30% 50% 100%

filters 6.4% 6.7% 7.8% 10.9% 12.5%

speed-up
11× 10× 9× 7× 6×

(rel. CNN-AlexNet)

These results are consistent with our intuitions: more com-

plicated data usually demand more sophisticated model for

reliable distribution modeling, and require more low-level

filters for extracting primitive edge and corner patterns.

Computation Costs It takes ibpCNN 0.72 and 2.67 hours

for learning the structure and optimizing parameters re-

spectively. The comparisons between ibpCNN and CNN-

AlexNet in terms of their computation cost are reported in

Table 1, where we also report the relative size of ibpCNN

w.r.t. CNN-AlexNet. In the training phase, structure learn-

ing consumes much less computation time than parameter

learning (including tuning filters and inferring representa-

tions), which demonstrates the GAP algorithm for struc-

ture learning is efficient and brings minor computation over-

head. Table 1 focuses on comparing efficiency of ibpCNN

with CNN-AlexNet model for forward passing. As can be

observed, ibpCNN is much smaller than CNN-AlexNet in

terms of the number of filters. Benefited from such com-

pact structure, ibpCNN is significantly more efficient than

CNN-AlexNet for classifying new images. For fair compar-

ison, both ibpCNN and CNN-AlexNet are tested using CPU

mode without any engineering acceleration.

ILSVRC2010 Dataset Table 2 shows the multi-class

classification accuracy of different methods, using vary-

ing amounts of training images, on the ILSVRC2010

dataset. The ibpCNN outperforms CNN-AlexNet (which

was ever the most successful deep network architecture on

ILSVRC2010) and other baselines significantly when the

training samples are scarce. For instance, when only us-

ing 10% of the training data, ibpCNN outperforms CNN-

AlexNet by nearly 11%. The performance gain is based the

appropriate complexity of ibpCNN which has only 17.5%
of filters in CNN-AlexNet. When the training samples are

sufficient, the performance ibpCNN is slightly inferior to

CNN-AlexNet. However, ibpCNN has much a smaller size

than CNN-AlexNet (only 37.5% filters of CNN-AlexNet)

and thus it costs much less time for testing. This is a quite

appealing feature in practice. Here for fair comparison,

both CNN-AlexNet and ibpCNN are trained from scratch,

and only a single model is tested. Comparing CNN-GAP

with CNN-AlexNet and ibpCNN offers following observa-

tions: CNN-GAP outperforms CNN-AlexNet significantly

when the number of training examples is very small (e.g.,

when less than 10% of training examples are used). This

clearly demonstrates the ability of the proposed GAP algo-

rithm in offering more compact model architecture when

2755

Table 2. Comparisons of top-1 classification accuracy on

ILSVRC2010, with different numbers of training images (in per-

centages of the available training images). Both CNN-AlexNet

and ibpCNN are trained from scratch. The number of filters of

ibpCNN is also reported in comparison with CNN-AlexNet.
training 1% 5% 10% 50% 100%

DictLearn [7] 14.23 18.68 21.38 29.71 31.24

CNN-AlexNet [6] 5.02 10.80 21.17 47.12 61.7

CNN-GAP 11.23 15.91 26.21 41.23 54.38

Ours 17.79 23.36 31.04 46.87 58.07

filters (rel.) 4.2% 14.5% 17.5% 28.2% 37.5%

training examples are scarce and better performance. Sec-

ondly, ibpCNN consistently outperforms CNN-GAP due to

that ibpCNN also models data distribution through reduc-

ing the data reconstruction loss. Such an additional gener-

ative component to the classification loss further enhances

the performance of ibpCNN.

6.2.2 Semi-supervised Learning

We here experimentally evaluate the performance of

ibpCNN for semin-supervised learning. The details of

how to apply CNN-AlexNet and low-level features in semi-

supervised learning are provided in the baseline descrip-

tions. The comparison results of ibpCNN with other base-

lines are plotted in the left panel of Figure 4. The results

confirm that ibpCNN consistently outperforms the base-

lines with varying numbers of training samples. We can

observe that ibpCNN benefits more from the unlabeled data

in achieving better generalization performance (higher test-

ing accuracy) than CAE, CAE-GAP and CAE+CNN+GAP

models, which demonstrates ibpCNN is better at model-

ing the joint data distribution through jointly optimizing

the model structure, parameters and data representations.

Comparing CAE-GAP with CAE confirms that the GAP

algorithm can also provide better structure for generative

models. The observation that CAE+CNN+GAP outper-

forms both CAE-GAP and CNN-GAP verifies the advan-

tages of combining discriminative and generative compo-

nents in ibpCNN for the semi-supervised learning tasks.

Similar to the supervised learning setting, we also investi-

gate the learned structure of ibpCNN with different amounts

of training data. The adaptive structures of ibpCNN are

shown in Figure 4 (right). More complicated data (includ-

ing more unlabeled data) results in a larger ibpCNN, which

verify the adaptivity of ibpCNN’s structure.

Results on ILSVRC2010 are presented in Table 3.

Convolutional Auto-Encoder (CAE) [19] and ibpCNN are

among the best performing methods, as they are able to

model data distribution without requiring supervision in-

formation. Initializing the parameters of CNN with CAE

and further fine-tuning the CNN on labeled training exam-

ples offers better performance than single CNN and CAE.

This verifies the effectiveness of adding additional genera-

(# Unlabeled) : (# Labeled)
1:1 5:1 10:1 50:1

a
c
c
u
ra

c
y

0.1

0.15

0.2

0.25

0.3

0.35

0.4

CNN
CAE+CNN+GAP
CAE-GAP
CAE
CNN-GAP
CNN-AlexNet
Low-level

1:0 1:1 5:1 10:1 50:1
0

1

2

3

4

5

(# Unlabeled) : (# Labeled)

#
 f

ilt
e
rs

 (
x
 1

0
4
)

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Figure 4. Comparisons of different methods on the AwA dataset,

under semi-supervised learning setting. Left: Average classifi-

cation accuracies of various methods. CAE-GAP, CNN-GAP

and CAE+CNN+GAP employ the architectures determined by the

GAP algorithm, and CAE+CNN+GAP is the CNN model whose

parameters are initialized by CAE. Right: number of learned fil-

ters per layer in ibpCNN. Here, 1:0 on x-axis means only using

30% of unlabeled data (best viewed in color).

Table 3. Comparisons of top-1 classification accuracies of different

methods on ILSVRC2010 dataset, under semi-supervised learning

setting. The number of labeled images is fixed as 10% of the avail-

able ones, and the number of unlabeled images varies.
Unlabeled : Labeled 1 : 1 5 : 1 10 : 1 50 : 1

Low-level feature [16] 15.42 16.17 16.92 17.67

CNN-AlexNet [6] 21.92 23.19 23.23 24.42

CNN-GAP 24.32 25.23 26.98 27.39

CAE [19] 26.70 28.06 30.64 31.45

CAE-GAP 27.92 29.20 32.78 33.81

CAE+CNN+GAP 29.42 31.93 33.23 35.79

ibpCNN (ours) 32.42 33.01 34.36 37.70

tive components in the overall loss as in ibpCNN in utiliz-

ing the large amount of unlabeled examples. The ibpCNN

model consistently outperforms the baselines, in particular

CNN+CAE+GAP, with varying numbers of external unla-

beled data. This demonstrates the advantages of its adaptive

structure to data complexity as well as its joint end-to-end

learning strategy for adapting the model structure, inferring

the representations and optimizing the model parameters.

7. Conclusions

We proposed a novel deep model, ibpCNN, whose struc-

ture is automatically adaptive to both the training data com-

plexity and specified supervised task loss function(s). Our

flexible ibpCNN model was effectively applied to image

classification tasks and produced compact and scalable im-

age representations. We demonstrated the superior perfor-

mance and efficiency of ibpCNN compared with standard

hand-crafted CNN models.

Acknowledgment

This work was supported by DARPA, AFRL, DoD

MURI award N000141110688, NSF awards IIS-1427425

and IIS-1212798, and the Berkeley Vision and Learning

Center.

2756

References

[1] R. P. Adams, H. M. Wallach, and Z. Ghahramani.

Learning the structure of deep sparse graphical mod-

els. arXiv preprint arXiv:1001.0160, 2009.

[2] Y. Bengio, P. Lamblin, D. Popovici, H. Larochelle,

et al. Greedy layer-wise training of deep networks.

2007.

[3] T. Broderick, B. Kulis, and M. Jordan. MAD-Bayes:

MAP-based asymptotic derivations from Bayes. In

ICML, 2013.

[4] N. Buchbinder, M. Feldman, J. Naor, and R. Schwartz.

A tight linear time (1/2)-approximation for uncon-

strained submodular maximization. In FOCS, 2012.

[5] J. Chung, D. Lee, Y. Seo, and C. D. Yoo. Deep

attribute networks. arXiv preprint arXiv:1211.2881,

2012.

[6] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and

L. Fei-Fei. Imagenet: A large-scale hierarchical im-

age database. In CVPR, 2009.

[7] J. Feng, S. Jegelka, S. Yan, and T. Darrell. Learning

scalable discriminative dictionary with sample relat-

edness. In CVPR, 2014.

[8] R. Girshick, J. Donahue, T. Darrell, and J. Ma-

lik. Rich feature hierarchies for accurate object de-

tection and semantic segmentation. arXiv preprint

arXiv:1311.2524, 2013.

[9] T. Griffiths and Z. Ghahramani. Infinite latent feature

models and the Indian Buffet Process. In NIPS, 2006.

[10] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik.

Simultaneous detection and segmentation. In ECCV.

2014.

[11] M. Jaderberg, A. Vedaldi, and A. Zisserman. Speed-

ing up convolutional neural networks with low rank

expansions. arXiv preprint arXiv:1405.3866, 2014.

[12] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. Le-

Cun. What is the best multi-stage architecture for ob-

ject recognition? In Computer Vision, 2009 IEEE 12th

International Conference on, pages 2146–2153. IEEE,

2009.

[13] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long,

R. Girshick, S. Guadarrama, and T. Darrell. Caffe:

Convolutional architecture for fast feature embedding.

arXiv preprint arXiv:1408.5093, 2014.

[14] K. Kavukcuoglu, M. Ranzato, and Y. LeCun. Fast in-

ference in sparse coding algorithms with applications

to object recognition. arXiv preprint arXiv:1010.3467,

2010.

[15] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Im-

agenet classification with deep convolutional neural

networks. In NIPS, 2012.

[16] C. Lampert, H. Nickisch, and S. Harmeling. Learn-

ing to detect unseen object classes by between-class

attribute transfer. In CVPR, 2009.

[17] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E.

Howard, W. Hubbard, and L. D. Jackel. Backprop-

agation applied to handwritten zip code recognition.

Neural computation, 1(4):541–551, 1989.

[18] Y. LeCun, J. S. Denker, S. A. Solla, R. E. Howard,

and L. D. Jackel. Optimal brain damage. In NIPs,

volume 2, pages 598–605, 1989.

[19] J. Masci, U. Meier, D. Cireşan, and J. Schmidhu-

ber. Stacked convolutional auto-encoders for hierar-

chical feature extraction. In Artificial Neural Networks

and Machine Learning–ICANN 2011, pages 52–59.

Springer, 2011.

[20] Y. Nesterov. A method of solving a convex program-

ming problem with convergence rate o (1/k2). In So-

viet Mathematics Doklady, volume 27, pages 372–

376, 1983.

[21] J. Paisley and L. Carin. Nonparametric factor analysis

with beta process priors. In ICML, 2009.

[22] K. Simonyan and A. Zisserman. Very deep convo-

lutional networks for large-scale image recognition.

arXiv preprint arXiv:1409.1556, 2014.

[23] A. Subramanya and J. A. Bilmes. Entropic graph regu-

larization in non-parametric semi-supervised classifi-

cation. In Advances in Neural Information Processing

Systems, pages 1803–1811, 2009.

[24] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Ra-

binovich. Going deeper with convolutions. arXiv

preprint arXiv:1409.4842, 2014.

[25] L. Torresani, M. Szummer, and A. Fitzgibbon. Effi-

cient object category recognition using classemes. In

ECCV, 2010.

[26] F. Yu, L. Cao, R. Feris, J. Smith, and S.-F. Chang.

Designing category-level attributes for discriminative

visual recognition. In CVPR, 2013.

[27] M. D. Zeiler, D. Krishnan, G. W. Taylor, and R. Fer-

gus. Deconvolutional networks. In Computer Vision

and Pattern Recognition (CVPR), 2010 IEEE Confer-

ence on, pages 2528–2535. IEEE, 2010.

[28] M. D. Zeiler, G. W. Taylor, and R. Fergus. Adaptive

deconvolutional networks for mid and high level fea-

ture learning. In Computer Vision (ICCV), 2011 IEEE

International Conference on, pages 2018–2025. IEEE,

2011.

[29] G. Zhou, K. Sohn, and H. Lee. Online incremental

feature learning with denoising autoencoders. In AIS-

TATS, 2012.

2757

