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Abstract

Multi-camera triangulation of feature points based on

a minimisation of the overall ℓ2 reprojection error can get

stuck in suboptimal local minima or require slow global op-

timisation. For this reason, researchers have proposed op-

timising the ℓ∞ norm of the ℓ2 single view reprojection er-

rors, which avoids the problem of local minima entirely. In

this paper we present a novel method for ℓ∞ triangulation

that minimizes the ℓ∞ norm of the ℓ∞ reprojection errors:

this apparently small difference leads to a much faster but

equally accurate solution which is related to the MLE un-

der the assumption of uniform noise. The proposed method

adopts a new optimisation strategy based on solving sim-

ple quadratic equations. This stands in contrast with the

fastest existing methods, which solve a sequence of more

complex auxiliary Linear Programming or Second Order

Cone Problems. The proposed algorithm performs well:

for triangulation, it achieves the same accuracy as existing

techniques while executing faster and being straightforward

to implement.

1. Introduction

Multiview triangulation is the problem of estimating the

3D location of a physical point from observations in multi-

ple camera views. In low-complexity people tracking meth-

ods for example, these feature points are the centroids of

foreground blobs in a foreground/background segmented

video sequence. In more complex methods, the features are

computed using SURF [14] or similar detectors.

In realistic applications, confusion is possible between

feature points corresponding to different points. This cor-

respondence problem can be handled by grouped features

according to their similarity and for each group triangulated

the corresponding physical point. If the error of this tri-

angulated point is too large, features are re-assigned after

which the process is repeated until a satisfactory solution is

reached. Clearly the performance of these methods depends

crucially on that of the triangulation of separate points.

We propose a method based on minimizing the ℓ∞ norm

of the ℓ∞ reprojection error, based on geometric insights of

the 3D space. Each camera k ∈ {1, . . . ,K} has a camera-

specific coordinate system defined by a rotation matrix Rk

and a translation ck. The relationship between the global

coordinates r = (X,Y, Z)
T

of a physical point and its coor-

dinates in camera k’s reference system rk = (Xk, Yk, Zk)
T

is given by the linear relationship rk(r) = Rkr + ck.

Assuming a pinhole camera model [10], the unknown r

would – under ideal circumstances – be observed by cam-

era k as a feature point with homogeneous pixel coordinates

uk(r) = (xk(r), yk(r), 1) =
(

Xk(r)
Zk(r)

, Yk(r)
Zk(r)

, 1
)

.

In reality – due to noisy observations – camera k will ob-

serve a feature at coordinates ũk = (x̃k, ỹk, 1) rather than

the ideal coordinates uk(r). The corresponding single view

reprojection error γk(r) for camera k is

γk(r)
△
= ‖ũk − uk(r)‖ , (1)

where ‖.‖ is a suitably chosen norm.

Many methods in literature quantify the single view re-

projection error in terms of the ℓ2 norm, i.e. the euclidean

distance between the measurement and the reprojection of a

hypothesized location. In this paper, we will however adopt

the ℓ∞ norm:

γk(r)
△
= max(|x̃k − xk(r)|, |ỹk − yk(r)|). (2)

In any case, triangulation methods minimize the aggre-

gated reprojection error

γ(r) = ‖(γ1(r), . . . , γK(r))‖ . (3)

Traditionally, the ℓ2 norm is used to aggregate reprojection

errors. However, ℓ∞ methods use the ℓ∞ norm instead –

accordingly, so does our proposed method. Due to the non-

linearity of the camera projection, γ(r) can have multiple

local minima when defined in terms of the ℓ2 norm [2,6,9].

In contrast, aggregating the reprojection errors with the ℓ∞
norm always results in a convex set of stationary points be-

cause of its pseudo-convex character [1, 3, 5, 12, 16, 17].
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This absence of local minima ensures that local optimisa-

tion methods converge to the global minimum of γ(r).
Some existing methods use a mixed-norm: the ℓ∞ norm

for aggregation but the ℓ2 norm for the reprojection er-

ror [1, 3, 12, 17]. Minimizing this aggregated error leads

to a series of auxiliary second-order cone problems which

are complex and time consuming to solve. More recent

methods have evaluated the use of the ℓ∞ norm for both

the aggregated and the reprojection error (we will refer to

this group as the full-ℓ∞ norm methods). This change al-

lows expressing γ(r) as the point-wise maximum of lin-

ear functions. Our proposed method will perform the op-

timization by a series of line searches, and we show that

our proposed method performs slightly faster than the exist-

ing full-ℓ∞ norm methods, while arriving at the same opti-

mum. Notably, our proposed method does not require any-

thing more complex than the solution of one-dimensional

quadratic equations and some basic matrix algebra.

Section 2 discusses existing triangulation methods, fol-

lowed by a more detailed problem outline in section 3 after

which we present the proposed method in section 4. The re-

sults in section 5 show that the proposed method is slightly

faster than the state of the art methods while still achieving

similar accuracy. Finally section 6 reaches the conclusion

and we discuss possible future work in section 7.

2. Existing work

Traditionally, triangulation methods employ the ℓ2 norm

for both the single view and aggregated reprojection er-

ror. Minimizing this error corresponds to computing the

maximum-likelihood estimate (MLE) under the assumption

that the observed locations ũk are perturbed by additive

white Gaussian noise (AWGN). Early methods [7,9,18] can

get stuck in local minima caused by the non-linearity of the

camera projection. Resolving this issue can be done through

a (complex) branch-and-bound approach [11] or by solving

for the entire set of stationary points [2].

But the problem of local minima can also be resolved

by using the ℓ∞ norm in eq. (1): the so-called ℓ∞ methods

which result in minimax problems. Olsson et al. [17] show

that the resulting cost function – the point-wise maximum

– is a quasi-convex function. This quasi-convexity implies

that the set of stationary points is convex: no local optima

exist. Yet even for many existing ℓ∞ methods, single view

reprojection errors are expressed in terms of the ℓ2 norm;

we will call them hybrid ℓ∞ methods [1,3,12,17]. We note

that the criterion optimized by the hybrid approaches cannot

easily be related to the maximum-likelihood estimation of a

noise model.

In contrast to hybrid methods, we will express single

view reprojection errors in terms of the ℓ∞ norm in this pa-

per. As shown in the supplementary material, this full-ℓ∞
norm method results in the maximum-likelihood estimation

under the assumption of uniform noise on the observations

ũk, lending a statistical foundation to the proposed method.

This norm was already studied in [5, 16], with applications

to large-dimensional multi-view geometry problems.

The hybrid methods result in the solution of a series of

SOCP problems, which is time-consuming. In the semi-

nal work of Kahl and Hartley [12] the bisection algorithm

was introduced for optimizing the hybrid cost function. In

the bisection algorithm a binary search narrows an inter-

val containing the optimal γ⋆ = argmin
r
γ(r). Olsson et

al. [17] also propose an approach based on a series of auxil-

iary problems, but not based on bisection: for their method,

the auxiliary problems are local approximations to the origi-

nal problem such that the KKT criteria are a simple approx-

imation to the KKT criteria of the original problem. In [1],

Agarwal et al. present a survey of the ℓ∞ norm for aggre-

gating reprojection errors. They present the Gugat method

which outperforms the techniques of Olsson et al. [17] and

Kahl [12] et al. while still being based on a series of SOCP

problems. They also show the use of the ℓ∞ norm for ag-

gregating and the ℓ1 norm for the reprojection results in a

series of LP problems. Their method is still based on a se-

ries of SOCP problems and is therefore only slightly faster

than the methods by Olsson and Kahl. Finally, the authors

of [3] show how the solution to the previous SOCP problem

can be used as initialization to the next iteration’s problem

in order to speed up the solver.

Recently, full-ℓ∞ norm has garnered some attention.

In [5], the authors propose a split-Bregman approach to the

optimisation problem which results in an elegant modifica-

tion of existing bundle adjustment (BA) packages. In each

iteration of the algorithm, a single bundle adjustment it-

eration is performed, as well as one evaluation of a prox-

imal operator (which requires finding the root of a one-

dimensional function). The authors show that it is faster

than the Gugat method from [1], but it still requires the use

of existing software packages such as SBA [13].

The authors of [16] use the full-ℓ∞ norm as a way to

detect outliers: handling the entire dataset as a single entity,

outliers are removed based on their reprojection errors. We

mention their approach here because it is an existing use

of the full-ℓ∞ norm, but the optimization is not continued

beyond the removal of outliers.

In the proposed algorithm, we do not require a bisection

algorithm, nor do we solve time-consuming auxiliary SOCP

or BA problems. Rather, the proposed algorithm directly

minimizes γ(r) through a sequence of line searches. The

direction of the line search is computed in a straight forward

manner conform the KKT conditions, and the line searches

boil down to solving quadratic equations.
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3. Background theory

We will adopt the common convention that only points

in front of cameras are of interest, i.e. Zk(r) ≥ 0 for all k:

this is the so-called cheirality constraint from [8]. Taking

into account that rk = Zk(r)uk(r), it follows that

γk(r) = ‖Zk(r)ũk − rk(r)‖∞ /Zk(r). (4)

The objective of the proposed algorithm is to minimise

γ(r):

min
r

max
k

γk(r). (5)

Or equivalently to

min
r,γ

γ subject to γ ≥ γk(r) ∀k. (6)

In order to remove the non-linearity of the constraints

from the ℓ∞ norm, we introduce the constant vectors

i1 = (1, 0, 0)T ,i2 = (−1, 0, 0)T ,i3 = (0, 1, 0)T ,i4 =
(0,−1, 0)T . Using these notations, with k indexing the K
cameras and l indexing the vectors il, the constraints can be

expressed as a set of linear inequalities:

min
r,γ

γ subject to

γ ≥ γk,l(r)
△
= iℓ · (rk(r)− Zk(r)ũk) /Zk(r) ∀k, l.

≡(γ + il · ũk)Zk(r) ≥ il · rk(r), ∀k, l.

(7)

As Zk(r) and rk(r) are linear functions of r and ũk is a

known constant vector, we can write that

γk,l(r) =
a · r + b

c · r + d
. (8)

As shown by the authors of [17], such functions are all

pseudo-convex. As a result the aggregated error – a point-

wise maximum of these functions – is also pseudo-convex,

implying that there are no local optima.

For a given value of γ, the four constraints for a given

camera define a pyramid in space, containing all points

whose reprojection error for that camera is smaller than γ.

The feasible set for the constraints (7) is the intersection

of the pyramids for all of the cameras, as shown in Fig-

ure 1 this is a convex polyhedron. Our optimization algo-

rithm iteratively reduces the value of γ until it approaches

the optimal value γ⋆. This will cause this polyhedron to

collapse onto itself: due to the quasi-convexity, each poly-

hedron will be contained in the previous iteration’s polyhe-

dron, and each of them will in turn contain the next step’s

polyhedron and, eventually, the optimal point r⋆.

Figure 1. Example set-up. The cameras and their viewing planes

are shown, as well as the pyramids they project in space for a given

value of γ and the resulting polyhedron.

Over the course of the algorithm we compute improving

directions in a sequence of points r(t). In each subsequent

point, one of the constraints is active (fulfilled with equal-

ity), otherwise problem (7) would not be in its optimum.

This also means that at each point of the iteration, the cur-

rent location estimate lies on the hull of the polyhedron cor-

responding to its ℓ∞ norm error. Because the optimum lies

in the interior of the polyhedron, we select the improving

direction in terms of the gradients of the active constraints,

i.e. the inward-pointing normal of the polyhedron faces in

which the current estimate lies. In global coordinates these

gradients are given by

gk,l(γ) = RT
k

(

−il + (0, 0, γ + il · ũk)
T
)

. (9)

4. Proposed approach

The algorithm starts with an arbitrary initial estimate

r(0) of the sought position. We then iteratively select an

improving direction and perform a line search. The only re-

quirement for the initial point is that it must lie in front of

all of the cameras (i.e. it satisfies the cheirality constraint).

In step (t) we define a polygon by using γ = γ(r(t−1))
in equation (7). r(t− 1) lies on the hull of this polygon,

and due to pseudo-convexity the optimal point r⋆ must lie

within the polyhedron. We select an improving direction

d(t) (a direction pointing towards the interior of the polyhe-

dron) and perform a line search along this direction. This

process is repeated until the KKT constraints are fulfilled.

In practice, for example due to machine precision, some

inequalities may only fulfil

γ(r) ≈ γk,l(r). (10)

We therefore evaluate whether constraints are active using

a threshold ǫ, i.e. by checking whether

(1− ǫ)γ(r) ≤ γk,l(r). (11)

In our implementation we have used ǫ = 10−5.
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4.1. Choice of improving direction

An improving direction points is computed in a point

r(t−1). At least one constraint is active, i.e. r(t−1) lies

on the surface of the polyhedron. Assuming that there are

J active constraints, we will denote their normals by n1

through nJ , in favour of brevity: which constraints corre-

spond to the various gradients is irrelevant for the following

discussion.

In the case of a single active equality we simply select the

normal of this active inequality as the improving direction:

d(t) = n1, which is simply the gradient descent approach.

Multiple active constraints complicate the direction

choice, though. For two active constraints, r(t−1) lies on

the edge of two faces of the polyhedron. The chosen direc-

tion

d(t) = n1 + n2 (12)

points along the interior angle bisector of the two faces and

is orthogonal to the edge as shown for the two-dimensional

case in figure 2.

In case of three active constraints active, r(t−1) is a ver-

tex of the polyhedron. The improving direction d(t) is con-

structed as

d′ = n1 × n2 + n2 × n3 + n3 × n1

s = n1 · d/ |n1 · d|

d(t) = sd′ (13)

This is the vector with the same scalar product to all of the

active constraint normals: the intersection of the pairwise

face angle bisectors, where the sign s is used to ensure that it

points to the interior. In case the three normals are coplanar

(the scalar product to any normal is zero), we test for each

pair of normals whether their combination according to the

previous paragraph violates the third normal, i.e. whether

it has a negative dot product with this third normal. If and

only if none of the pairs work, the algorithm terminates.

To handle cases of four or more active constraints, we

investigate each of the possible triplets of active constraints

and compute a candidate improving direction d(t) as before.

If this candidate direction violates any of the constraints not

included in the triplet, we select the next triplet and the pro-

cess is repeated. If one of the triplets leads to termination

of the algorithm or if none of the triplets lead to an improv-

ing direction conform all of the constraints, it can be shown

that r(t−1) is optimal (see the supplementary material) and

the algorithm terminates. The drawback is that all possi-

ble triplets need to be examined. However, in the result

section we show that the number of simultaneously active

constraints is only very rarely higher than 3 or 4, such that

this possibility only has a major influence.

C1

C2

ũ1

ũ2

r

d

Figure 2. Illustration of the direction choice. The current estimate

r and the improving direction d which is the sum of the gradients

of each of the active constraints: the bisector for the corner.

In the supplementary material we show that the algo-

rithm finishes (cannot find an improving direction) if and

only if the KKT conditions are fulfilled. The current es-

timate is then a stationary point and due to the pseudo-

convexity of the cost function, this stationary point is a

global optimum. Hence, the algorithm has indeed reached

its goal.

4.2. Line search

After selecting the improving direction for iteration (t),
we step to the point r(t) = r(t−1)+α(t)d(t). For notational

brevity, let

fk,l(α)
△
= γk,l

(

r(t−1) + αd(t)
)

. (14)

For all active (k, l), ∂
∂α

fk,l (α)
∣

∣

α=0
is negative. We choose

the master active constraint as the one with the least nega-

tive value: the constraint which changes the least (and hence

will remain active) for small steps along this line.

Now, let (k′, l′) be the master constraint and (k, l) any

other (active or inactive) constraint. As (k′, l′) is active,

fk′,l′(α) is a decreasing function of α for all α. On the

other hand, fk,l(α) may be increasing or decreasing and

may not even be monotonic. For α = 0, the activity of

(k′, l′) implies that fk,l(0) ≥ fk′,l′(0). Locally, the error

for (k′, l′) is higher than the errors for all other constraints

(k, l), but it decreases along the improving direction. At

some value of α the graph may intersect with the graph of

another constraint. Let αk,l be the lowest strictly positive

value of alpha for which fk′,l′(α) = fk,l(α), for any (k, l),
i.e. the point where another constraint might become the

new master constraint. As we know that fk′,l′(α) decreases

with increasing α, the point r(t) = r(t−1) + α(t)d(t) is

guaranteed to have a lower reprojection error than r(t−1).

Finally, such an intersection is sure to exist if the direction

points towards the interior of the polyhedron.
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r
(t−1)

r
(t)

Figure 3. Example of the line search. Starting in r
(t−1), we step

towards r(t) so that it again lies on an edge of the polyhedron (the

polygon in this 2D example). The unlabeled intermediate point

lies only on an edge of the polyhedron and is rejected: we can still

take a step along the improving direction without an increase in

the cost function.

Evaluating the complementary constraint (the constraint

corresponding to the same camera and the same coordinate

as the master constraint, but the different sign) shows that it

will always intersect for fk′,l′(α) = 0, as that is where the

master constraint’s value equals that of its complementary

constraint.

Now let α(t) = mink,l αk.l. This is the first point along

the line search after which the master constraint might be-

come inactive, and equivalently the first stationary point of

the aggregated error along the search direction.

Equivalently, the selected value of α(t) is the lowest pos-

itive value for which r(t) once again lies on an edge of the

polyhedron as shown for two dimensions in Figure 3 (where

an edge of the polyhedron in 3D becomes a vertex of the

polyhedron in 2D). This edge is defined by the master con-

straint and the constraint corresponding to the chosen value

of α. This implies that, except for the first iteration, the im-

proving direction will always be chosen based on at least

two active constraints.

As a final note, we discuss the computation of αk,l by

solving the equation fk′,l′(α) = fk,l(α) for α, retaining

only the smallest positive solution. As either side is a frac-

tion of linear functions of α (see equation (8)), this equation

is a quadratic equation in a single variable.

5. Results

5.1. Comparison of reprojection norms

The proposed cost function uses the ℓ∞ norm in both

the single view reprojection error and the aggregated error.

Existing techniques for ℓ∞ norm triangulation, however,

sometimes use a mixed-norm: here we give a comparison

between the optima of methods using ℓ∞ norm aggregation

and either ℓ1,ℓ2 or ℓ∞ norm reprojection errors.
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Figure 4. Accuracy for the various ℓ∞-aggregation methods on

synthetic data with Gaussian noise. The graph shows euclidean

distances between the estimate and the ground truth.
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Figure 5. Accuracy for the various ℓ∞-aggregation methods on

synthetic data with Gaussian noise. The graph shows euclidean

distances between the estimate and the ground truth.

The test set-up consists of 5 random cameras observing

a sequence of random points. We perturb the ideal obser-

vations by the cameras either by additive white Gaussian

noise or by additive white uniform noise. Figures 4 and 5

show bezier-curves fitted to the histograms for the euclidean

error between the triangulated points and the ground truth.

Roughly, a heavier tail can be said to correspond to less

robustness: large errors occur more often. We see a pre-

dictable trend for the set with AWGN: the ℓ∞ norm opti-

mization is less robust than the ℓ2 norm. When adding uni-

form noise, the graph implies that the ℓ∞ norm aggregation

and reprojection is the better choice: it is after all the MLE

in that case (as shown in the supplementary material).
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Figure 6. Histogram of the number of cameras observing a single

point for the Örebro dataset.

5.2. Active inequalities and iterations

In order to illustrate the typically active number of con-

straints, we will use the measurements of Örebro Castle

from [4]. This dataset is a collection of 761 views with a

total of 58951 points visible in total, each visible in a sub-

set of the views. In order to convey a sense of the number

of views per point, we show a histogram of the number of

cameras observing a point in figure 6.

In figure 7 we illustrate the number of active inequalities

in subsequent iterations of the algorithm. The first itera-

tion only ever has a single active inequality (the initial point

is very unlikely to lie on an edge of the polyhedron). Af-

ter that, two or three active inequalities occur more or less

equally often; four is much less likely (one to two orders of

magnitude), while on the entire dataset only a single point

(in a single iteration) had five active inequalities.

Finally, figure 8 illustrates the distribution of the number

of iterations required for a point to reach convergence.
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Figure 7. Heatmap (in log-scale) for the number of active con-

straints in a given iteration, normalized over the entire sequence.
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Figure 8. Distribution of the number of iterations required to reach

convergence (over all points in the Örebro dataset).
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Figure 9. Run times for discussed methods on synthetic data:

10000 points each visible in exactly 10 views.

5.3. Comparison of execution speed

In order to show that our technique is faster than ex-

isting state-of-the-art methods for point triangulation, we

compare with the Gugat algorithm from Agarwal [1] (both

using the SOCP approach for the (ℓ∞,ℓ2) approach and the

LP approach resulting from the (ℓ∞,ℓ1)-mixed norm), and

the approach from Eriksson et al. [5] corresponding with the

full-ℓ∞ approach. As a first evaluation, figure 9 shows the

timing results on synthetic data with a fixed 10 viewpoints

per point. In realistic datasets, the number of viewpoints

per point is bound to change as not all cameras observe all

points (see section 5.2 and in particular figure 6).

The first real dataset we compare with is dino.1 We also

present results for the datasets of Alcatraz, Église du Dôme,

Örebro castle, Stockholm town hall and the Vercingetorix

statue from [4] and [15]: the results for the datasets as

shown in Figures 10 through 15 illustrate that our proposed

method executes faster than the existing methods (sum-

marised in Table 1). All of the techniques were evaluated

in MATLAB using SeDuMi as the solver for the LP and

SOCP problems [19], and SBA for bundle adjustment [13].

1www.robots.ox.ac.uk/˜vgg/data/data-mview.html
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Figure 10. Run times for discussed methods on the Alcatraz

dataset with 65072 points over 419 views.
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Figure 11. Run times for discussed methods on the dino dataset

with 4983 points over 36 views.
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Figure 12. Run times for discussed methods on the Église du Dôme

dataset with 84792 points over 85 views.
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Figure 13. Run times for discussed methods on the Örebro Castle

dataset with 59856 points over 761 views.
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Figure 14. Run times for discussed methods on the Stockholm

Town Hall dataset with 28096 points over 43 views.
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Figure 15. Run times for discussed methods on the Vercingetorix

statue dataset with 10789 points over 68 views.
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Gugat SOCP 0.1090 0.2540 0.1338 0.0475 0.1561 0.1615 0.1131

Gugat LP 0.0498 0.0631 0.0422 0.0290 0.0548 0.0498 0.0513

Eriksson 0.0163 0.0404 0.0154 0.0140 0.0294 0.0262 0.0177

Proposed 0.0045 0.0066 0.0025 0.0022 0.0052 0.0044 0.0026

Table 1. Summary of the average execution times in seconds, over all datasets.

6. Conclusion

In this paper, we have proposed a novel technique of ap-

proaching triangulation by using the ℓ∞ norm both for sin-

gle view errors and the camera aggregation, resulting in a

pseudo-convex problem without local minima.

The proposed method is based on geometrical interpre-

tations of the cost function and its quasi-convexity of the

objective function: the optimization can be seen as a series

of polyhedrons representing a polyhedron collapsing onto

itself until it has zero volume.

Our approach iteratively selects an improving direction

and performs a line search along it. This is in contrast with

the existing methods, which solve a sequence of complex

problems. The less complex nature of the proposed ap-

proach results in an easier-to-implement method, while per-

forming faster (in contrast, existing methods use advanced

solvers for their auxiliary problems). This leads us to be-

lieve that a more efficient implementation would result in

a larger speed benefit for the proposed method: the ex-

isting methods are implemented largely with optimized li-

braries while the proposed method was implemented solely

in MATLAB.

7. Future Work

The presented work can be interpreted as the collapse of

a polyhedron in 3D space. A promising avenue of future

research is the use of this approach for the triangulation of

volumes rather than points. We plan to expand this method

such that general objects (which can be modelled by convex

polyhedra) can be reconstructed efficiently: cameras often

observe not a single point per object but rather a silhouette.

We aim to generalise the proposed method in such a way as

to enable an efficient polyhedral reconstruction of 3D ob-

jects using the ℓ∞ norm.
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