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Abstract

Patch-based low-rank models have shown effective in

exploiting spatial redundancy of natural images especial-

ly for the application of image denoising. However, two-

dimensional low-rank model can not fully exploit the spatio-

temporal correlation in larger data sets such as multispec-

tral images and 3D MRIs. In this work, we propose a novel

low-rank tensor approximation framework with Laplacian

Scale Mixture (LSM) modeling for multi-frame image de-

noising. First, similar 3D patches are grouped to form a

tensor of d-order and high-order Singular Value Decompo-

sition (HOSVD) is applied to the grouped tensor. Then the

task of multiframe image denoising is formulated as a Max-

imum A Posterior (MAP) estimation problem with the LSM

prior for tensor coefficients. Both unknown sparse coeffi-

cients and hidden LSM parameters can be efficiently esti-

mated by the method of alternating optimization. Specifi-

cally, we have derived closed-form solutions for both sub-

problems. Experimental results on spectral and dynamic

MRI images show that the proposed algorithm can better

preserve the sharpness of important image structures and

outperform several existing state-of-the-art multiframe de-

noising methods (e.g., BM4D and tensor dictionary learn-

ing).

1. Introduction

The field of image denoising has advanced rapidly in

the past decades. Early attacks on denoising are based on

sparse representations of images (e.g., [17, 1]); later this

line of research has evolved into image denoising methods

via dictionary learning [8, 13]. The combination of dic-

tionary learning and nonlocal means [3] has led to many

state-of-the-art natural image denoising methods [5, 12, 6].

Recent advances include the low-rank matrix approxima-

tion (e.g., [7]) and high-order singular value decomposition

(e.g., [18]).

By contrast, the field of multi-frame image denoising has

been under-researched as of today despite the abundance of

volumetric data in the real world (e.g., volume rendering,

remote sensing and dynamic MRI). In ANLM3D [15], the

method of nonlocal-mean filtering was made spatially adap-

tive for the application of MRI. The well-known BM3D

method was also extended into BM4D [11] for volumetric

data restoration. To fully exploit the correlations among the

multi-frames, the low-rank tensor approximation method-

s have been proposed for multi-frame image denoising. In

[19], based on the Tucker decomposition, the multirank is

first estimated using the alternating least square (ALS) al-

gorithm and the hyperspectral image (HSI) is denoised by

multirank truncation of the core tensor. The parallel factor

analysis (PARAFAC) decomposition has also been exploit-

ed for HSI denoising [10]. However, both the two methods

didn’t consider the rich nonlocal self-similarity of HSI and

the ALS algorithm didn’t exploit the sparse nature of the

core tensor. In [16], the tensor dictionary learning method

combing similar patches grouping has been proposed for

HSI denoising, where the Akaike information criterion (A-

IC)/minimum description length (MDL) technique is use to

estimate the multirank. The multirank truncation is then

applied to denoise the core tensor. As the AIC/MDL tech-

nique cannot exploit the sparse nature of the core tensor,

the denoising results are still often unsatisfied. In [18], the

high-order singular value decomposition (HOSVD) is used

to decompose the grouped similar 3D patches. The resulted

core tensor is then denoised by hard-thresholding followed

by Wiener filtering. Though effective, the two-stage denois-

ing method is heuristic in nature.

In this paper, we present a novel low-rank tensor approx-

imation framework with Laplacian Scale Mixture (LSM)
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model, which is analogous to Gaussian Scale Mixture

(GSM) model, for multi-frame image denoising. We first

group similar 3D patches to form a tensor of d-order and

apply HOSVD to the grouped tensor. Unlike [18], we pro-

pose to formulate the problem of multiframe image denois-

ing in SVD domain as a Maximum A Posterior (MAP)

estimation problem with the LSM prior for tensor coef-

ficients. Such formulation allows us to solve the multi-

frame image denoising in a more principled manner than

those of [19, 16, 18] where multirank trunction and ad-

hoc two-stage filtering methods were used. Compared with

the classic i.i.d Laplacian model for ℓ1-norm sparse estima-

tion, the LSM prior allows to jointly estimate both the un-

known hidden LSM parameters and sparse coefficients from

the observed data via alternating optimization. In fact, we

have derived closed-form solutions for both subproblems

admitting computationally efficient implementations. Ex-

perimental results have shown that the proposed multiframe

image denoising method outperforms current state-of-the-

art volumetric data denoising methods including tensor dic-

tionary learning [16], BM4D [11], and the two-stage de-

noising method [18] significantly for multispectral images

(> 1.5dB) and convincingly for 3D MRIs (up to 1.04dB).

2. Related Works

In this section, we briefly review three classes of existing

image denoising methods and their extensions into multi-

frame scenario.

Sparse methods are built upon the fact that small patch-

es in a natural image can often be well approximated by

the linear combination of a small number of atoms from

a dictionary. Instead of using fixed dictionaries, it has

been shown that dictionary learning [8, 13] can substantial-

ly improve the denoising performance. The combination of

the dictionary learning and nonlocal self-similarity model-

ing [3] leads to even more effective denoising performance

[5, 12, 6]. For volumetric images, a straightforward ap-

proach of exploiting temporal redundancy is to replace 2D

patches by their 3D counterpart (e.g., BM4D [11]). How-

ever, as dimensionality increases, the effectiveness of dic-

tionary learning degrades rapidly (e.g., insufficient similar

patches can be found due to the notorious curse of dimen-

sionality).

Low-rank methods recover a clean image from its cor-

rupted observation by low-rank matrix approximation [7].

When similar patches are grouped to form a data matrix

Y, the rank of Y is usually low. Therefore, the task of

noise removal can be achieved by recovering a low-rank

matrix from its noisy version; more specifically, singular

value thresholding has been a standard tool for the class of

matrix completion problems [18]. By designing appropri-

ate shrinkage/thresholding operators, sate-of-the-art image

denoising performance can be achieved [7]. For volumetric

data, high-order SVD becomes a natural extension for han-

dling the grouped multi-dimensional data arrays. Howev-

er, only ad-hoc thresholding or Wiener filtering techniques

were considered in previous work [18].

Tensor methods have been specifically proposed for

volumetric data denoising. In [19, 10], a low-rank tensor

approximation method was developed for multispectral im-

age denoising. Most recently, Peng et al. [16] proposed an

effective multispectral image denoising method using non-

local tensor dictionary learning. To exploit nonlocal spatio-

temporal redundancy, 3D image patches are clustered into

groups via k-means clustering. Then each set of grouped

similar 3D patches are linearly approximated by low-rank

tensor approximation. More specifically, the AIC/MDL

ceriterion [21] can be used to determine the rank for each

tensor model. However, the AIC/MDL criterion doesn’t

fully exploit the sparse nature of the core tensor, leading

to inaccurate estimation of the multirank.

3. Low-rank Tensor Approximation with

Laplacian Scale Mixture Modeling

In this paper, we present a novel low-rank tensor approx-

imation framework with Laplacian Scale Mixture (LSM)

modeling for multi-frame image denoising. We first intro-

duce the nonlocal low-rank tensor approximation method,

then connect it with Laplacian Scale Mixture Modeling and

finally derive efficient optimization algorithms.

3.1. Nonlocal low­rank tensor approximation

Low-rank tensor approximation consists of two steps:

patch grouping and low-rank approximation. First, we ex-

tract 3D patches from a noisy 3D image of sizeH×W ×L;

for each exemplar patch Pi (sized by
√
n × √

n × L and

located at spatial position i), we search for similar patches

within a local window (e.g., 40×40). Specifically, we group

the similar patches by k-nearest neighbor (k-NN) method.

After patch grouping, we can group similar 3D patches in-

to a 3rd-order tensor by reshaping each matrix slice of 3D

patches into 1D vectors, i.e., Yi ∈ R
n×m×L1.

Second, low-rank approximation is applied to the formed

tensor Yi. Given a noisy tensor Yi, its HOSVD is given as

follows [9, 2],

Yi =

n
∑

r=1

m
∑

c=1

L
∑

l=1

S̃i(r, c, l)ui,r × vi,c ×wi,l

= S̃i ×1 Ui ×2 Vi ×3 Wi,

(1)

where Ui = [ui,1, · · · ,ui,n] ∈ R
n×n, Vi =

[vi,1, · · · ,vi,m] ∈ R
m×m and Wi = [wi,1, · · · ,wi,L] ∈

1Instead of forming a 4th order tensor for the set of similar 3D patches,

we found that combining them into a 3
rd order tensor leads to slightly

better denoising performance.
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Figure 1. The HOSVD expansion of a low-rank Tensor Y .

R
L×L are orthogonal matrices, S̃i ∈ R

n×m×L is the 3D

coefficient array (also called “core tensor”), S̃i(r, c, l) are

the components of S̃i, × denotes the tensor product (i.e.,

x×y = xy⊤), and ×j denotes the j-th model tensor prod-

uct. Three orthogonal matrixes Ui, Vi and Wi can be com-

puted from the SVD of model-j (j = 1, 2, 3) flattening of

Yi respectively. The HOSVD decomposition is illustrated

in Fig.3.1. Thanks for the grouping of similar patches, Yi

can be approximated by a low-rank tensor, i.e.,

X̂i =

r1
∑

r=1

r2
∑

c=1

r3
∑

l=1

Ŝi(r, c, l)ui,r × vi,c ×wi,l

= Ŝi ×1 Ûi ×2 V̂i ×3 Ŵi,

(2)

where Ûi = [ui,1, · · · ,ui,r1 ] ∈ R
n×r1 , V̂i =

[vi,1, · · · ,vi,r2 ] ∈ R
m×r2 and Ŵi = [wi,1, · · · ,wi,r3 ] ∈

R
L×r3 are the thin matrices associated with Ui, Vi and

Wi respectively, r1 ≤ n, r2 ≤ m and r3 ≤ L, and

Ŝi ∈ R
r1×r2×r3 denotes the smaller core tensor. The triple

(r1, r2, r3) is often called the multirank of Yi. To estimate

the multirank of a tensor, the AIC/MDL method [21] can be

used for different modes flattening of the tensor. With the

estimated rank parameters (r1, r2, r3), low-rank tensor ap-

proximation can be easily obtained by setting the last n−r1,

m− r2 and L− r3 slices along different modes in S̃i to be

zero matrices.

Instead of explicitly estimating multirank parameters, we

can also obtain the low-rank tensor approximation by induc-

ing the sparsity on the array of tensor coefficients - namely

Ŝi =argmin
Si

ψ(Si),

s.t. ||Yi − Si ×1 Ui ×2 Vi ×3 Wi||2F ≤ σ2
w,

(3)

where ψ(·) is a sparse regularization function inducing the

sparsity to the components of Si; and (Ui, Vi Wi) are or-

thogonal matrices obtained by HOSVD of Yi. Due to the

orthogonality of these matrices, Eq. (3) can be rewritten

into

Ŝi = argmin
Si

ψ(Si), s. t., ||S̃i − Si||2F ≤ σ2
w, (4)

where S̃i = Yi×1U
⊤
i ×2V

⊤
i ×3W

⊤
i . The above problem

is often formulated in the Lagrangian form,

Ŝi = argmin
Si

||S̃i − Si||2F + λψ(Si). (5)

Popular choices of ψ(·) include the pseudo-norm ℓ0 and the

ℓ1 norm, which exactly lead to the hard and soft threshold-

ing of tensor coefficient array S̃i respectively. Generally,

the selection of threshold λ is non-trial; therefore, a heuris-

tic two-stage method similar to BM3D has been adopted in

[18].

3.2. Laplacian scale mixture modeling for low­rank
tensor approximation

From Eq. (5), one can see that the selection of spar-

sity regularization function ψ(·) is a critical step in low-

rank tensor approximation. In this subsection, we propose

a Maximum a Posterior (MAP) method for estimating Si

from S̃i. For simplicity, we will drop the subscript index

i and let s̃ ∈ R
n·m·L and s ∈ R

n·m·L denote the one-

dimensional representations of S̃ and S respectively. If s

denotes the noiseless version of s̃, i.e., s̃ = s + n, where

n ∈ R
n·m·L denotes additive Gaussian noise, the MAP es-

timation of s from s̃ can be formulated as

s = argmin
s

{−logP (s̃|s)− logP (s)}, (6)

where logP (s̃|s) is given by the Gaussian distribution of

noise, i.e.,

P (s̃|s) ∝ exp(− 1

2σ2
w

||s̃− s||22), (7)

and a prior distribution of s is given by

P (s) ∝
∏

j

exp(−ψ(sj)
θj

). (8)

It is easy to verify that the above MAP estimation leads

to the following weighted ℓ1 norm minimization problem

when P (s) is chosen to be an independent and identically

distributed Laplacian,

s = argmin
s

||s̃− s||22 + 2
√
2σ2

w

∑

j

1

θj
|sj |, (9)

where θj denotes the standard derivation of sj . It has been

shown that a weighted ℓ1 norm is more effective than the

original ℓ1 norm in sparse estimation [4]. Now the ques-

tion is how to estimate variance parameters θj from noisy

observation s̃.

In this paper, we propose a Laplacian Scale Mixture

(LSM) prior for s. With the LSM prior, one can decom-

pose s into point-wise product of a Laplacian vector α and

a positive hidden scalar multiplier θ with probability P (θj)-
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i.e., sj = θjαj . Note that this decomposition is analogous

to the one used in Gaussian Scale Mixture model [17]. Con-

ditioned on θj , sj is Laplacian with standard deviation θj .

Assuming that θj and αj are independent, we can write the

LSM prior of s as

P (s) =
∏

i

P (sj), P (sj) =

∫ ∞

0

P (sj |θj)P (θj)dθj .

(10)

It should be noted that for many choices of P (θj) there is

no analytic expression for P (s). Consequently, it is usually

difficult to compute the MAP estimation of s with the LSM

prior. However, such difficulty can be overcome by using a

joint prior model P (s,θ). By substituting P (s,θ) into the

MAP estimation of Eq.(6), we obtain

(s,θ) = argmin
s,θ

{−logP (s̃|s)− logP (s|θ)− logP (θ)}.
(11)

Here we adopt a factorial distribution for the multipliers -

specifically the noninformative Jeffrey’s prior, i.e., P (θj) =
1
θj

. With Jeffrey’s prior, Eq. (11) can be written into

(s,θ) = argmin
s,θ

||s̃−s||22+2
√
2σ2

w

∑

j

|sj |
θj

+4σ2
w

∑

j

logθj .

(12)

Note that in LSM we have s = Λα, where Λ = diag(θj) ∈
R

n·m·L×n·m·L. Then Eq.(12) can be rewritten as

(α,θ) = argmin
s,θ

||s̃−Λα||22 + 2
√
2σ2

w

∑

j

|αj |

+ 4σ2
w

∑

j

log(θj + ǫ),
(13)

where ǫ is a small positive constant for numerical stabili-

ty. From Eq. (13), one can see that with the LSM prior,

the sparse estimation of s has been translated into the joint

estimation of α and θ.

3.3. Alternative Optimization

A straightforward approach of solving Eq. (13) is to

adopt the method of alternating optimization. Surprising-

ly, both sub-problems in our formulation admit closed-form

solutions, which is highly desirable from an implementation

point of view.

First, given an initial estimate of α, one can solve for θ

by optimizing

θ = argmin
θ

||s̃−Aθ||22 + 4σ2
w

∑

j

log(θj + ǫ), (14)

where A = diag(α) and Λα = Aθ. Equivalently, Eq. (14)

can also be rewritten as

θ = argmin
θ

∑

j

{ajθ2j + bjθj + clog(θj + ǫ)}, (15)

where aj = α2
j , bj = 2αj s̃j and c = 4σ2

w. Thus, Eq.

(15) boils down to solving a sequence of scalar minimiza-

tion problems

θj = argmin
θj

ajθ
2
j + bjθj + clog(θj + ǫ), (16)

which can be solved by taking
df(θj)
dθj

= 0, where f(θ) de-

notes the right hand side of Eq. (16). By taking
df(θj)
dθj

= 0,

two stationary points can be obtained - i.e.,

θj,1 = − bj
4aj

+

√

b2j
16

− c

2aj
, θj,2 = − bj

4aj
−
√

b2j
16

− c

2aj
(17)

Case I) b2j/(16a
2
j )−c/(2aj) ≥ 0. In this case, the global

minimization of Eq. (16) can be obtained by comparing

f(0), f(θj,1) and f(θj,2);
Case II) b2j/(16a

2
j )−c/(2aj) < 0. Note that there are no

stationary points in the range of [0,∞). Since ǫ is a small

positive constant, g(0) = bj + c/ǫ is always positive, where

g(θ) = f(θ)
dθ

. Therefore, f(0) is the global minimum for

this case. The solution to Eq. (16) can then be written as

θj =

{

0, if b2j/(16a
2
j )− c/(2aj) < 0,

tj , otherwise
(18)

where tj = argminθj{f(0), f(θj,1), f(θj,2)}.

Second, for a fixed θ, α can be updated by solving

α = argmin
α

||s̃−Λα||22 + 2
√
2σ2

w

∑

j

|αj |, (19)

which also admits a closed-form solution namely

αj = Sτj (
s̃j
θj

), (20)

wherein Sτj (·) denotes the soft-thresholding function with

a threshold τj =
√
2σ2

w

θ2

j

.

By alternatingly solving the sub-problems of Eqs. (14)

and (19), sparse coefficients s can be estimated as ŝ = Λ̂α̂,

wherein Λ̂ and α̂ denote the estimates of Λ and α respec-

tively. Finally, the reconstructed tensor can be obtained by

X̂ = Ŝ ×1 U×2 V ×3 W, (21)

where Ŝ is the coefficient array corresponding to ŝ.

4. Multiframe Image Denoising with Low-rank

Tensor Approximation

Suppose noisy observation data are denoted by Y = X+
N , where X ∈ R

H×W×L and N ∈ R
H×W×L correspond

to unknown image and additive noise respectively. Let Yi =
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R̃iY denote the 3rd tensor formed by similar 3D patches,

where R̃i denotes an operator grouping similar 3D patches

into a 3rd tensor. It follows that the problem of denoising

volumetric images can be formulated as

(X , {Si}) = argmin
X ,{Si}

||Y − X ||2F

+ η
∑

i

||R̃iX − Si ×1 Ui ×2 Vi ×3 Wi||2F

+ 2
√
2σ2

w

∑

i

||Λisi||1 + 4σ2
w

∑

i

logθi,

(22)

where Ui,Vi,Wi denotes the three orthogonal matrices

calculated by HOSVD. The above global minimization

problem can be decomposed into the following two sub-

problems and solved by the method of alternating optimiza-

tion again.

4.1. Solving for whole image

Let X̂i = Ŝi×1Ui×2Vi×3Wi denote the reconstructed

low-rank tensor with an initial estimate of Si. Then, for a

fixed {Ŝi}, the whole image X can be recovered by solving

the following ℓ2-minimization problem

X = argmin
X

||Y − X ||2F + η
N
∑

i=1

||R̃iX − X̂i||2F , (23)

which is equivalent to the following equation (after reshap-

ing tensors into long vectors)

x = argmin
x

||y − x||22 + η

N
∑

i=1

||R̃ix− x̂i||22, (24)

where y ∈ R
H·W ·L,x ∈ R

H·W ·L, x̂ ∈ R

√
n·√n·L cor-

respond to the vector representations of tensors Y,X , X̂i

respectively; and R̃i
.
= [R̃i0 , R̃i1 , · · · , R̃im−1

] the opera-

tor extracting similar patches. Eq.(24) can be solved in a

closed-form by

x = (I+ η

N
∑

i=1

R̃
⊤
i R̃i)

−1(y + η

N
∑

i=1

R̃
⊤
i x̂i), (25)

where the matrix to be inverted is diagonal and can be easily

calculated. Similar to K-SVD [8], Eq. (25) can be comput-

ed by averaging each set of reconstructed 3D patches X̂i.

4.2. Solving for {si} and {θi}
For a fixed X , Eq. (22) reduces to a sequence of low-rank

tensor approximation problems - i.e., for each exemplar 3D

patch,

(si,θi) = argmin
si,θi

||s̃i−si||22+2
√
2
σ2
w

η
||Λisi||1+4

σ2
w

η
logθi,

(26)

where we have used S̃i = Xi ×1 U
⊤
i ×2 V

⊤
i ×3 W

⊤
i . This

is exactly the problem studied in the previous section.

Putting things together, the proposed volumetric image

denoising algorithm based on nonlocal low-rank tensor ap-

proximation with Laplacian Scale Mixture (NLTA-LSM) is

summarized in Algorithm 1. We have found that the in-

ner iteration often converges in just few iterations (J = 2
in our implementation). In Algorithm 1, we have adopted

the strategy of iterative regularization [20] where noise fed

back to the denoised image is controlled by a small positive

parameter δ.

Algorithm 1 NLTA-LSM based MDI denoising

• Initialization:

(a) Set the initial estimate X̂ = Y and the parameter η;

(b) Obtain the set of tensors {Xi} from X̂ via k-NN

search for each exemplar patch.

• Outer loop: for k = 1, 2, . . . ,Kmax do

(a) Tensor dataset Xi construction: grouping a set of

similar 3D patches into a 3rd tensor for each exemplar

patch;

(b) Inner loop (Low-rank tensor approximation by

solving Eq. (26)): for j = 1, 2, . . . , J do

(I) Compute θi for fixed αi via Eq.(18);

(II) Compute αi for fixed θi via Eq.(20);

(III) Output si = diag(θi)αi if j = J .

End for

(c) Reconstruct {Xi} from {Si} via Eq.(21).

(d) Reconstruct the whole image X̂ (k+1) from {Xi} by

solving Eq.(25).

(e) If k < Kmax set X̂ (k+1) = X̂ (k+1)+δ(Y−X̂ (k+1))
End for

• Output X̂ (k+1)

5. Experimental results

We have implemented the proposed algorithm under

MATLAB. Both multispectral images and MR image se-

quences are used to verify the performance of the proposed

algorithm. To verify the performance of the propose LSM

prior, we also implemented a reweighted ℓ1 nonlocal low-

rank tensor approximation (NLTA-reweighted ℓ1) algorith-

m by iteratively computing θi in Eq. (9) as 1/(|ŝ(k)j | + ǫ)

[4], where ŝ
(k)
j is the estimate of the k-th iteration and ǫ is

a small constant. The basic parameters are set as follows:

block size 5× 5×L (L denotes the number of frames), the

number of similar patches m = 100, the regularization pa-

rameter δ = 0.12, and iteration numbers Kmax = 7 and

J = 2.
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5.1. Multispectral image denoising

The whole CAVE database consisting of 32 hyperspec-

tral images is used as the test set. The images of size

512 × 512 × 31 are captured with the wavelengths in the

range of 400 − 700 nm at a interval of 10 nm. Two set-

s of experiments are conducted. In the first experiment,

additive Gaussian noise with different standard derivation-

s is added to the hyperspectral images; in the second ex-

periment, mixed noise of additive Gaussian and Poisson is

added as done in [16]. In the setting of mixed noise, s-

tandard derivations of Gaussian noise vary from 10 to 100,

and the variance of Poisson noise is fixed at y/2k, wherein

k = 5. We have compared the proposed method against

several recently developed multispectral image denoising

methods - including tensor dictionary learning (Tensor-

DL) method [16], BM4D method [11], PARAFAC method

[10], low-rank tensor approximation (LATA) method [19],

ANLM3D method [15] and band-wise BM3D method [5],

the two-stage HOSVD denoising method [18]. 2. Similar

to [16], for the case of mixed noise we have applied the

variance-stabilizing transformation (VST) [14] and its in-

verse to noisy spectral images before and after applying a

test denoising method.

Average PSNR results at different noise levels are re-

ported in Table 1. From Table 1, it can be seen that the

proposed method consistently outperforms all other com-

peting methods. The average PSNR improvements over B-

M4D, HOSVD [18], and NLTA-reweighted ℓ1 methods are

larger than 2dB, 1.2dB and 0.8dB, respectively. In Fig.

2 we have compared the portions of denoised images at

the 410nm band of Toy and Cloth with Gaussian noise of

σw = 30. It can be seen that the other test methods all pro-

duce visually annoying artifacts; by contrast, the denoised

image by our proposed method contain much fewer arti-

facts. Surprisingly, we can also see that the reconstructed

images by the proposed method are even sharper than the

original images. This is due to the effective collaborative

filtering across both the spectral and the spatial dimensions

by the proposed method.

5.2. 3D MRIs denoising

We have also applied the proposed method to 3D M-

RIs denoising. The T1-weighted 3D MRIs are obtained

from the Brainweb database3. The 3D MRIs is of size

217 × 181 × 10 with 1 × 1 × 1mm3 resolution. Additive

Gaussian noise with different noise levels σw is added to

simulate noisy 3D MRIs 4 The proposed method is com-

pared with some recently developed 3D MRIs denoising

methods, including the ANLM3D method [15], the band-

2We thank the authors of [16, 11, 10, 19, 15, 5] for providing their

source codes in their websites.
3http://brainweb.bic.mni.mcgill.ca/brainweb/
4Our method can also be used for Rician noise by using the VST [14].

wise BM3D method [5], and the BM4D method [11]. For

the reason of completeness, LATA [19], TensorDL [16],

HOSVD [18] and NLTA-Reweighted ℓ1 developed for spec-

tral image denoising are also included here.

Table 2 shows the PSNR result comparison among com-

peting methods. From Table 2 we observe that the B-

M4D method [11] performs much better than the TensorDL

method [16]. The reason is that the correlations between the

slices are not strong and smaller 3D patches (i.e., 4× 4× 4)

used in BM4D can better exploit the local correlations.

Even though the full slices 3D patches (i.e., 5× 5× 10) are

used, the proposed method still outperforms the BM4D [11]

for all noise levels. The PSNR gain over BM4D method can

be up to 1.04 dB. To facilitate visual comparison, we have

shown portions of the reconstructed MRI by different meth-

ods in Fig. 3. It can be seen that the recovered image by our

method is subjectively superior to those by other methods.

6. Conclusions

In this paper we have proposed a low-rank tensor approx-

imation approach for multiframe/volumetric image denois-

ing. To fully exploit the spatio-temporal dependency, we

group similar 3D image patches into 3rd tensors, which lend

themselves to be approximated by low-rank tensors. For the

purpose of making low-rank tensor approximation spatio-

temporally adaptive, we propose a new regularization term

for sparse coefficients using Laplacian scale mixture mod-

el. LSM modeling translates low-rank tensor approxima-

tion into an optimization problem with sparse coefficients

and hidden scalar variables. We have adopted the method

of alternating optimization and shown that both subprob-

lems can be solved in closed-form. Experimental results on

both hyperspectral images and MRI volumetric data show

that the proposed method performs significantly better than

existing methods.
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